38

General Solutions to Homogeneous
Linear Systems

Inthis chapter, we will develop the basic “linear” theorgaeding solutions to standard first-order
homogeneousN x N linear systems of differential equations. Fortunatelis theory is very
similar to that for single linear differential equationsdbped in chapters 12, 14 and 15. In fact,
we may even use what we already know about general soluioNstorder linear differential
equations to help guide our development here. We will alskenteeavy use of some of the
results you learned in linear algebra regarding solutionblt< N linear systems of algebraic
equations.

Will we finally actually solve a few systems in this chapter@, Not really, but we will need
the theory developed here when we finally do start solvintesys in the next chapter.

38.1 Basic Assumptions and Terminology
The System and Basic Assumptions

For the rest of this chapte(y, 8) is some intervalN is some positive integer, and

P1a(t)  p2() -+ pin(D)
P21(t)  P22(t) -+ pPan(l)
P =Pt = _ _ ' _ (38.1)
Pna(t)  Pn2(t) -+ pan(D)
is an N x N matrix of functions, each of which is continuous over themal («, B) .
For now, our interest is just in the possible solutions tohtbmogeneous system
X = PX (38.2)

over («, B). For brevity, in our computations, we will often just referthis as “our system
X' = Px” with the implicit understanding tha® is as just described. Along these same lines, let
us simplify our verbage and agree that, in our discussi@ptiases “solution” and “solution to
X' = Px” both mean “solution oveKc, 8) to X’ = Px’.
Also keep in mind that a solutior to this system is a vector-valued function ¢, 8)

xt) = Pat) , %) , ..., xa®]
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satisfyingx’ = Px at every point in the intervale, 8) . Often, we will have several such vector-
valued functions. When we do, we will use superscripts torisish the different vector-valued
functions; that is, we will write the set of vector-valueadhitions as either

{xt,x®, ..., xM) or Xt ), ... xM") )
with
X3 (t) x$(t) xp' (1)
X3(t) X5(t) xM(t)
xit) = , . X3t = ' , ... and xM@t) =
Xy (1) X3 () Xy (1)

I»Example 38.1: It is easily verified one pair of solution*, x?} to

. 1 2
x = Px with P =
5 -2

3t -2 —4t
X(t) = [;} and  X*(t) = [5;4 :

which we may write more simply as

1 _ 1 3t 2 _ —2 —4t
x(t)_[l}e and x(t)_|:5:|e

is given by

Linearity

Naturally, we should expect “linearity” to play a role in givlg linear systems of differential
equations, and to simplify our discussion, at least iditjidéét L be the operator
d

L= —P
dt

That is, for any differentiable vector-valued functian

dx
L = — — P
[X] at X

Now let x* andx? be any pair of differentiable vector-valued functions, aadand ¢, any pair
of constants. Using the linearity of the derivative and imatwultiplication, we have

L [ex! + ex?] = % [cix! + cx?] — P[eaxt + cox?]

dxt dx?
= C]_W + Cza - ClPXl - C2PX2

1 2
- o (% B PXl) e (% B PXZ) = ciL[x' + coL[x?]
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Of course, the above computations can easily be repeated lasper sets of functions and
constants, giving us:

Theorem 38.1 (basic linearity property for systems)

Assume q
L=——-P
dt
and let, for some finite positive integé# |
{c, o ..ooem) and  {xh x5 L xM)

be sets, respectively, of constants and differentiabléove@lued functions oria, ) . Then
Llcixt +cx® + - +omxM] = ciLix'] + cL[x*] + - + ouLx"]

This naturally leads us to reintroduce some terminology tised in chapter 12: Given a
finite set of vector-valued functiorg?!, x, . .., xM} ontheinterval«, B) , alinear combination
of thesexX’s (on the interval(a, B) ) is any expression of the form

cxt 4+ ex® + o 4+ cuxM

where thecy’s are constants. Remember, these are vector-valueddasain an intervaie, ) .
So
X = axt + X% 4+ -+ 4+ cuxM

means
X)) = cx'®) + X)) + - + ouxMt)  for a<t<§p

Principle of Superposition, Linear Independence and
Fundamental Solution Sets

Recall that any linear combination of solutions to a singlmbgeneous linear differential equa-
tion is another solution to that differential equation (#esorem 12.2 on page 266). Likewise,
for homogeneous linear systems of differential equatiaeshave:

Lemma 38.2 (principle of superposition for systems)
If xX, x2, ..., andxM are all solutions to<' = Px, then so is any linear combination of these
Xk's,
X = ¢cixt 4+ X2 + - + cyxM
The proof of this lemma is easy. You do it.

