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Applications to PDE Problems ∗

The use of the Sturm-Liouville theory can be nicely illustrated by solving any of a number of

classical problems. We will consider two: a heat flow problem and a vibrating string problem. The

first, determining the temperature distribution throughout some heat conducting rod, is basically the

same problem Fourier first solved using “Fourier series”. In some ways, this can be considered the

historical starting point of the development of the Sturm-Liouville theory. The second is the problem

of modeling the motion of an elastic string stretched between two points, a problem undoubtedly of

interest to all guitar and banjo players.

53.1 The Heat Flow Problem
Setting Up the Problem

Here is the problem: We have a heat conducting rod of length L , and we want to know how the

temperature at different points in the rod varies with time. To keep our discussion relatively simple,

we assume the rod is one-dimensional, uniform, positioned along the X–axis with endpoints at

x = 0 and x = L , and with the endpoints being kept at a temperature of 0 degrees (Fahrenheit,

Celsius, Kelvin — the actual scale is irrelevant for us). Let

u(x, t) = temperature of the rod’s material at horizontal position x and time t .

The endpoint conditions can then be written as

u(0, t) = 0 and u(L , t) = 0 for all t .

Let’s also assume the rod’s initial temperature distribution is known; that is, we assume

u(x, 0) = f (x)

where f is some known function on (0, L) . Let us further assume that f is at least piecewise

smooth on the interval.

If this were a text on thermodynamics or partial differential equations, we would now derive

the heat equation. But this isn’t such a text, so we’ll simply assume that, at every point in the rod,

∂u

∂t
= κ

∂2u

∂x2

* Most of this chapter was stolen from chapter 16 of Principles of Fourier Analysis by Howell (he won’t mind). I’ve cut out

irrelevant stuff and made minor changes to fit our discussion.
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where κ is some positive constant describing the thermal properties of the rod’s material. This is

the famous heat equation derived by Fourier.1

Our goal is to find a usable formula for u(x, t) . Since it only makes sense to talk about the

temperature where the rod exists, x must be between 0 and L . Gathering all the assumptions from

above, we find that u(x, t) must satisfy the following system of equations:

∂u

∂t
− κ

∂2u

∂x2
= 0 for 0 < x < L (53.1a)

u(0, t) = 0 and u(L , t) = 0 (53.1b)

u(x, 0) = f (x) for 0 < x < L (53.1c)

Implicit in this is the requirement that u(x, t) be a sufficiently smooth function of x and t for the

above equations to make sense. Remember, κ is a positive constant, and f is a known piecewise

smooth function on (0, L) . At this point we have no reason to place any limits on t other than it

must be real valued. So, for now, we will assume no other limits on t . Later, however, we may need

to modify that assumption.2

A Formal Solution

Solving this problem starts with the rather bold assumption that it has a solution. Supposing this,

let us try to find a suitable generalized Fourier series representation for this solution u(x, t) . For

reasons not yet clear, let’s use the one generated by the Sturm-Liouville problem

φ′′(x) = −λφ for 0 < x < L

with

φ(0) = 0 and φ(L) = 0 .

Do observe that the boundary conditions at x = 0 and x = L are the same as in the above heat

flow problem. That is one reason we chose this Sturm-Liouvile problem.

From this Sturm-Liouville problem we get the set of sine functions

{

sin
(

kπ

L
x
)

: k = 1, 2, 3, . . .
}

which, from our Sturm-Liouville theory, we know is a complete, orthogonal set of functions with

respect to weight function w(x) = 1 . We also know that, for each fixed value of t , we represent

the solution to the above heat flow problem, u(x, t) , using the corresponding sine series

u(x, t) =

∞
∑

k=1

bk sin
(

kπ

L
x
)

where

bk =

〈

sin
(

kπ

L
x
)

∣

∣

∣
u(x, t)

〉

∥

∥

∥
sin

(

kπ

L
x
)
∥

∥

∥

2
= · · · =

2

L

∫ L

0

u(x, t) sin
(

kπ

L
x
)

dx .

