41

Miscellaneous Topics Involving
Homogeneous Constant Matrix Systems

In this chapter we will discuss a variety of topics, all marreless related to the constant matrix
systems discussed in the previous two chapters. Some ah#tgrial is of interest for its own
sake, and some is developed here for use either in the clapte@nhomogeneous systems or
for use in discussing nonlinear systems.

41.1 Phase Portraits for Large Constant Matrix
Systems

In the previous two chapters, we pretty well demonstrates thee phase portrait of a 22
constant matrix syster®’ = Ax depends on the eigenvalues and eigenvectoss .ofVe won't
attempt an analogous development whris N x N with N > 2. There are just too many
cases to consider, and the two-dimensional medium of tkisdeot adequate for representing
the corresponding phase portraits. Nonetheless, the idasis developed assumirg is 2x 2
still apply, and you can use what we developed to help vizsadhe possible trajectories when
A is, say, 3.

»Example 41.1: Consider the rather simpléx 3 constant matrix system

x’ -2 3 O X
yl=1-3 -2 0 y
4 0O 0 -1|]|z
The matrix for this system has three distinct eigenvalueg dre complexy. = —2+ 3i,

and the third isrs = —1 (with corresponding eigenvect®®, 0, 11" ). Together, they lead to
the system'’s general solution

x(t) = oxtt) + cx®(t) + cx3(t) (41.1)
with
cog3t) sin(3t)
xt) = [ sin(St):| e . Xt = |:cos(3t):| g2
1 1
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X3

A/

Figure 41.1: Seven trajectories for the>x3 constant matrix system in example 41.1. Two
are straight line trajectories along tte-axis, two are spirals in the
XY-plane, and two are “three-dimensional spirals” aboutZh@xis. The
seventh is the critical point0, 0, 0) .

and
0
x3t) = |0fe

=

The first two terms in the general solution, which came fromebmplex eigenvalues
—2+ 3i, trace out spirals “spiralling in” towards the origin in th€Y—plane. That's what
you get from general solution (41.1) & = O but at least one of the other two constants in
formula (41.1) is nonzero.

The last term, corresponding to the eigenp@#l, [0, O, 1]T) , traces out straight line
trajectories along the —axis with the direction of travel being towards the origifihat’s
what you get from general solution (41.1)df = ¢, = 0.

Finally, if cz # 0 and at least one of the other two constants in formula (44.1A9mzero,
thenx(t) traces out a “three-dimensional spiral” about theaxis heading into the origin.

Examples of these trajectories have been sketched in figute Hlote thatx(t) = 0 is
still an equilibrium solution, and that, whatever the valoéc; , ¢, andcs,

Jim [ext(t) + cx*(t) + cx®(t)] = 0

So x(t) = 0 is an asymptotically stable equilibrium solution for thystem.

41.2 Shifted Constant Matrix Systems

A shifted constant matrix systamsimply a system of differential equations that can betemit
as
X = A[x — XY

where A is a constantN x N matrix andx® = [x?, x5, ..., x&]T is a constant vector. Such
systems will later be important in approximating nonlinsgstems about critical points.
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The above shifted system looks a lot like the constant mayskems in the last two chapters,
and we can make it look even more like such a system by definiegvavector-valued functions
X(t) by

Rt) = xt) — x°

This is equivalent to introducing a new coordinate systeat ih just the original coordinate

system shifted so that the new origiRy, X», ..., Xn) = (0,0, ..., 0) is at the point given by
(X1, X, ..., xn) = (x§, X2, ..., x}) in the old coordinate system. Since

dx d 0 dx dx

gt —a® =g o 0=
and

Alx —x° = AR

our system of differential equations reduces, in the shiftsrdinate system, to the basic constant
matrix system
K = AR

So everything we learned about solving basic constant xsgstems applies here provided we
take into account the “shift bx°” . In particular,

1. The point(x?, x5, ..., x3) is acritical point forx’ = A[x — x°], and is the only critical
point if det(A) #0.

2. All solutions to X' = A[x — x°] can be obtained by just adding to all solutions of
X = AX.

3. The stability of the equilibrium solutiox(t) = x° for x’ = A[x — x°] is the same as
the stability of the equilibrium solutor(t) = 0 for X’ = Ax

4. A phase portrait forx’ = A[x — x°] can be obtained by just “shifting” a phase portrait
of X' = Ax so that the trajectories of the shifted system abpgt xJ, ..., x) match
the trajectories ok’ = Ax about(0,0,...,0).

»Example 41.2: Consider the shifted system

X = A[x — x9]

1 1 0 2
A = |:_2 _1} and X© = L}

The corresponding “unshifted” systexh= Ax was considered in example 40.2 on page
40-8. There, we saw that a general solutionXor= Ax is given byCxR(t — ty) where

R | 1 of ..
X"(t) = [—l} coqt) — [l] sin(t)

We also constructed the phase portrait for this systemdveadin figure 41.2a), and observed
that the equilibrium solutiorx(t) = 0 is stable, but not asymptotically stable.

where
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Figure 41.2: Phase portraits fdia) the basic systemx’ = Ax and(b) the shifted system
X' = A[x — x9] from example 41.2.

By simply adding the “shift” to the above formula, we thenaihtthe general solution

x(t) = CxRt —t) + x°

(- B -

for the shifted systemx’ = A[x —x°], and, by suitably shifting the phase portraitOf= Ax
in figure 41.2a, we get the phase portrait of the shifted systefigure 41.2b. Again, it is
clear that the equilibrium solutior(t) = x° is stable, but not asymptotically stable.