?»Exercise 38.1: Use theorem 38.1 to verify the last lemma.

»Example 38.2: We already know that

1 _ 1 3t 2 _ —2 —4t
x(t)_[l:|e and x(t)_|:5i|e
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are solutions to

. 1 2
x = Px with P =
5 -2

The above lemma now assures us that, for any pa@nd c, of constants,

xt) = ¢ {ﬂ e+ {_52} e

is also a solution to our homogeneous system.

The above lemma tells us that we can construct “more gensddlition formulas from
a small set of particular solutions by forming arbitraryelam combinations of these particular
solutions. This naturally leads us to ask if we could find s6fuedamental set” of solutions

[xt,x®, ..o, xM)
from which we can construct a general solution of the form
X = cixt + X% + -+ + cuxM

where thecy’s are arbitrary constants. And, naturally, we will wansthet of solutions to be as
small as possible. In particular, n should be a linear combination of the others. After all, if,
say,xM is a linear combination of the othe’s over («, 8)

xM = Cixt + Cox® 4+ -+ 4+ Cy_pxM1 |
then
X = cxt + X + -+ 4+ cy_oxMt 4+ cuxM
= cx! + o + -+ ouxMh 4 ow [Caxt -+ CuoaxMTY]

= (g +cuC) Xt + (C24+cuC)x? + --- + (Cu_1+cuCu_)xM1 |

showing that, ifxM is a linear combination of the othek’s , then we can then convert any linear
combination of solutions from the set

Accordingly, letus reintroduce some more terminology. Mefertoaset{x, x?, ..., x™}
of M vector-valued functions o, 8) as being

1. linearly independent (over («, B8)) if none of thexX's can be written as a linear combi-
nation of the othex*’s on («, ),
and

2. linearly dependent (over (a, B)) if at least one of thex"’s can be written as a linear
combination of the othex¥’s on («, ).



Basic Assumptions and Terminology Chapter & Page: 38-5

Of course, for a pair of vector-valued functiofs®, x?}, the definition of linear independence
reduces to this set being linearly independent if and omigitherx® or x? is a constant multiple
of each other. Tests for determining the linear indepenglehlarger sets will be discussed later.

While we are reviving old terminology, let us revive the téfondamental set’; by saying that
aset{x', x?,...,xM} of M vector-valued functions o, ) is afundamental set of solutions
for our systemx’ = Px (on («, B8)) if and only if all the following hold on(e, B) :

1. EachxX is a solution tox’ = Px.
2. The setis alinearly independent ¢am, ) .
3. Every solution tox’ = Px can be written as a linear combination of tkis .

So, do fundamental sets of solutions exist? And how mightegegnize when a solution
set is “fundamental”? These are the questions we’ll dedl foit the next several pages.

A “Matrix/Vector” Formula for Linear Combinations

To help apply what we know from linear algebra, it helps td finske the following observation
regarding linear combinations of theé’s :

1 2 M

X1 X1 Xy

X5 X5 X'
et e + oM =c | L |+ |+ + ou

1 2 M

XN XN XN

[ Xicy + X2Cp + -+ + XMy

X3c1 + X3¢ + - - + xew

| X§C1+ X3 C2 + - + X\ Cu

[y 1 2 M
X7 X§ oo X C1
1 2 M
X3 X3 X3 C2
1 2 M
XN XN o XV | |em

Thatis, fora <t < 8,
cxt(t) + X)) 4+ - + euxM(t) = [X()]c

where
Xt x -o- x') a1
X3t)  x3t) - xM() Cy
X)) = ) ) ) and ¢ =
Xt X3 - xM@) Cwm

The aboveN x M matrix-valued functionX will be important to us. Until we can come
up with better terminology, we’ll simply call it thematrix whose k™ column is given by x¥.
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> Example 38.3:  The matrix whose&k™ column is given byxX when