1 Each person reading this should go through the derivation of the heat equation at least once in their life. Reasonable

derivations can be found in most introductory texts on partial differential equations.
2 Part of “solving” many a problem is determining just what the problem is, and what can or should be considered as “known”

at the onset. Here, for example, we “know” we can find u(x, t) for all time t . We are wrong.
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Note the that formula for the bk’s depends on t . So these coefficients are not constants but functions

of t , and we really should rewrite the above as

u(x, t) =

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

(53.2a)

where

bk(t) =
2

L

∫ L

0

u(x, t) sin
(

kπ

L
x
)

dx . (53.2b)

Note, also, that the above formula for computing each bk(t) is pretty much useless since we don’t

have any formula for u(x, t) — that formula is just what we want to find.

Our goal is to find a formula for u(x, t) by finding the formulas for the bk’s . To do this, we

plug the above series representation for u into the heat equation. Naively compute the derivatives

in the heat equation by differentiating the terms in the series,

∂u

∂t
=

∂

∂t

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

=

∞
∑

k=1

∂

∂t

[

bk(t) sin
(

kπ

L
x
)]

=

∞
∑

k=1

bk
′(t) sin

(

kπ

L
x
)

and

∂2u

∂x2
=

∂2

∂x2

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

=

∞
∑

k=1

∂2

∂x2

[

bk(t) sin
(

kπ

L
x
)]

=

∞
∑

k=1

bk(t)

[

−

(

kπ

L

)2

sin
(

kπ

L
x
)

]

= −

∞
∑

k=1

(

kπ

L

)2

bk(t) sin
(

kπ

L
x
)

.

With these expressions for the derivatives, equation (53.1a) becomes

∞
∑

k=1

bk
′(t) sin

(

kπ

L
x
)

+ κ

∞
∑

k=1

(

kπ

L

)2
bk(t) sin

(

kπ

L
x
)

= 0 .

Letting

µ = κ
(

π

L

)2
,

this can be written more concisely as

∞
∑

k=1

[

bk
′(t) + k2µbk(t)

]

sin
(

kπ

L
x
)

= 0 .

Look at this last equation. For each value of t , the left-hand side looks like a sine series

which, according to the equation, equals 0 for all x in (0, L) . Surely, this is only possible if each

coefficient is 0 . Here, though, the coefficients are expressions involving the bk’s . So each of these

expressions must equal 0 . This gives us a bunch of differential equations,

dbk

dt
+ k2µbk = 0 for k = 1, 2, 3, . . . . (53.3)
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These differential equations are easy to solve. Each is nothing more than

dy

dt
+ γ y = 0

with y = bk and γ = k2µ — one of the simplest first order linear equations around. You should

have no problem confirming that its general solution is y = Be−γ t where B is an arbitrary constant.

Hence,

bk(t) = Bk e−k2µt for k = 1, 2, 3, . . .

where the Bk’s are yet unknown constants.

With these formulas for the bk’s , formula (53.2a) becomes

u(x, t) =

∞
∑

k=1

Bk e−k2µt sin
(

kπ

L
x
)

. (53.4)

In deriving this expression for u(x, t) , we assumed u(x, t) exists and satisfies the heat equation

(equation (53.1a)) and the endpoint conditions in equation set (53.1b). All that remains is to further

refine our expression so it also satisfies the initial condition of equation (53.1c), u(x, 0) = f (x) .

Using the above formula for u(x, t) in this equation, we get

f (x) = u(x, 0) =

∞
∑

k=1

Bk e−k2µ·0 sin
(

kπ

L
x
)

=

∞
∑

k=1

Bk sin
(

kπ

L
x
)

for 0 < x < L . Cutting out the middle yields

f (x) =

∞
∑

k=1

Bk sin
(

kπ

L
x
)

for 0 < x < L ,

which, by an amazing coincidence, looks exactly as if we are representing our known function f

by its sine series. Surely then, each Bk must be the corresponding sine coefficient for f ,

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx .

That finishes our derivation. If the solution exists and our (occasionally naive) suppositions are

valid, then our heat flow problem (equation set (53.1)) is solved by

u(x, t) =

∞
∑

k=1

Bk e−k2µt sin
(

kπ

L
x
)

(53.5a)

where

µ = κ
(

π

L

)2
(53.5b)

and

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx for k = 1, 2, 3, . . . . (53.5c)

This set of formulas is often called a formal solution to the heat equation problem because we

obtained it through a process of formal manipulations which seemed reasonable, but were not all

rigorously justified.
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!◮Example 53.1: Consider solving our heat flow problem when L = π , κ = ln 2 , and the rod

is initially a constant temperature throughout, say,

f (x) = 100 .