41.3 Classifying Critical Points for 2x2 Systems

Later, we will use what we've developed in the last few chepfer constant matrix systems
to help analyze solutions to 22 nonlinear systems of differential equations. So, for rfeitu
reference, let us now

1. summarize some of what we've derived regarding the stgjelitd
2. give definitions for some of the terms introduced in the presitwo chapters.

In this discussion, we will assum& is a constant 2 2 matrix with real components, and with
eigenvalues; andr, (possibly withr; =r,). If ry andr, are complex, then we know they
are complex conjugates of each other, and we’ll denote #iare imaginary parts, respectively,
by A and w),

=i+ iow and h=A—iw
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Stability in Constant Matrix Systems

If you go back and review the possible cases, you will see thlaénever either, or r; is
positive, or whenever; and r, are complex withA positive, thenx(t) = 0 is an unstable
equilibrium for X’ = Ax (and x(t) = x° is an unstable equilibrium fox’ = A[x — x°]).
Otherwise,x(t) = 0 is a stable equilibrium fox’ = Ax (and x(t) = x° is a stable equilibrium
for X' = A[x — x°]).

Furthermore, we have thai(t) = O is an asymptotically stable equilibrium for = Ax
(and x(t) = x° is an asymptotically stable equilibrium for = A[x — x°]) if and only if both
r, andr, are negative, or are complex with< 0.

Nodes, Saddle Points, Centers and Spiral Points in General

Let (Xo, Yo) be a critical point for any 2 2 system of differential equations. Then:

1. The critical point(xo, Yo) is called anodeif, in a region nearxg, Yo) , all of the nonequi-
librium trajectories are either straight half-lines witky, Yo) as an endpoint, or become
tangent to such half-lines ako, yo) . For the basic constant matrix systeth= Ax,
(0,0) isanode if and only ifr; andr, are both positive or are both negative.

Sometimes, nodes are further subdivided into being eithesper” or “improper’,
with the node beingroperif and only if, for every straight half-line with(xg, yo) as an
endpoint, there is a trajectory which is that half line or @fhbecomes tangent to that
half line at (Xq, Yo) . For the basic constant matrix systeth= Ax, (0, 0) is a proper
node if and only ifr; = r, in which case we may also refer &, Yo) as astar node

2. Thecritical point(xo, Yo) is called esaddle pointf there are two nonequilibrium solutions
x1(t) and x2(t) such that

. X . X
lim x'(t) = 0] and lim x2(t) = [ 0]
t——o0 © [yo t—o00 © Yo
For our basic constant matrix systeth= Ax, (0, 0) is a saddle point if and only if;
andr, are both real, but have opposite signs.

3. The critical point(xg, Yo) is called acenterif all the nearby nonequilibrium trajectories
are closed loops aboukg, yo) . For our basic constant matrix systeth= Ax, (0, 0)
is a center if and only if the eigenvalues Af are purely imaginary; thatis; = iw and
r,=—iw with o #0.

4. The critical point (Xg, Yo) is called aspiral pointif all the nearby nonequilibrium tra-
jectories are spirals about that point. For our basic comstetrix systemx’ = Ax,
(0, 0) is a spiral point if and only if the eigenvalues Af are complex with both real and
imaginary parts being nonzero; thatig,= A +iw andr, = A —iw withboth A £ 0
andw #0.

You you check the literature, you may find other terms usedassifying critical points.
For example, the terms “sink node” and “source node” (or jsistk” and “source”) are often
used as synonyms for stable and unstable nodes, respgctivel



Chapter & Page: 41-6  Miscellaneous Topics Involving Homogeeous Constant Matrix Systems

41.4 Phase Portraits for Imprecisely Known Systems

Note that the basic nature of a phase portrait fox& 2onstant matrix system = Ax depends
strongly on the whether the real and imaginary parts of tpereialues ofA are positive, negative
or zero. This can be a significantissue when the mahriis only approximately known, such as
when the systenx’ = Ax arises from a “real-world application” and the componerit&\oare
determined by “real-world measurements’” Such measurenaee invariably approximate. As
a result, the eigenvalues obtained when solving the creisiit equation déA —rl1] = 0 will
only be approximations of the true eigenvalues for the systereal interest. And, of course the
corresponding computed eigenvectors will also only be @xprations of the true eigenvectors
for the system.

So let use consider some of the possibilities witeis 2x2 , and our computed eigenvalues
are are known to be approximations of the true eigenvalugscdnvenience, we will denote the
computed eigenvalues bty andr if they are real, and by. i w if they are complex. We will
assume each computed, ro, A and o is known to be “withine " of the true value, where
¢ is some (hopefully small) positive value. To simplify nadett, let us write, sayr; ~ r, or
o ~ 0 whenever these computed values are close enough thabgsibpe for the corresponding
equalities to hold for the true values.

€e<rp<ro with ri %r;

According to the computed eigenvalues, the origin is analmietnode. In this case, the true
values of the eigenvalues still must both be positive arféift. So, using the true eigenvalues,
the origin is still an unstable node. Moreover, (assumirggdirors are reasonably small) the
computed eigenvectors will be reasonably close to the tigeneectors. Consequently, the
phase portraits generated by the computed values will beé gpproximations of the true phase
portraits, and will all look something like that sketchedigure 39.4a on page 39-21.

e<ri<rpwith ri~r;

Again, according to the computed eigenvalues, the origemisinstable node, and any phase
portrait based on the computed eigenvalues will be simdahat sketched in figure 39.4a on
page 39-21. In this case, however, there are four genersihilidges for the true values of the
eigenvalues:

1. The true eigenvalues are two different positive numberghigcase, the origin is truly
an unstable node, and the phase portraits drawn using thputedheigenvalues and
eigenvectors will be good approximations of the true phaseaits.