3t ) —4t
xH(t) = {;} and  X*(t) = {5;4

et _2e 4
X(t) = P

Observe that, indeed,
et —2e%||c e + cp(—2)e
Xole = | o a2 =1 0 T
e 5e C ci1e” + 5Co€e

B et -2 )
= G| + G ot | = OX (t) + Cox(1)

38.2 Deriving the Main Results

In this section we will derive the answers to our two quegtiohwhether fundamental sets of
solutions exist, and how we might recognize them (if thegxiWe will derive these answers
in stages, using mainly an existence theorem from the puswibapter, and well-known facts
from linear algebra. As we go along, we will summarize the ediate results of our derivations
in a series of lemmas, which, themselves, will be summarnadtie two major theorems of
this chapter, theorems 38.12 and 38.13 in section 38.3. @kepif you are too impatient for
this admittedly lengthy derivation, you could skip the refsthis section and go straight to page
38-13 and just read section 38.3, but you won't appreciaedbults there nearly as well.

Throughout these derivations, keep in mind tRais always anN x N matrix of continuous
functions on an intervale, 8) , whether or not we remember to explicitly say so.

Immediate Results

The first two lemmas of this section should require almostisougsion. The first is simply a
simplification of theorem 37.3 on page 37-17, and the secoad application of a test for linear
independence that you should recall from your study of limégebrat

Lemma 38.3
Let ty be a point in the intervala, B) anda a constant vector. Then the initial-value problem

X = P(t)x with x = a

has exactly one solution over the interval, ) .

11 you don't recall this test, see exercise 38.3 at the enti@thapter.
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Lemma 38.4 (test for linear independence)
Aset{x,x?, ..., xM} of vector-valued functions is linearly independent@n p) if and only
if the only choice of constants, , c,, ... andcy such that

coxtt) 4+ oxXPt) + - + ouxM@) = 0 for a<t<§B
is
Ct=C=:---=¢6uy =0

“Fundamental Sets” for Initial-Value Problems

Suppose we have a set
{xtt), ), ..., x" )}

of particular solutions to our systeri = Px, and we want to use this set to solve the initial-value
problem
x = Px with X(tg) = a

for somety in («, 8) and some constant vectar = [a1, ay, ..., aN]T. To find this solution,
it should seem logical to set

x(t) = cx'() + (M) + - + owxM)

andthentrytodetermine the constacts c,, ... andcy sothattheinitial conditionx(tg) = a,
is satisfied. That is, we try to solve the vector equation

cixtto) + cX3(to) + -+ + cuxM(ty) = a (38.3)

for the M unknownsc;, ¢y, ... andcy .
Keep in mind that equation (38.3) is equivalent to the algelsystem ofN equations and

M unknowns L ) "
Xi(fo)cr + Xi(to)C2 + -+ + X (fo)cm = &

X3(to)er + X2(to)Cz + -+ + XM (oo = a

: (38.4)
xq(t)er + X4(to)c, + - + xM(toem = an
which can also be written as the matrix/vector equation
[X(tg)]c = a (38.5)
wherec = [Cy, Cp, ..., Cu]" and X(t) isthe NxM matrix whosek™ column is given byxk(t) .

But solving algebraic system (38.4) or equation (38.5) imagic problem in linear algebra,
and from linear algebra we know that there is one and onlytisoilc for eacha if and only if
both of the following hold:

1. M=N.

2. The Nx N matrix X(tg) is invertible.
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If these conditions are satisfied, thercan be determined from eaehby
c = [X(to)] 'a

where [X(tp)] 7! is the inverse of matrixX(tp) . (In practice, though, a “row reduction” method
may be a more efficient way to find.)
So, ideally, to solve an arbitrarid x N initial-value problem of the form

X = Px with X(tp) = a
we want a set ofN solutions to the system of differential equations
{x', ®, ..., xNo}

such that the matriXX(t) formed from this set is invertible wheh = t;. And to make life
easier, recall that there is a relatively simple test foedatning if a given square matrikl is
invertible? based on the matrix’s determinant, @t ; namely,