Here: π/L = 1 , formula (53.5b) simplifies to

µ = κ
(

π

L

)2
= ln 2 ,

and

e−k2µt = e−k2(ln 2)t =

(

eln 2
)−k2t

= 2−k2t for k = 1, 2, 3, . . . .

Formula (53.5c) yields

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx

=
2

π

∫ π

0

100 sin(kx) dx =
200

kπ

[

1 − (−1)k
]

.

Hence, according to formula (53.5a), the formal solution to this heat flow problem is

u(x, t) =

∞
∑

k=1

Bke−k2µt sin
(

kπ

L
x
)

=

∞
∑

k=1

200

kπ

[

1 − (−1)k
]

2−k2t sin(kx)

=
400

π

(

1

2

)t

sin(x) +
400

3π

(

1

2

)32t

sin(3x) +
400

5π

(

1

2

)52t

sin(5x)

+
400

7π

(

1

2

)72t

sin(7x) +
400

9π

(

1

2

)92t

sin(9x) + · · · .

Validity and Properties of the Formal Solution

The question remains as to whether formula set (53.5) is a valid solution to our heat flow problem.

There are several parts to this question: Does the series converge for all values of x and t of interest?

If so, is the resulting function suitably smooth for the expressions in equation set (53.1) to make

sense, and if so, does this function satisfy those equations?

Partial answers to these questions, along with some insight, can be gained by examining the

terms of our series,

Bk e−k2µt sin
(

kπ

L
x
)

for k = 1, 2, 3, . . . .

Remember µ > 0 and

|Bk| =

∣

∣

∣

∣

2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx

∣

∣

∣

∣

≤
2

L

∫ L

0

| f (x)|

∣

∣

∣
sin

(

kπ

L
x
)
∣

∣

∣
dx ≤

2

L

∫ L

0

| f (x)| dx .
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So, letting

A =
2

L

∫ L

0

| f (x)| dx ,

we see that
∣

∣

∣
Bk e−k2µt sin

(

kπ

L
x
)
∣

∣

∣
≤ A e−k2µt for k = 1, 2, 3, . . . .

If t is also positive, then each e−k2µt shrinks to 0 very rapidly as k → ∞ . This ensures that

the series formula for u(x, t) converges absolutely. Consequently, we are assured that u(x, t) , as

defined by formula set (53.5), is well defined when 0 ≤ x ≤ L and 0 < t .

“It can be shown” that these exponentially decreasing terms ensure that, as long as t > 0 ,

u(x, t) is an infinitely smooth function of both x and t whose partial derivatives can all be computed

by differentiating the series term by term. This will allow us to rigorously confirm our formal solution

to be a valid solution to our heat flow problem (and a very nice one, at that) when t > 0 .

On the other hand, if t < 0 , then e−k2µt = ek2µ|t | → ∞ as k → ∞ . Thus, unless the Bk’s

shrink to 0 extremely rapidly as k → ∞ , the terms of our series solution will blow up, and the

series itself diverges whenever t < 0 .

In short:

The series formula given by formula set (53.5) succeeds beautifully as a solution to our

heat flow problem for t > 0 and, typically, fails miserably for t < 0 .

There is something else worth noting about our series solution: Each term in that series,

u(x, t) =

∞
∑

k=1

Bk e−k2µt sin
(

kπ

L
x
)

,

rapidly shrinks to 0 as t → ∞ . From this it can readily be shown that the maximum and minimum

temperatures in the rod must be approaching 0 degrees fairly quickly as t gets large.

?◮Exercise 53.1: Let u(x, t) be the infinite series solution found in above example 53.1.

a: Verify that

|u(x, t)| <
400

π

∞
∑

k=1

(

1

2

)tk

when t > 0 . (53.6)

b: Using the above and the formula for computing the sum of a geometric series, show that

|u(x, t)| <
800

π

(

1

2

)t

when t ≥ 1 .

c: Assuming u(x, t) is the temperature distribution in a rod, what does the above tell you about

the maximum temperature in the rod when t = 1 ? when t = 2 ? when t = 10 ?

?◮Exercise 53.2: Again, let u(x, t) be the infinite series solution found in example 53.1, above.