2. Thetrue eigenvalues are equal and real. In this case theradditional possibilities:

(a) If the true eigenvalue has geometric multiplicity two, thbe true trajectories are
all straight half-lines, and the origin is an unstable stzde

(b) If the true eigenvalue has geometric multiplicity one, thiba origin is still an
unstable node, but the true trajectories will be similarose in figure 40.4a on
page 40-16.
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3. The true eigenvalues are complex, with the same real padssamall (but nonzero)
imaginary parts. In this case, the origin is a unstable Epwat, and the true phase
portrait will be somewhat similar to that in figure 40.2a ogye&0-9.

Observe that, no matter what, we can be sure that the equitisolution x(t) = 0 is an
unstable equilibrium solution. However, the actual trageies can vary radically from case to
case.

r=A+iw with e <A and ¢ < w

According to the computed eigenvalues, the origin is anabstspiral point, and the phase
portrait is similar to that in figure 40.2a on page 40-9. I3 ttase, the computed values of
and w are large enought to assure us that the true eigenvaluesrapex with similar values
for the real and imaginary parts. In particular, the real pbihe true eigenvalues will be a single
positive value. Consequently, the origin must be an unstapiral point, and a phase portrait
based on the true eigenvalues and eigenvectors will beagitailthat based on the computed
values.

r=A+iw with O<\A <e¢ and € < w

According to the computed eigenvalues, the origin is analmetspiral point, and the phase
portrait is similar to that in figure 40.2a on page 40-9. Herejmaginary parts of the computed
eigenvalues are large enough to ensure that the true elgesveave nonzero imaginary parts, but
the real parts of the computed eigenvalues are so close tat@éhave three possibilities:

1. The real parts of the true eigenvalues are positive. In s ¢he origin is an unstable
spiral point and a true phase portrait will be somewhat sintiy that of the computed
phase portrait.

2. Thereal part of the true eigenvalues is zero. In this casertgm is a centerx(t) = 0 is
a stable equilibrium solution, and a true phase portraltegihsist of a bunch of ellipses
centered at the origin, and not the spirals drawn using thgpated eigenvalues.

3. The real part of the true eigenvalues is negative. In this taes origin is a stable spiral
point, x(t) = 0 is an asymptotically stable equilibrium solution, and @{phase portrait
will consist of spirals, just as in a phase portrait drawmgshe computed eigenvalues,
but with the direction of travel being towards the originteed of away.

Other Cases

In exercise 41.3, you will briefly go through some of the othessible cases, comparing what
the computed eigenvalues tell us with what the true eigelgalvould have told us. One thing
to observe: If the eigenvalues or the real parts of the emaeg of the computed eigenvalues
are close to zero, then you have little idea as to whetherdhéilerium solution x(t) = 0 is
asymptotically stable, stable, or unstable.
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41.5 Using Fundamental and Exponential Matrices
Fundamental Matrices

Let's go back to a fairly general linear system of the form
X = PXx

where P is an N x N matrix of functions on some intervdlr, 8) . Recall that a fundamental
matrix for this system is an\N x N matrix of functions on(«, 8)

1 2 N

)(1 Xl “ e Xl

1 2 N

X =
1 2 N
XN XN PPN XN
whose columns
1 2 N
X1 X1 X1
1 2 N
1 X2 2 X2 N X2
X~ = , X = . , and x" =

1 2 N
XN XN XN

make up a fundamental set of solutions for our linear systée Px.
Here are some simple observations and recollections rieggtae above fundamental matrix
X and corresponding fundamental set of soluti¢rs, x2, ..., xN}:

1. Because each column satisfiesx’ = Px, it is easy to verify that any fundamental
matrix X satisfies the “matrix/matrix” system of differential egioats

X' = PX

where X', the derivative ofX, is simply the matrix obtained by differentiating each
component ofX .

Moreover, it should be clear that the theory discussed femtlatrix/vector system
of differential equationsx = Px extends naturally to the matrix/matrix system. This
includes the facts regarding the existence and uniquerissduions.

2. ltis also easy to verify that, iFF and G are any matrices such that the prods
exists, then the standard product rule

(FG) = FG + FG’
holds. Moreover, ifG is a constantN x N matrix, then
G =0
where O is the constaniN x N matrix whose every componentis 0, and

(XG) = X'G = (PX)G = P(XG)
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3. If ¢ = [cy,Co...,cn]" then (as derived i “Matrix/Vector” Formula for Linear
Combinationn page 38-5)

[X(®)]c = cxi(t) + cx?(t) + --- + cuxN

That is,
x(t) = [X(D]c
is a general solution fox’ = Px.