M isinvertible <<= detM) #0

Combined with lemma 37.3, telling us that each initial-egfwoblem has exactly one solu-
tion, the above gives us

Lemma 38.5

Assume{xt, x?,...,xM} isasetofM solutions to our system’ = Px, andX is the M xN
matrix whosek™ column is given byx¥ . Then, for each constant vectar, there is exactly one
choice of constants;, ¢y, ... andcy such that

X() = cxt(®) + ex*(t) + - 4+ cuxM(D)
is the one and only solution to the initial-value problem
X = Px with X(tg) = a
if and only if both of the following hold:
1. M=N.

2. de(X(ty)) #O.

»Example 38.4: Consider the2 x 2 initial-value problem

X = [1 2:|X with x(0) = |:1}
5 -2 3

2 More terminology you should recall:

M issingular <= M isnotinvertible

M is nonsingular <= M is invertible
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From previous examples, we know that two solutions to théesy®f differential equations
in this problem are

1 _ 1| & 2 _ —2| 4
x(t)_[l}e and x(t)_|:5:|e

Letting X be the2x 2 matrix whosek™ column is given byxk , we have

30 _2g 40 1 -2
det(X(0)) = det[esio 56_4_0} - det[l 5} = (1.5 — (=2-1) #£0

The last lemma now assures us that there is exactly one clawicenstantx; andc, such

that
_ 1 3t -2 — 4t
x(t)_cl|:l:|e +cz{5:|e

is a solution to the given initial-value problem.

?»Exercise 38.2: \Verify that the solution to the initial-value problem givierthe last example

X(t) = 171 m e + ;[_52} e

But what if our set of solutions does not satisfy the condgigiven in the last lemma?
There are then three possibilitiedd < N, M > N, and M = N with det(X(ty)) = O for
sometp in («, B) . And, after recalling our linear algebra, we know that:

1. If M < N, thenwe have more equations than unknowns in system (3&4jlie system

is “overdetermined”), and there is at least afe= [a?, . . ., aﬂ,]T such that matrix/vector
equation (38.5) has no solution = [cy, ...,cu]" whena = a°. Consequently, the
solution to

X = Px  with x(tg)=a° |,

which lemma 38.3 assures us exists, cannot be written as
X)) = cxt(t) + cxX?(t) + --- + ecuxM@t)  for a<t<§B
for any choice of constants;, C;, ... andcy .

2. If M > N, then we have more unknowns than equations in system (384)the
system is “underdetermined”), and there is at leastrmmzero ¢ = [Cy, ..., Cu]" —
callit ¢® = [c?, ..., CRA]T — such that matrix/vector equation (38.5) has solutadn
whena = 0. Thus

X Px with  X(tg) =0

has solution
x(t) = b)) 4+ X3t + - 4+ XMty for a<t<§p
with at least one of they’s being nonzero. But, clearly,

X(t) =0 for a<t<§p
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is also a solution to the above initial-value problem, amtsilemma 38.3 tells us that
each initial-value problem only has one solution, the twovabsolutions must be the
same; that is,

cAxMt) + X*t) 4+ - + XMty =0 for a<t<B (38.6)

which tells us (via the test for linear independence in ler8&d) that{x*, x2, ..., xM}
is not linearly independent.

3. If M =N with det(X(tp)) = 0, then
(@) there is at least ona® such that matrix/vector equation (38.5) has no solution

whena = a°,
and
(b) thereis atleast ommonzero c® such that linear system (38.4) has solut@nwhen
a=0.

Consequently, all the issues described above that arise Whex N or M > N also
arise whenM = N if det(X(tg)) = 0.

Summarizing:

Lemma 38.6
Assume{x*, x?,...,xM} is a set ofM solutions to our system’ = Px, and letX(t) be the
M x N matrix whosek!™ column is given byx* . Then:

1. If M < N orif M = N with det(X(tg)) = 0, then there is a solution t&' = Px on
(a, B) that is not a linear combination of thegg’s .