This time, consider this infinite series when t = −1 .

a: Write out this series.

b: Verify that this series does not converge to anything when x = π/2 .

c: Show that this series cannot be the sine series for any piecewise continuous function on

(0, π) . (Remember, if it were the sine series for such a function, then the coefficients would

be bounded.)
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53.2 The Vibrating String Problem
Setting Up the Problem

Envision an elastic string (such as you might find on any guitar or banjo) stretched between two fixed

points on the X–axis, say, from x = 0 to x = L (with L > 0 ). For simplicity, we’ll assume the

string only moves vertically, and we will let

u(x, t) = vertical position at time t of the portion of string located at horizontal
position x .

Because the ends of the string are fixed at x = 0 and x = L , u(x, t) is only defined for 0 ≤ x ≤ L ,

and we have the endpoint conditions

u(0, t) = 0 and u(L , t) = 0 .

After making a few idealizations and applying a little physics, it can be shown that

∂2u

∂t2
= c2 ∂2u

∂x2

where c is some positive constant (the reason for using c2 instead of c will be clear later).3 This

is the basic (one-dimensional) wave equation.4

We will assume the initial shape of the string is given by the graph of some known function f

on (0, L) ,

u(x, 0) = f (x) for 0 < x < L .

For most (unbroken) strings we would expect f to be continuous and piecewise smooth. In addition,

since the string is fastened at the endpoints, we should have f (0) = 0 and f (L) = 0 .

As it turns out, this is not quite enough to completely specify u(x, t) . An additional initial

condition is necessary. We will take that condition to be

∂u

∂t

∣

∣

∣

(x,0)
= 0 for 0 < x < L .

In other words, we assume the string is not moving at time t = 0 . This would be the case, for

example, if we held the string in some fixed shape until releasing it at t = 0 .

Gathering all the above equations together, we find that u(x, t) must satisfy the following

system of equations:

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 for 0 < x < L (53.7a)

u(0, t) = 0 and u(L , t) = 0 (53.7b)

u(x, 0) = f (x) for 0 < x < L (53.7c)

∂u

∂t

∣

∣

∣

(x,0)
= 0 for 0 < x < L (53.7d)

Again, there is an implicit requirement that u(x, t) be a sufficiently smooth function for the above

equations to make sense. Keep in mind that c is a positive constant and f is a known uniformly

3 More precisely, c =
√

τ/ρ where τ and ρ are, respectively, the tension in and the linear density of the string when the

stretched string is at rest.
4 Another famous equation whose derivation we are skipping. Look it up in any decent introductory book on partial

differential equations.
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continuous and piecewise smooth function on (0, L) satisfying f (0) = 0 = f (L) . (Later we will

realize that f ′ must also be piecewise smooth.) While it is reasonable to be interested in the solving

this problem just for t > 0 , such a restriction on t turns out to be mathematically unnecessary. So

we will assume the above equations are valid for −∞ < t < ∞ .

A Formal Solution

The process of finding a solution to our vibrating string problem is very similar to the process we

went through to solve our heat flow problem. As then, we begin by supposing a solution u(x, t)

exists, and, as with our heat flow problem, the end conditions (equation set (53.7b)) suggest that

u(x, t) should be represented by a Fourier sine series on 0 < x < L with the coefficients being

functions of time,

u(x, t) =

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

. (53.8)

As we noted with the heat flow problem, this formula equals 0 when x = 0 or x = L .

Naively differentiating, we get

∂2u

∂t2
=

∂2

∂t2

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

=

∞
∑

k=1

bk
′′(t) sin

(

kπ

L
x
)

and

∂2u

∂x2
=

∂2

∂x2

∞
∑

k=1

bk(t) sin
(

kπ

L
x
)

= −

∞
∑

k=1

bk(t)
(

kπ

L

)2
sin

(

kπ

L
x
)

.

With these expressions for the derivatives, equation (53.7a) becomes

∞
∑

k=1

bk
′′(t) sin

(

kπ

L
x
)

+ c2
∞
∑

k=1

bk(t)
(

kπ

L

)2
sin

(

kπ

L
x
)

= 0 ,

which is written more concisely as

∞
∑

k=1

[

bk
′′(t) + (kν)2bk(t)

]

sin
(

kπ

L
x
)

= 0

using, for lexicographic convenience,

ν =
cπ

L
.

This time each bk must satisfy the second order linear differential equation

d2bk

dt2
+ (kν)2bk = 0 .