Let’s now include an initial conditionk(ts) = a for some suitable real numbdg and
constant vectoma. From the above observations, we know the solution to thdtreg initial-
value problem

X = Px with X(tg) = a
is given by
x(t) = [X({)]c (41.2)
wherec = [c1, C, ..., Cn]" IS chosen so that
[X(to)]lc = a

But, as noted in chapter 38, fundamental matrices are iblertSo we can easily solve the above
for the ¢ using the inverse oK (ty) ,

c = [X(tp)] ta

Combining this with formula (41.2) fox (and recalling the requirements we made Bnn
chapter 38) gives us:

Theorem 41.1

Let X(t) be a fundamental matrix foraN x N systemx’ = Px over an interval on which each
component ofP(t) is continuous. Lety be in this interval and any column vector. Then the
solution to

/

X' = Px with X(tp) = a

is given by
xt) = [X°t)la  where X°t) = [XOI[X(to)]™*

From our observations and basic linear algebra, it folldves the X° described in the last

theorem satisfies both
dXP _ pyo
dt
and
XO(to) = [X(to)][X(t)]™* = I

So X° is the one solution to the matrix/matrix initial-value pleim
X = PX with X(tg) = |

From this, our discussions in chapter 38, and the factOdég)) = det(l) = 1, it quickly
follows that X° is a fundamental matrix fox’ = Px. Clearly, it is the one we would want if we
had to solve

x = Px with X(tg) = a

for several different choices @ (but the samd, for each).
At this point, we have two ways of finding thX° :
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1. We first solve theN initial-value problems

dxXk

aX" _ pyk ; k _ ek
ot Px with  x*(tp) €

where € is the N x 1 column matrix whose components are all 0 except forkHe
component which is 1. Then we use eadcfit) just found as the&k™ column of X°(t) .

2. We take any fundamental matrix(t) already found forx’ = Px, computeX(ty) and
its inverse and finally compute the produ¢f(t) = [X()][X(to)] 2.

»Example 41.3: In example 38.6 on page 38-16, we saw that one fundamentek rfoat

o _12 4
5 5
X = AX with A =12 -3 1
6 8
0 ¢ 3
is
el 2 34
Xt) = | & 32 &
32 _e2 32
To find the fundamental matriX® such that
0
% — AX®  with X°0) =1 |

we first find the inverse oK (0) (using whichever method you prefer),

[0 2620 32077
XO)] ™t = | 0 320 &0
3?0 —e 20 3e?0

~ . 1009 7
1 2 3 2 20 20

3 1
=1 3 1 = = 0 o "1
_3 -1 3 17 1
2 20 20

Then

1
et 202 3*|| 2 20 20

) B 3 1
X0 = XOIXW] ™ = | & 3 & || 0 = -——
32 _—e2 32 17 1
2 20 20

2 3y 3z Lo loa
5 5 5 5

_ Lt g2 Sen_ Som

3 t 3 _ ot 9 1 —2t
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While the formula forX® is not as simple as what we had originally obtainedXarthis
more complicated formula will simplify solving

%
dt
For example, ifa =[1, 2, 3]", then

= AX with x(0) = a

32y 3o lea loa
et 5e2 +ze 5e2t z€ 1
x() = X°(la = | 0 terq ez 3 Cgxiln
10 10 10 10
St _ 32 9 123
0 1oez 10° 1oezt+ 10°
2 t 3 _2t
&+ e 1 1 6
N S O S o R 2t 1 —2t
- - 10e2-|-10e 10 ;‘3—’_109e
B 32
Eez 10°

And if a=[20,0, 30]", then

3 3 1 1
et —ge2t + ge_Zt ge2t — ge_2t 20

—_ y0 _ 1o, 9 22 3 x_ €
xt) = X°%tla= 1|0 1Oe2 + 15€ 1er 16© 0

32 3.2 9 1 2|30
0 10e2 10e loezt + 10e
26€2t — Ge*Zt 26 -6
= ...= |9 92| = |9|e® +|-9|e?

27€? 4 3¢ 27 3

The Exponential Matrix

Let us now limit ourselves to the cases we've been consigémnithe last few chapters; namely,
where P(t) = A, and A is a constant reaN x N matrix. If t = 0, then we would be
particularly interest in the fundamental matdx= X° satisfying

X = AX  with X©O) =1 . (41.3)
Observe the similarity between this initial-value probland the first-order initial-value problem
X = ax with x(0) =1
wherea is some constant. This is a simple problem with a simple slut

x(t) = et

In analogy to this, we often refer to the soluti¥d of initial-value problem (41.3) as the (matrix)
exponential (ofAt ), writing

Xot) = M = expAt)
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We can then write the solution to

dx

Pl AX with x(0) = a

as

x(t) = Ma

More generally, we can define the exponential of &y N matrix M by the exponential
Taylor series

M ooMk
e :exp(M):X:W
k=0
where
MC=1 , Mt=M , M2=MM , M3 =MMM , ... . (41.4)

In particular,

o0 k
e = expAt) = Z%tk . (41.5)
k=0

The theory for power series of square matrices is a straighi#frd extension of the theory for
power series discussed in chapter 30, and we can safely eiSm#trix” versions of the results
discussed in 30 (with one warning to be mentioned in a mom&nt)m that, we know the series
for eV converges for every square matiik . Moreover, for any constarfl x N matrix A ,

d | o= Ak, Ak = OAKL =\ AN
— k| = Tkt = AY et =AY g
So 4
€] = At (41.6)
and
0o _ k 0o _
0 — kZ;WO =A" =1 |,

verifying that the solution to initial-value problem (418, indeed, given by<°(t) = e*! using
the more general definition of the exponential.

Formula (41.5) provides another way for computing the funelatal matrix satisfying initial-
value problem (41.3). However, unless is particularly simple, it may be easier to compute
formula (41.5) for a giverA by solving initial-value problem (41.3) as discussed eaith this
section.