2. If M > N orif M = N with det(X(tp)) = 0, then the given set af’s is not linearly
independent.

This lemma tells us, among other things, thaMf = N and detX(t)) = 0 for somety
in (a, B), then the sefx*, x?, ..., xN} camot be a fundamental set of solutions fef= Px.
That, along with what it tells us about fundamental setsersainly worth noting.

Lemma 38.7
Assume{x*, x?,...,xN} is a set ofN solutions to our system’ = Px, and letX(t) be the
M x N matrix whosek!™ column is given byx* . Then:

1. If det(X(to)) = O for onety in (a, B), then{x*,x2, ..., xN} is not a fundamental set
of solutions forx’ = Px.

2. If {x!,x%, ..., xN} is a fundamental seto of solutions fer= Px, thendet(X(t)) # 0
for everyt in (a, )

General Solutions

It immediately follows from our last few lemmas that a setMf solutions

{xtt), ), ..., x" )}
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to our N x N systemx’ = Px can be a fundamental set of solutions only if
M =N and detX(tp)) #0 for somety in (a, B)

But do these two conditions ensure that our set is a fundahseit?
Well, suppose we have a set of solutions

[xtt), X, ..., xNw) }

with det(X(tg)) # O for somety in («, B). To show this is a fundamental set of solutions we
must show both that each solutionxo= Px is a linear combination of these’s , and that this
set is linearly independent.

So consider any single solution(t) = X(t) to X’ = Px. That vector-valued function is
then certainly a solution to the initial-value problem

X = Px with  X(tg) = X(to)

Now, according to lemma 38.3, there is one and only one chaficenstantsc,, ¢, ... and
cn such that
cx'(t) + () + - + cnxM(t)

is the one and only solution to this initial-value problemutBhe only way for both this linear
combination andk to be the one and only solution is for the two to be the same,

X(t) = oxM(t) + exX?(t) + - + onxN()

verifying that, indeed, each solution #6 = Px is a linear combination of oux¥’s .
Verifying the linear independence of our set is now easyt clussider the particular initial-
value problem
X = Px with  X(tg) =0

The solution to this is clearly the constant solutith= 0, which is
X0(t) = cxt(t) 4+ oxXP(t) + -+ + cxNt)  for a<t<§p
with
CC=C=---=¢6y =0
Lemma 38.5 assures us that no other choicegifr will yield this answer. The test for linear

independence from lemma 38.4 then informs us that our set’sfis, as we hoped, linearly
independent. In summary:

Lemma 38.8

Every fundamental set of solutions for our systa&m= Px contains exactlyN solutions.
Moreover, a set o solutions{x*, x?, ..., xN} to X' = Px is a fundamental set of solutions
if and only if

det(X(tg)) # O for somety in («, B)
whereX is the N x N matrix whosek™ column is given byx* .

Look at what combining the last lemma with lemma 38.7 gives us
det(X(tg)) # O for sometp in («, B)
= {x} %% ..., xN} is a fundamental set of solutions
= det(X(t)) # O foreveryt in («, ) ,
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giving us one more lemma worth noting:

Lemma 38.9
Let {x*,x?,...,xN} beasetoMN solutions to our system’ = Px and letX(t) be theNxN
matrix whosek™ column is given byx(t) . Then

det(X(t)) # 0 foronet in (o, B) <<=  det(X(t)) # 0 foreveryt in («, B)
Equivalently,

det(X(t)) =0 foronet in («, ) <<=  det(X(t)) =0 foreveryt in («, B)

Linear Independence

In our discussions, it may seem that we've replaced the ifieaset {x*, x?,...,xN} of N
solutions tox’ = Px being “linearly independent” with the condition that @¢tty)) = 0 for
somety. But remember, lemma 38.6 explicitly tells us that

detX(tp)) = 0 = {xl, NG xN} is not linearly independent
while lemma 38.8 and the definition of fundamental solutiets gives us

detX(te)) # 0 <+ {x',x% ...,x"} isfundamental set of solutions
= {x',x%...,x"} islinearly independent
With a little thought, you will realize that the above im@ions tell us that we have linear

independence if and only if the corresponding determinamiohzero. This gives us another
lemma for future reference.