Again, we have a simple differential equation that should be familiar to anyone who has had an

elementary course in differential equations. Its solution is

bk(t) = Ak sin(kνt) + Bk cos(kνt)

where Ak and Bk are constants yet to be determined.

With this formula for the bk’s , equation (53.8) becomes

u(x, t) =

∞
∑

k=1

[Ak sin(kνt) + Bk cos(kνt)] sin
(

kπ

L
x
)

. (53.9)
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The Ak’s and Bk’s will be determined by the initial conditions, equations (53.7c) and (53.7d). For

the second initial condition, we will need the partial of u with respect to t , which we might as well

(naively) compute here:

∂u

∂t
=

∂

∂t

∞
∑

k=1

[Ak sin(kνt) + Bk cos(kνt)] sin
(

kπ

L
x
)

=

∞
∑

k=1

[Akkν cos(kνt) − Bkkν sin(kνt)] sin
(

kπ

L
x
)

. (53.10)

Combining formula (53.9) for u(x, t) with the first initial condition gives us

f (x) = u(x, 0) =

∞
∑

k=1

[Ak sin(kν0) + Bk cos(kν0)] sin
(

kπ

L
x
)

=

∞
∑

k=1

[Ak · 0 + Bk · 1] sin
(

kπ

L
x
)

for x in (0, L) . Thus, we have

f (x) =

∞
∑

k=1

Bk sin
(

kπ

L
x
)

for 0 < x < L ,

which looks remarkably like an equation we obtained while solving our heat flow problem. As

before, we are compelled to conclude that the Bk’s are the Fourier sine coefficients for f . That is,

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx for k = 1, 2, 3, . . . .

The second initial condition, along with formula (53.10), yields

0 =
∂u

∂t

∣

∣

∣

(x,0)
=

∞
∑

k=1

[Akkν cos(kν0) − Bkkν sin(kν0)] sin
(

kπ

L
x
)

=

∞
∑

k=1

[Akkν · 1 − Bkkν · 0] sin
(

kπ

L
x
)

=

∞
∑

k=1

Akkν sin
(

kπ

L
x
)

for 0 < x < L ,

strongly suggesting that

Ak = 0 for k = 1, 2, 3, . . . .

Our derivation is complete. If our vibrating string problem (equation set (53.7)) has a solution

and our (occasionally naive) computations are valid, then that solution is given by

u(x, t) =

∞
∑

k=1

Bk cos
(

kcπ

L
t
)

sin
(

kπ

L
x
)

(53.11a)

where

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx for k = 1, 2, 3, . . . . (53.11b)
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Once again, we have derived a “formal solution”, that is, a formula obtained through formal

(naive) manipulations which we hope can be rigorously verified later.

!◮Example 53.2: Consider solving our vibrating

10 1/2

1/2

X

Figure 53.1: The initial shape of the

string in example 53.2.

string problem assuming L = 1 and c = 3 , and

starting with the middle point of the string pulled

up a distance of 1/2 (see figure 53.1). That is,

u(x, 0) = f (x) with

f (x) =

{

x if 0 ≤ x ≤ 1/2

1 − x if 1/2 ≤ x ≤ 1
.

With these choices, equation (53.11b) is

Bk =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx

= 2

∫ 1/2

0

x sin(kπx) dx + 2

∫ 1

1/2

(1 − x) sin(kπx) dx

= · · · = sin
(

kπ

2

) (

2

kπ

)2
.

Thus, according to formula (53.11a), the solution to this vibrating string problem is

u(x, t) =

∞
∑

k=1

sin
(

kπ

2

) (

2

kπ

)2
cos(k3π t) sin(kπx)

= 1
(

2

π

)2
cos(3π t) sin(πx) + 0

(

2

2π

)2
cos(2 · 3π t) sin(2πx)

+ (−1)
(

2

3π

)2
cos(3 · 3π t) sin(3πx) + 0

(

2

4π

)2
cos(4 · 3π t) sin(4πx)

+ · · · .

Harmonics of a Vibrating String

One advantage of the Fourier series solution to our vibrating string problem is that it allows us to

analyze the sound produced by such a string by looking at the components of the series solution. For

convenience, let’s rewrite that solution as

u(x, t) =

∞
∑

k=1

Bk uk(x, t)

where

uk(x, t) = sin
(

kπ

L
x
)

cos(2πνk t) and νk =
kc

2L
.