»Example 41.4: Let a be any constant or function @f, and set

a O 0 «
Pz[o 0} and Qz[o o}

By basic matrix computations,

et | IR P R
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Continuing these calculations, we see that

k
kK _ |¥ 0 _
P _[O O] for k=1,2,3, ... ,
but that

k _ (0 O] _ _
Q¢ = [0 0} =0 for k=23, ...

So

m'U

I
WK
=2

I

°A

_I_
]
=2

z-
i
o
~
Il
iR

=0
= 0 1
while
o  ~k
Q _ Q
e_zk—!
k=0
_ [t 0], 1[0 @], 1[0 0] 1[0 0] _[ia
— o 1 {0 O 2210 O 3110 O — o 1

In exercise 41.4 ¢, you will extend the computations dondénabove exercise fog” to
show that, if P is any diagonal matrix

[r, 0 O 0]
0 r, O 0
p— |0 0 r3 0 ,
|0 0 O N
then B _
€g 0 0 0
0 € 0 0
P =0 0 €3 0
|0 0 0 .- é&n]

However, the above computation e® shows that, in general, the entries in the exponential of

a given matrix are not simply the exponentials of the comwesing entries of the given matrix.

Inverses and Limitations of Matrix Exponentials

In extending the theory of power series to a theory of poweses®f matrices, it is important to
remember that matrix multiplication is not commutativegttls, AB # BA in general. Because

of this, it turns out that the matrix versions of some of ttenglard exponential identities are not

generally valid. For example, while we knog#t? = e2€® for any two numbersiandb, it can
also be demonstrated that there &fex N matricesA and B such that

A8 £ eheP
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(see exercise 41.5 a). That said, we do have some commiyt#tiat will be helpful in verifying
at least one identity we would hope to hold. From formula%$and the almost trivial fact that

(Ak)A — Ak A(Ak) ’

you can easily confirm that

A = A (41.7)

for any square matriXA , and that will help us prove one favorite identity for expotials:

Lemma 41.2

Let A be anyN x N matrix. Then the exponential &t , €', is invertible, and its inverse is
—At
e ",

PROOF: Let
X(t) = eMe™ |
and observe that we can verify this lemma by showing Xé) = | for everyt.
Fort =0, this is easy,
X(0) = M0 = |gA0 = A0 —

To extend this, we will be computing’ using the product rule. But first, observe that, by
equation (41.6)

d;emefAt — (AeAt) efAt — A(eAtefAt) — AX
dt ;
and by equations (41.6) and (41.7),
de—At
e = A (—Ae™) = — (MA)e ™M = —AdtMe ™A = —AX
dt

From this and the product rule, we see that

deft (de At
— e e’
dt + dt

dx_d t—AtT _
E_a[e’*e ] =

= AX — AX = [A—-AIX = 0OX
So X is the solution to the initial-value problem

X’ 0X with  X(0) = |

But it is trivial to verify that the one solution to this singplnitial-value problem is given by
X(@) =1 forall t. Thus,

fMle™ At = X(t) = | forall t . I

Another formula we would probably like to extend is the diéfetiation formula(e™®)” =
e™Ony(t) , which is valid whenevem is a differentiable function of one variable. Unfortungtel
this formula does not extend to the matrix exponential. Bdsy to come up with aiN x N
matrix M with differentiable elements such that

d

pn [MO] # €

M d M
Mty UV 2 reM® =V M)
o and ]~ e
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(see exercise 41.7 a). The best we can say is that

v dM

d
sometimes — [eM®] = €
gt [€""] at

For example, from our derivations of formulas (41.6) and {,.we know that

d M (t) M (t) d M .
i [e"©] et (t) t
fora constantNxN matrix A . Other cases for which we can so differentieteé? are described
in exercise 41.7 b.

41.6 Using Similarity Transforms

Two constantN x N matricesA and B are said to be related bysamilarity transformif and
only if there is an invertibleN x N matrix T such that

B = T IAT . (41.8)
Note that this is completely equivalent to saying
A = TBT!

(just multiply both sides of equation (41.8) on the left Byand on the right byT —1).
Similarity transforms are quite important in linear algebFor example, from the theory of
linear algebra, we have the following:

Lemma 41.3
Let A be a constanN x N matrix. Then there is an invertible matrix such that

TIAT = B

where all the entries dB areQ except, possibly, for those on the main diagonal and imntelgia
above the main diagonal. In fact,

rhn ss 0 0 - 0 0

0O r, s, 0 - 0 0

0 0 rp 5 - 0 0
B = L

0O o 0o o0 .- 'N—1 SN-1

|0 0 0 O 0 N |

where ther’s are the eigenvalues &, and eachs; is eitherQO or 1. Moreover:

1. The number of times a particular eigenvalue appears in the diegonal is equal to the
algebraic multiplicity of that eigenvalue (as an eigeneadfi A ).
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2. A has a complete set of eigenvectors if and only if

s =0 for k=12....N—-1

This lemma tells us that everfd x N matrix is related by a similarity transform to a
particularly simple matrix. To see the importance of thatisplet A and B be two constant
N x N matrices related by

B = T'AT  (equivalently, TBT! = A)

for some invertible matrixT . Also let x andy be two vector-valued functions on the real line
related to each other via

y = TIx  (equivalently, Ty = x)

Now supposex satisfiesx’ = Ax. Observe that (using the above, the product rule for
matrices, and the fact that= Ix = TT ~1x),

y = (T%) =T = T?Ax = T?A(TTx) = (T7?AT)(Tx) = By ,

showing thaty satisfies the constant matrix systefn= By . And if we had instead assumed
y’ = By, then we would have

X = (Ty) = Ty’ = TBy = TBT 1Ty = Ax ,

showing thatx satisfies the constant matrix systetm= Ax . And if you then take into account
the fact that, because matrix multiplication is linear,

T [ey*®) + cy*®) + -+ eny" O] = aTy'®) + cTy’®) + - + cnTyN )

you can easily finish proving the next theorem.