Lemma 38.10

Let {x!,x?,...,xN} beasetoN solutionsto oulN x N systemx’ = Px on («, B), and let

X be theN x N matrix whosek™ column is given byx* . Then the following three statements
are equivalent; that is, if one holds, they all hold:

1. {x4x?...,xN} is afundamental set of solutions far = Px.
2. dei(X(tg)) # 0 forsomety in («, B).

3. {xt,x%, ...,xN} is a linearly independent set of functions an B) .

Existence of Fundamental Sets

We now know how to recognize fundamental sets. But can wellgetlsere are any fundamental
sets of solutions to our systemi = Px? Of course we can. To see this, just take ahyg N
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matrix of constants

a1 a2 - AN a1 a2 - AN
A1 A2 - AN ] A1 A2 - AN

with det| o ) #0
an,a anz2 -+ anN an,1 anz2 - anN

seta equal to thek™ column in this matrix, and consider thé initial-value problems
X = Px with x(tp) = a« for k=1,2,...,N

Existence lemma 38.3 assures us that, for eachwe have a corresponding solutiod(t) .

This gives us the seftx*, x2, ..., xN} of solutions tox’ = Px, such that
Xi(to) X2(to) -+ X](to) a1 ap - arn
X3(to)  X3(to) -+ X2'(to) a1 A2 - AN
det| 27 7 ol =det| T T 20
X§(to) X&) - XN (to) an,1 anz2 - an,N
Lemma 38.8 then assures us that, . .., xN} is indeed a fundamental set of solutions.

Keeping in mind that there are many x N matrices with nonzero determinant, we now
have:

Lemma 38.11 (existence of fundamental solution sets)
Fundamental sets of solutions to our syste€n= Px exist. In fact, there are many of these sets
— one for eachN x N matrix with nonzero determinant.

38.3 The Main Results, Summarized
General Solutions to Homogeneous Systems

Combining lemmas 38.11, 38.10, 38.8 and 38.5, along withdefinitions, gives us our first
major theorem for homogeneous linear systems of diffeabatuations:

Theorem 38.12 (general solutions to homogenous systems)
Let P be anN x N matrix of functions continuous on an intervat, 8), and consider the
system of differential equations = Px. Then all the following statements hold:

1. Fundamental sets of solutions over, 8) for this system exist.
2. Every fundamental set of solutions contains exadlysolutions.

3. If {x%,x?, ..., xN} isanylinearly independent set bf solutions tox' = Px on («, B),
then

(@) {x% x? ...,xN} is a fundamental set of solutions far = Px on («, B) .
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(b) A general solution toc’ = Px on («, B) is given by
X(t) = cxX(®) + X’ + - 4+ enxM(

wherecy, Co, ... andcy are arbitrary constants.

(c) Given any single pointy in («, 8) and any constant vectex, there is exactly one
ordered set of constants,, C,, ..., Cn} such that

X(t) = cxt(t) + ox3(t) + - + cuxMN(b)
satisfies the initial conditiom(tg) = a.

This theorem s the systems analog of theorem 14.2 on page®@4rning general solutions
to single N""-order homogeneous linear differential equations. In, feeorem 14.2 can be
considered a corollary to the above.

»Example 38.5: We know that

1 _ 1 3t 2 _ —2 —4t
x(t)_[l}e and x(t)_|:5}e

are two solutions to th@ x 2 linear homogeneous system

. 1 2
X = Px with P =
5 -2

Clearly, x* andx? are not constant multiples of each other; 0, x?} is a linearly indepen-
dent set of solutions to the abo®ex 2 homogeneous linear system of differential equations.
The above theorem now assures us fharx?} is a fundamental set of solutions to the system,
and that the general solution is given by

X(t) = cx'(t) + ex’(t) = ¢ m e+ ¢, {_52} e 4

Moreover, the above theorem assures us that the one partscllition found in example 36.3
on page 36-3 to the initial-value problem

KR I R

1] —2
X(t) = §|:1 e — %[5:|e‘4t ,

namely,

is the only solution to that initial-value problem.
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Fundamental Matrices, Wronskians and Testing for Linear
Independence

In section 38.2, we made heavy use of a ma¥ix) andits determinant. It's now time to describe
some standard terminology associated with these entinekreview their role in testing a set of
solutions for linear independence.