The individual uk’s are often referred to as the modes of vibration or the harmonics, with u1 being

the first or “fundamental” mode/harmonic. The graphs of the first three harmonics — u1(x, t) ,

u2(x, t) , and u3(x, t) — have been sketched as functions of x for various values of t in figure
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(a) (b) (c)

LLL

Figure 53.2: The (a) first harmonic, (b) second harmonic, and (c) third harmonic for a vibrating

string of length L sketched at various times as functions of x .

53.2. Notice that uk(x, t) is nothing more than a sine function of x being scaled by a sinusoid

function of time with frequency νk . It is that νk which determines the pitch of the sound resulting

from that mode of vibration. The magnitude of Bk , of course, helps determine the “loudness” of the

sound due to the kth harmonic, with the perceived loudness increasing as Bk increases. (However,

the relation between Bk and the apparent loudness is not linear and is strongly influenced by the

ability of the ear to perceive different pitches.)

In theory, one can produce a “pure tone” corresponding to any one of these frequencies (say

ν3 ) by imposing just the right initial condition (namely, u(x, 0) = u3(x, 0) ). In practice, this is

very difficult, and the sound heard is usually a combination of the sounds corresponding to many

of the harmonics. Typically, most of the sound heard is due to the fundamental harmonic, because,

typically, people pluck strings in such a manner that the first harmonic is the dominant term in the

series solution. For example, whether in a violin or a banjo, ν1 is approximately 440 cycles/second

for a string tuned to A above middle C. The other harmonics provide the “overtones” that modify the

sound we hear and help us distinguish between a vibrating violin string and a vibrating banjo string.

!◮Example 53.3: In exercise 53.2 we obtained

u(x, t) = 1
(

2

π

)2
cos(3π t) sin(πx) + 0

(

2

2π

)2
cos(2 · 3π t) sin(2πx)

+ (−1)

(

2

3π

)2

cos(3 · 3π t) sin(3πx) + 0
(

2

4π

)2

cos(4 · 3π t) sin(4πx)

+ · · ·

as a solution to a vibrating string problem. From this we see that the first four harmonics for this

string are

u1(x, t) = sin(πx) cos(2πν1t) , u2(x, t) = sin(2πx) cos(2πν2t) ,

u3(x, t) = sin(3πx) cos(2πν3t) and u4(x, t) = sin(4πx) cos(2πν4t)

where

ν1 =
3

2
, ν2 = 3 , ν3 =

9

2
and ν4 = 6 .

The fundamental harmonic frequency is ν1 = 3/2 , and the other harmonic frequencies are integral

multiples of the fundamental. In this case, the first harmonic is certainly the dominant component

of the above solution. However, if the the units on t are seconds, then the first harmonic frequency

of 3/2 cycles per second is somewhat below what most people can hear, and so, as far as most

people are concerned, the first harmonic will not contribute significantly to the sound heard from

this vibrating string.
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Additional Exercises

53.3. Consider the series solution to the heat flow problem of exercise 53.1 on page 53–5. Using

the first 25 terms of this solution, sketch the temperature distribution throughout the rod at

t = 0 , t = 1/10 , t = 1 , and t = 10 . (Use the computer math package such as Maple or

Mathematica or Mathcad.)

53.4. Using the formal solution derived in the first section of this chapter, find the solution to the

heat flow problem described in equation set (53.1) on page 53–2 assuming L = 2 , κ = 3 ,

and

a. f (x) = 5 sin(πx) b. f (x) = x

Which of these solutions will be valid for all t and which will just be valid for t > 0 ?

53.5. If the endpoints of our heat conducting rod are insulated instead of being kept at 0 degrees,

then the temperature distribution u(x, t) satisfies the following set of equations:

∂u

∂t
− κ

∂2u

∂x2
= 0 for 0 < x < L , 0 < t

∂u

∂x

∣

∣

∣

(0,t)
= 0 and

∂u

∂x

∣

∣

∣

(L ,t)
= 0 for 0 < t

u(x, 0) = f (x) for 0 < x < L

where κ and L are positive constants, and f is piecewise smooth on (0, L) .

a. Why, in this case, would it be better to represent u(x, t) using a cosine series,

u(x, t) = φ0(t) +

∞
∑

k=1

φk(t) cos
(

kπ

L
x
)

,

instead of the sine series used for the problem in the first section of this chapter? What is

the Sturm-Liouville problem that gives rise to this series?

b. Derive the formal series solution for this heat flow problem.

c. Find the solution to this problem assuming κ = 2 , L = 3 , and

f (x) =

{

1 if 0 < x < 3/2

0 if 3/2 < x < 3
,

and sketch the temperature distribution (using the first 25 terms of your series solution)

for t = 0 , t = 1/10 , t = 1 , and t = 10 .

d. What happens to the solution found in the last part as t → ∞ ? Sketch the temperature

distribution “at t = ∞ ”.

e. What can be said about the differentiability of the solution derived above in the first part

of this exercise?