Theorem 41.4
Let A andB be two constanN x N matrices related by a similarity transform

B = T IAT |

and let
{xt %% .. xNY and {yLvy% ...y}

be two sets o vector-valued functions on the real line with
xK = TyK for k=1,2,...,N

Then
{xt %% ... xN}

is a fundamental set of solutions fatr = Ax if and only if

{yl’ V2, m’yN}

is a fundamental set of solutions fgr= By .
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So, if we can find aT so thatB = T~1AT is of the form described in lemma 41.3, then

we can find a fundamental set of solutiofs, x, ..., xN} for X' = Ax by first finding a
fundamental set of solutiong/?, y?, ..., yN} for the much simpler systery = By, and then
setting

y$ = T for k=1,2,...,N

Do observe how simple this systeyn = By is: If A has a complete set of eigenvectors, then
B is diagonal,y’ = By is completely uncoupled, and a fundamental set can be foumalsa
by inspection. Otherwise, itis still a very simple, “weakigupled” system which is still easily
solved.

Doubtlessly, you are wondering how we find that matffix Here is part of the answer:

> Exercise 41.1: Let A be a constanN x N matrix with a complete set of eigenvectors.
Show the following:

a: If T isasinlemma 41.3, then thé" column of T is an eigenvector foA corresponding
torg.

b: Let B = T-AT where T is any matrix whosek™ column is given byu® where
{ut, u?, ..., uN} isany complete set of eigenvectors for ThenB is of the form described
in lemma 41.3.

Thus, to find that matriX’ when A has a complete set of eigenvectors, we first need to find
a complete set of eigenvectors fér. And if A does not have a complete set of eigenvectors,
then you can show thak is constructed from the/*I’s described in lemma 40.7 on page 40-18.

This relation between th@ in lemma 41.3 and the eigenvectors Af (or the “w*I’s”
from lemma 40.7) rather lowers the value of similarity trf@nshations as a practical tool for
solving homogeneous constant coefficient systems of difitéal equations. After all, if we have
already found those vectors, then it is easier to finish sglxi = Ax via the methods discussed
in the last two chapters. Still, similarity transforms hlsdretical value. In fact, lemmas 40.6
and 40.7 in the last chapter are really corollaries of lemn&.4In addition, we may find some
use for similarity transformation when dealing with nontmaneous constant matrix systems.

Let’s just do one example, and move on to other topics.

I»Example 41.5: Let us reconsider (again) the system in example 41.3,

12 4

2 "% 5

X' = AX with A =12 -3 1

o & 8

5 5

We already know tha# has eigenpairs

1 2 3
2,11 , -2, 3 and 2, |1
3 -1 3

with the three above eigenvectors forming a complete sageheectors forA . So it imme-
diately follows that

1 3

1|e®, | 3 |e?, 1|

3 -1 3
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is a fundamental set of solutions far= Ax , and

et 202 32
X(t) = X(t) = | & 32 &
3t —e? 3

is the corresponding fundamental matrix.
Ignoring the fact that we can so readily find the solutiongithe eigenpairs oA let's
find the matrixT using the above eigenvectors,

1 2 3
T=1]1 3 1
3 -1 3

(Observe that, in this case at least= X(0)!) Computing the inverse of however you
wish, you will find that

-1

1 2 3 1—10 9 7
_1_ _ _ = _
T1=1(1 3 1| = =5l 0 6 -2
3 -1 3 10 -7 -1
So,
B = TIAT
2 12 4
1—109 7 %5 5([1 2 3 2 0 0
=55 0 6 -2 2 -3 1||1 3 1| = =10 -2 0
10 -7 -1]|, 6 8[|3 -1 3 0 0 2
5 5

Clearly B has eigenpairs

) L) = G

with the three above eigenvectors forming a complete seigefeectors forB. Hence, a
fundamental set of solutions fgt = By is {y*, y? y3} with

1 0 0
yit) = [0|&* . YA = |1 e and y3t) = |0]|e&*
0 0 1

Theorem 41.4 now assures us that a fundamental set of sototid = Ax is {x*, x?, x*}
with

1 2 3|1 1
x2t) = Ty't) = [1 3 1||0|et = [1]|e* |
3
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1 2 3]fo 2
X2t = Tylt) = [1 3 1||1l]|e? = | 3 |e?®
3 -1 3| |0] -1
and
[1 2 3][0] 3
X3ty = Ty3t) = [1 3 1||0|et = [1]|e® |
13 -1 3| [1] 3

just as we had noted near the start of this example.

41.7 Euler Systems
What Is An Euler System?

We will refer to any N x N system of differential equations as Bualer system if it can be given

by
d—leAx for O0<t<o
dt t

whereA is constantN x N matrix with real components. Such a system is a naturaldinchr
system extension of the Euler equations discussed in ahb®tsee exercises 36.11 and 36.12
on page 36.11). As with the Euler equations, the domainsrdautions will notincludet = 0.
For convenience, we will insistthat 8t < oo .