Assume, as usual, th&t is an N x N matrix of continuous functions on an interval, g8) .

Let {x*,x2 ...,xN} be any set ofN vector-valued functions ok, 8) with
X§(t)
; x5 (1)
X)) = ) for k=1,2,...,N

X ()

and letX be the N x N matrix of functions on(e, 8) whosek™ column is given byxX,

xit) X3ty - xM)
X3 X2(t) - X))
X(t) = . . )
Xgt) xZM® - xq@)

Given this,

1. TheWronskian, usually denoted by, for the set{x*, x?, ..., xN} is simply the deter-
minant of the matrixX ,
W(t) = det(X(t))

2. The matrix X is said to be dundamental matrix for the systenx’ = Px (on («, 8)) if
and only if the corresponding s¢k®, x?, ..., xN} is a fundamental set of solutions for
X' =Pxon (a, B).

The significance of the determinant &f was particularly described in lemmas 38.9 and
38.10. Those lemmas (and our new definitions) immediatelg gs simple ways of testing
whether a prospective set ™ vector-valued solutions is linearly independent (and ceel
fundamental set of solutions).

Theorem 38.13 (tests for linear independence)

Let {x',x?,...,xN} be any set ofN solutions tox' = Px on an interval(e, ) , where P

is someN x N matrix of functions continuous ofw, ). Also, let X be the N x N matrix
whosek! column is given byx¥. Then, if any one of the following statements holds, they all
hold:

1. Theset{x! x?, ...,xN} is a fundamental set of solutions far = Px on (a, B) .
2. Theset{x*, x?,...,xN} is linearly independent of, B) .
3. The Wronskian\W , of {x*,x2,...,xN} is nonzero at one point ifx, B) .

4. The Wronskian\W , of {x*,x?,...,xN} is nonzero at every point i, ) .



Chapter & Page: 38—-16 General Solutions to Homogeneous Liae Systems

5. The matrixX is a fundamental matrix fox'’ = Px on («, ) .
6. The determinant oK is nonzero at one point ifw, ) .
7. The determinant oK is nonzero at every point i, ) .

»Example 38.6: It is not hard to verify that three solutions to

r 12 4
2 =% 3
X = |2 -3 1|x
6 8
I
are
1 [ 2 3
xt = |1 ., x2=|3|e? and x® = |1|&
3 | -1 3
The corresponding matrix is
et 22 3
Xt) = | & 32
3 e 3

According to the above theorem we can determinfxi¥, x?, x3} is a linearly independent
set of solutions to ouBx 3 system by computing this set's Wronskian at some convenient
point, sayt =0:
[ €20 2720 3e20
det| €20 3e20 g0

3?0 —e 20 320

W(0) = det(X(0))

1 2 3]
= det|1 3 1

3 -1 3]

3 1 11 1 3
-1 -2

-1 3 33+33—1

= 19+1] — 2[3-3] + 3[-1-9]
= 20

SinceW(0) # 0, we know the se{x*, x2, x3} is a linearly independent set of three solutions
for our above3 x 3 system of differential equations and, hence, is a fundaaheset of
solutions for the above system of differential equationsnée, also, th@x 3 matrix X is a
fundamental matrix for the system.
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Additional Exercises

38.3. Consider the two equations

xM = Cixt + Cox? 4+ -+ + Cy_pxMt . (38.7)
and
oxr + x>+ - +euxM =0 . (38.8)
where{x!, x?, ..., xM} is a set of vector-valued functions on an interual p) .

a. Using simple algebra, show that equation (38.7) holds faresoonstantsC,, C,,
. and Cy_, if and only if equation (38.8) holds for some constaots c,, ...
andcy with cy #0.

b. Expand on the above and explain how it follows that at leastafthex*’s must be a
linear combination of the othet*’s if and only if equation (38.8) holds with at least
one of thecy’s being nonzero.

c. Finish proving lemma 38.4 on page 38-7.