53.6. If our heat conducting rod contains sources of heat, and we start with the rod at 0 degrees

and keep the endpoints at 0 degrees, then the temperature distribution u(x, t) satisfies the
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following set of equations:

∂u

∂t
− κ

∂2u

∂x2
= f (x) for 0 < x < L , 0 < t

u(0, t) = 0 and u(L , t) = 0 for 0 < t

u(x, 0) = 0 for 0 < x < L

Again, κ and L are positive constants, and f is piecewise smooth on (0, L) .

a. Derive the formal series solution to this problem assuming that a solution exists. (Hint:

Start with formula (53.2a).)

b. Find the solution to this problem assuming κ = 4 , L = 3 , and

f (x) =

{

1 if 1 < x < 2

0 otherwise
,

and sketch the temperature distribution (using the first 25 terms of your series solution)

for t = 0 , t = 1/10 , t = 1 , and t = 10 .

c. What happens to the solution found in the last part as t → ∞ ? Sketch the temperature

distribution “at t = ∞ ”.

d. What can be said about the differentiability of the solution derived above in the first part

of this exercise?

53.7. Find the formal solution u(x, t) to the following “vibrating string” problem:

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 for 0 < x < L

u(0, t) = 0 and u(L , t) = 0

u(x, 0) = 0 for 0 < x < L

∂u

∂t

∣

∣

∣

(x,0)
= f (x) for 0 < x < L

where L and c are positive constants and f is piecewise smooth on (0, L) .

53.8. A more realistic model for the vibrating string that takes into account the dampening of the

vibrations due to air resistance is partially given by the equations

∂2u

∂t2
+ 2β

∂u

∂t
− c2 ∂2u

∂x2
= 0 for 0 < x < L ,

u(0, t) = 0 and u(L , t) = 0

where L , β and c are positive constants with β being much smaller than c (assume

βL < cπ for the following).

a. Derive, as completely as possible, the formal series solution to the above system of

equations. Because no initial conditions are given, your answer should contain arbitrary

constants.

b. How rapidly do the vibrations die out?

c. How does “ β ” term modify the frequencies at which the individual terms of the solution

vibrate?
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

1c. xmax. temp. < 128 , max. temp. < 64 , max. temp. < 0.25

4a. 5e−3π2t sin(πx)

4b.

∞
∑

k=1

(−1)k+1 4

kπ
e−3λk t sin

(

kπ

2
x
)

where λk =

(

kπ

2

)2

5a. φ′′ = −λφ with φ′(0) = 0 and φ′(L) = 0

5b. A0 +

∞
∑

k=1

ake−λk t cos
(

kπ

L
x
)

where λk = κ

(

kπ

L

)2

,

A0 =
1

L

∫ L

0

f (x) dx and ak =
2

L

∫ L

0

f (x) cos
(

kπ

L
x
)

dx

5c.
1

2
+

∞
∑

k=1

2

kπ
sin

(

kπ

2

)

e−λk t cos
(

kπ

3
x
)

where λk = 2
(

kπ

3

)2

6a.

∞
∑

k=1

ck

λk

[

1 − e−λk t
]

sin
(

kπ

L
x
)

where λk = κ
(

kπ

L

)2

and ck =
2

L

∫ L

0

f (x) sin
(

kπ

L
x
)

dx

7.

∞
∑

k=1

ak sin
(

kcπ

L
t
)

sin
kπ

L
x where ak =

2

kcπ

∫ L

0

f (x) sin
kπ

L
x dx

8a.

∞
∑

k=1

[Ak cos(2πνk t) + Bk sin(2πνk t)] e−βt sin
(

kπ

L
x
)

where the Ak’s and Bk’s are arbitrary constants and νk =
1

L

√

(kcπ)2 − β2