Our interest in Euler systems is mainly so that we can haveesyssthat we can ‘easily’
solve other than constant matrix systems. And Euler systande solved just as easily as
constant matrix systems. In fact, with only a few hints, ybowdd be able to figure out how
to solve Euler systems by building on what you know about Eetpiations and what we've
learned about solving constant matrix systems.

Direction Fields and Trajectories

Do observe that an Euler system is a homogeneous lineansyiste, because of th& factor,

it is not an autonomous system. So the “velociky(t) of a solution as it goes through a given
position will depend both on that position and on when (itg.it goes through that point. Still,
as illustrated in the next example, changed imnly affects the magnitude of’(t), not its
direction. Consequently, as we'll see, we can still cortdtaudirection field for an Euler system
that does not depend an

I»Example 41.6: Let consider the direction arrows at various points on ¥ié-plane for

both
dx 1 dx ) 115 -3
Pl fAx and Pl AX with A = > |:3 _5}

The first is an Euler system, while the second is a constambnsgstem.
Clearly, x(t) = 0 is a constant solution for each.
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Now, letxE(t) andx®M be solutions to the Euler system and the constant matrigsyst
respectively, that satisfy

1 1
xE(ty) = |: 2} and xX*M(ty) = |: 2}
for somety > 0.

For the constant matrix system, the direction arrow that weld/sketch at1, 2) would
be a short arrow in the same direction as

i | R
w213 -5]|2 2| -7 7
which, as should be expected, does not depentd on

However, for the Euler system, the direction arrow that welldsketch at(1, 2) would
be a short arrow in the same direction as

1|5 =3|[1] 1|1
o, 20|33 -5||2|  2|-7| '

which does depend oty , but only very simple manner: Its dependence is in a factar th
scales the vector by some positive quantity. But that doeaffect the direction. In fact,

dXCM
dt

dxE
dt

dxE
dt

1 dxCM
t=to to dt

t=tp
So, the direction arrow of the Euler system(aty) = (1, 2)
1. does not change with, and
2. isthe same as the direction arrow@t y) = (1, 2) for the constant matrix system.

Of course, there was nothing special about the pdin2) . If (Xo, Yo) IS any point on the
XY-plane, andkE(t) andx“M(t) are solutions to the Euler system and the constant matrix
system, respectively, that satisfy

E _ | Xo cM _ | %o
X=(tg) = |:y0:| and XV (ty) = |:y0:|

for somety > 0. Then

dxE
dt

_1 5 3| |[xo _1dXCNI
i, 2o|3 —5||yo| to dt

telling us that the direction arrow of the Euler systeniat, yo)

t=tp

1. does not change with, and

2. isthe same as the direction arrow(@s, yo) for the constant matrix system.



Euler Systems Chapter & Page: 41-21

Figure 41.3: A direction field and some trajectories for the Euler systemxample 41.6.

Thus, we can construct a well-defined direction field for ouleE system, and this direction
field

1. does not change with, and
2. s also a direction field for the above constant matrix system

Moreover, since the trajectories of the solutions can berdghed from the direction field,
the trajectories of the solutions to the above Euler system

1. do notvary witht , and
2. are the same as the trajectories for the above constanxragstem.

A direction field for our Euler system, along with a few trdfges have been sketched in
figure 41.3.

It should be clear that the observations made in the exangbdefbr any Euler system. In
summary:

Lemma 41.5
Let A be a constanN x N matrix with real components. Then direction fields and trtjges

for the Euler system

d—X=}AX for 0<t <o
dt t

are well-defined and do not depend bn Moreover these direction fields and trajectories are
also direction fields and trajectories for the constant ixairstem

dx

— = AX for 0<t<oo
dt

Keep in mind, however, that the trajectories of an Eulerssysire traced out by the solutions
ast goes from 0 tooco, unlike the trajectories of a constant matrix system thataced out
by the solutions a$ goes from—oo to co.
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Solving Euler Systems

Our solving of a constant matrix system began with the dgdmahat x(t) = ue’ satisfies
x' = Ax if (r,u) is an eigenpair forA , and thee’* factor in this solution was inspired by the
basic solutions to the linear homogeneous differentiahéiqos with constant coefficients. From
our study of Euler equations in chapter 19 you probably sttgpat, for Euler systems, we will
want to uset” instead ofe’t . Well, you are correct.

Theorem 41.6
Let A be a constanN x N matrix with real components. Ifr, u) is an eigenpair foA , then
X(t) = ut" is a solution to the Euler system

%zle for 0<t < oo
dt t

?»Exercise 41.2: Verify the above theorem.

As an immediate corollary, we have:

Corollary 41.7

Let A be a constanN x N matrix with real components. Assunfe has a complete set of
eigenvectorgu®, u?, ..., uN},and, fork = 1,2,..., N, letry be the eigenvalue corresponding
to u®. Then the Euler system

d—leAx for 0<t <o
dt t

has
{ultrl’ uztrz’ cee uNtrN}

as a fundamental set of solutions, and
X(t) = Clultrl + CzuthZ 4+ e+ CNuNtrN

as a general solution.