38.4. Consider the system

X' =y
y = —4t7°x + 3tly
a. Rewrite this system in matrix/vector form.

b. What are the largest intervals over which we are sure salsitio this system exist?

t2 t21In |t|
1 _ 2 _
X = |:2ti| and  x(1) = |:t(1+2ln|t|)}

are both solutions to this system.

c. Verify that

d. Compute the WronskiakV/(t) of the set of the above’s at some convenient point
t = to (part of this problem is to choose a convenient point). Wieaisithis value of
W(to) tell you?

e. Using the above, find the solution to the above system satgsfy

i x(1) = [1,0]' i. x(1) = [0,1]'
38.5. Consider the system
X = OX + 2y — 2z
y = —-2x + 4y — 2z

Z = 2Xx+ 2y — 4z

a. Rewrite this system in matrix/vector form.
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b. What is the largest interval over which we are sure solutforikis system exist?

c. Verify that

1 1 1
X(t) = [1} , oyt = |1|e® and z(t) = |2]|€&*
1 2 1

are all solutions to this system.

d. Compute the WronskiaW/ (t) of the set{x,y, z} some convenient point = ty
(choosing a convenient pointis part of the problem), anify/tirat the abovgx, y, z}
a fundamental set of solutions to the above system of differeequations.

38.6. Four solutions to
0 -2 0
X =11 0 1fx
0 -2 0
are

cogq2t) sin(2t) — siré(t)
xX(t) = | sin(2t) . X3(t) = | —cog2t) . X3(t) = |sint)cost) |
cog2t) sin(2t) cog(t)
and
1
XAty =10
-1

Given this, determine which of the following are fundaméstds of solutions to the
given system:
a. {x% x% b. {x% x% c. x4 x? x3)

d. {x% x% x4 e. {x}x3 x* fo{xt %2, x3, x4

38.7. Four solutions to

-1 -1 2
X =1-8 1 4|x
-4 -1 5
are
0 1 3
XMty = [2]e Xt = [o]et  , P = | -4
1 2 4
and
1
x*t) = [2|et

[EEN
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Given this, determine which of the following are fundaméstts of solutions to the
given system:

a. {x%x%) b. {x* x* c. {x*x% x%)
d. {x% x% x4 e. {x},x3 x* fo{xt X2, x3, x4
38.8. Traditionally (i.e., in most other texts), lemma 38.9 on®@&88-12 is usually proven by

showing that the WronskiaW of a set of N solutions to anN x N systemx’ = Px
satisfies the differential equation

W = [pri+ P2+ -+ Pun]W

and then solving this differential equation and verifyihgttthe solution is nonzero over
the interval of interest if and only if it is nonzero at one qiain the interval. Do this
yourself for the case wherd = 2.
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They
have not been properly proofread! Errors are likely!

w [3)=[ae (3]
Ty —4t=2 31|y
4b. (—o0, 0) and(0, co)
4d. W(1) =1 # 0 (Hence{x!, x?} is a fundamental set of solutions.)

2
dei. x(t) = xt) — 2¢3(t) = [t (_14;51 ||?||t|}
. ) t2In t|
deii. X(t) =x°(t) = [t(l+2|n|t|)]
X’ 0 2 -2]]|x
fa. |y |=|-2 4 -2||y
zZ 2 2 4]z
b. (—o00, 00)
5d. W) =-1

6a. Itis not a fundamental set since — the set is too small.

6b. Itis not a fundamental set since — the set is too small.

6¢. Itis a fundamental set — there are three solutions in theardtyV(0) £ 0.
6d. Is a fundamental set — there are three solutions in the sBtyAi®) # O.
6e. Is not a fundamental set — there are three solutions in théseW (0) = 0.
6f. Is not a fundamental set — the set is too large.

7a. Itis not a fundamental set — the set is too small.

7hb. Itis not a fundamental set — the set is too small.

7c. ltis not a fundamental set — there are three solutions inghéoat W(0) = 0.
7d. ltis a fundamental set — there are three solutions in thexadtW(0) # 0.
7e. Itis a fundamental set — there are three solutions in thesdtW(0) = 0.
7f. Itis not a fundamental set — the set is too large.