I»Example 41.7: You can easily verify that

(=) e ()

are eigenpairs for the matrix
1[5 -3
A==
b

So, according to the above, the Euler system

dx 1

dt t

oo - {1 ()

has
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as a fundamental set of solutions, and

R ) 3|2
Xt) = ¢ [S]t + [l]t
as a general solution.

In addition, from this fundamental set of solutions, we canstruct the corresponding
fundamental matrix for the Euler system,

(1) = t=2 3t?
S |3t? t?
and the fundamental matrix® that also satisfieX°(1) = | is

XOt) = XOIX@DI!

- q -1
I S Y A
B N 31

[ oe](af-1 3\ a1 -t?24o? 323
S8t t2|\8| 3 1|/  8|-3t24+3t? 92—t

As with the constant matrix systems, there are two particatamplications that may
arise:

1. OneisthatA may have a complex eigenvalue If so, then taking the real and imaginary
parts of the corresponding solutiam" will yield real-valued solutions to the Euler
system, just as taking the real and imaginary parts of soiatof the formue’ yielded
real-valued solutions to the constant matrix system incedt0.1.

2. Theotheristhal® might not have acomplete set of eigenvectors. If so, thedaptation
of the development discussed in sections 40.3 and 40.5 isler.o

The details will be left to the interested reader.

Additional Exercises

Exerci ses for section 41.1 TBW
Exerci ses for section 41.2 TBW
Exerci ses for section 41.3 TBW

41.3. AssumeA is 2x 2 constant matrix with real components, and let
rh=»xnm-+iow and 1, = A — iw

be approximations of the true eigenvalues, with= A, if w # 0 andry < ry if
w = 0. Assume each computed and « is known to be “withine ” of the true
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value, where: is some (hopefully small) positive value. To simplify nagex, r1 ~ rg
or o ~ 0 means these computed values are close enough that it idfeoksi the
corresponding equalities to hold for the true values.

Several choices fan, andr, are givenineach ofthe following. For each, state what
these eigenvalues tell you about the critical p@t0) , the stability of the equilibrium
solution x(t) = 0 and the phase portraits fot = Ax both assuming the computed
eigenvalues are correct, and for all the other possibleegatfithe eigenvalues (see the
discussion ofPhase Portraits for Imprecisely Known Systé¢ms

.fL < Iy < —e withry %13

a
b.ri <r, < —ewithry=r,

o

rh < —e ande < 1,

Q

A=0ande < w
e.ri~0andr,~0
41.4. Inthe following, you will compute matrix exponentials ugitbasic definitions” When

they appeara, b andc denote arbitrary numbers or functions. (Note: Some of your
results will be used in later exercises.)

a. Computee™ for each of the following choices dfl , using formula either (41.4) or
formula (41.5):

R I 3 B ) B
Y [y

b. By solving the appropriate initial-value problem, fie* for each of the following

choices ofA :
EE i 191 i, |77
10 3 {10 77
c. Show that
[e€r 0 O 0] [r1 0 O 0]
0 €@ 0 - 0 0r, 0 - 0
M_ |0 0 e ...0 when M — |0 0 r3 .. 0
(0 0 0 .- @v] (0 0 0 -+ 1y
41.5. In the following, we will explore the validity (and NONvaliy) of the identity e*+8 =
eeb.
a. Let

0 1 0O
A:[OO} and B:[lo]

i. Using results from exercise 41.4, compuafe, € ande**B .
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ii. By direct computation, show that
ee® P, LB and Pt £ B

for the above choices fok andB .

b. Now assumeéA andB are any twoN x N matrices that commute; that i8, and B
satisfyAB = BA..

i. Using series formula (41.5) f@®' and the fact thafB = BA , show that

BeM = &MB
ii. Show that
eMB — B (41.9)
by verifying thatX (t) = e*eP! satisfies
((jj_>t< = [A+BIX with X(0) = |

Be sure to explain why this verification also confirms thatadigy (41.9) holds.
(Hint: Take a look at the proof of lemma 41.2 on page 41-14.)

41.6. Inthese exercises, we will explore the validity (and NONi&}) of a standard differ-
entiation formula.

a. Let
Mo =[5 o -

and verify, by direct computation, the following:

dM dm ood o dM od o dm

9 M i, &[M] ;«&ZMW . a[M] ;éZWM
b. Now let M(t) be anyN x N matrix of differentiable functions that commutes with

its derivative, MM’ = M’M . Show that, in this case,

Cd oy o M
I.&[M]_ZMW
d

A VT ALY _
ii. dt[M]_kdtM for k=23, ...

41.7. In these exercises, we will explore the validity (and NONbi&) of another standard
differentiation formula.

a. In exercise 41.4 you found"® when

=[5 §

Now verify, by direct computation, that

d r Mo M) dM d r Mo dM _mq)
gl # g and g [T~ e

whenM s as above.
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b. Now verify that

d_ M1 _ M(t)d_M d_ MBDT _ d_MM(t)
[eMV] = and [eV] = T

dt dt dt
when
i. M andM’ commute (Hint: See exercise 41.6b ).

ii. M(@t)=Af(@t) forsome constariixN matrix A and some differentiable function
f.

Exerci ses for section 41.6 TBW
Exerci ses for section 41.7 TBW
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They
have not been properly proofread! Errors are likely!

4ai. [e;t egt]

4aii. [e;t egt}

aaiii [é "ﬂ

4aiv. [é ﬂ

4av. [g t(ell)]

4a vi. [%t t_l(etl_ l)}
wi 29

4b ii. |:Z Z:|

N
4b iii. [? ?]



