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Miscellaneous Topics Involving
Homogeneous Constant Matrix Systems

In this chapter we will discuss a variety of topics, all more-or-less related to the constant matrix
systems discussed in the previous two chapters. Some of thismaterial is of interest for its own
sake, and some is developed here for use either in the chapteron nonhomogeneous systems or
for use in discussing nonlinear systems.

41.1 Phase Portraits for Large Constant Matrix
Systems

In the previous two chapters, we pretty well demonstrated how the phase portrait of a 2×2
constant matrix systemx′ = Ax depends on the eigenvalues and eigenvectors ofA . We won’t
attempt an analogous development whenA is N× N with N > 2 . There are just too many
cases to consider, and the two-dimensional medium of this text is not adequate for representing
the corresponding phase portraits. Nonetheless, the basicideas developed assumingA is 2×2
still apply, and you can use what we developed to help visualize the possible trajectories when
A is, say, 3×3 .

!◮Example 41.1: Consider the rather simple3×3 constant matrix system






x′

y′

z′






=







−2 3 0

−3 −2 0

0 0 −1













x

y

z






.

The matrix for this system has three distinct eigenvalues. Two are complex,r± = −2 ± 3i ,
and the third isr3 = −1 (with corresponding eigenvector[0, 0, 1]T ). Together, they lead to
the system’s general solution

x(t) = c1x1(t) + c2x2(t) + c3x3(t) (41.1)

with

x1(t) =





cos(3t)
− sin(3t)

1



 e−2t , x2(t) =





sin(3t)
cos(3t)

1



 e−2t
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Figure 41.1: Seven trajectories for the 3×3 constant matrix system in example 41.1. Two
are straight line trajectories along theZ–axis, two are spirals in the
XY–plane, and two are “three-dimensional spirals” about theZ–axis. The
seventh is the critical point(0, 0, 0) .

and

x3(t) =





0
0
1



 e−t .

The first two terms in the general solution, which came from the complex eigenvalues
−2 ± 3i , trace out spirals “spiralling in” towards the origin in theXY–plane. That’s what
you get from general solution (41.1) ifc3 = 0 but at least one of the other two constants in
formula (41.1) is nonzero.

The last term, corresponding to the eigenpair
(

−1, [0, 0, 1]T
)

, traces out straight line
trajectories along theZ–axis with the direction of travel being towards the origin.That’s
what you get from general solution (41.1) ifc1 = c2 = 0 .

Finally, if c3 6= 0 and at least one of the other two constants in formula (41.1) is nonzero,
then x(t) traces out a “three-dimensional spiral” about theZ–axis heading into the origin.

Examples of these trajectories have been sketched in figure 41.1. Note thatx(t) = 0 is
still an equilibrium solution, and that, whatever the values of c1 , c2 and c3 ,

lim
t→∞

[

c1x1(t) + c2x2(t) + c3x3(t)
]

= 0 .

So x(t) = 0 is an asymptotically stable equilibrium solution for this system.

41.2 Shifted Constant Matrix Systems

A shifted constant matrix systemis simply a system of differential equations that can be written
as

x′ = A[x − x0]

where A is a constantN × N matrix andx0 =
[

x0
1, x0

2, . . . , x0
N

]T
is a constant vector. Such

systems will later be important in approximating nonlinearsystems about critical points.
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The above shifted system looks a lot like the constant matrixsystems in the last two chapters,
and we can make it look even more like such a system by defining anew vector-valued functions
x̂(t) by

x̂(t) = x(t) − x0 .

This is equivalent to introducing a new coordinate system that is just the original coordinate
system shifted so that the new origin(x̂1, x̂2, . . . , x̂N) = (0, 0, . . . , 0) is at the point given by
(x1, x2, . . . , xN) =

(

x0
1, x0

2, . . . , x0
N

)

in the old coordinate system. Since

dx̂
dt

=
d

dt
[x(t) − x0] =

dx
dt

− 0 =
dx
dt

and
A[x − x0] = Ax̂ ,

our system of differential equations reduces, in the shifted coordinate system, to the basic constant
matrix system

x̂′ = Ax̂ .

So everything we learned about solving basic constant matrix systems applies here provided we
take into account the “shift byx0 ” . In particular,

1. The point
(

x0
1, x0

2, . . . , x0
N

)

is a critical point forx′ = A[x − x0] , and is the only critical
point if det(A) 6= 0 .

2. All solutions to x′ = A[x − x0] can be obtained by just addingx0 to all solutions of
x′ = Ax .

3. The stability of the equilibrium solutionx(t) = x0 for x′ = A[x − x0] is the same as
the stability of the equilibrium solutonx(t) = 0 for x′ = Ax

4. A phase portrait forx′ = A[x − x0] can be obtained by just “shifting” a phase portrait
of x′ = Ax so that the trajectories of the shifted system about

(

x0
1, x0

2, . . . , x0
N

)

match
the trajectories ofx′ = Ax about (0, 0, . . . , 0) .

!◮Example 41.2: Consider the shifted system

x′ = A[x − x0]

where

A =

[

1 1

−2 −1

]

and x0 =

[

2

1

]

.

The corresponding “unshifted” systemx′ = Ax was considered in example 40.2 on page
40–8. There, we saw that a general solution forx′ = Ax is given byCxR(t − t0) where

xR(t) =

[

1
−1

]

cos(t) −

[

0
1

]

sin(t) .

We also constructed the phase portrait for this system (redrawn in figure 41.2a), and observed
that the equilibrium solutionx(t) = 0 is stable, but not asymptotically stable.



Chapter & Page: 41–4 Miscellaneous Topics Involving Homogeneous Constant Matrix Systems

(a) (b)

XX

YY

11

11

22

22

33

33 4

−1−1

−1−1

−2−2

−2−2

−3−3

−3

Figure 41.2: Phase portraits for(a) the basic systemx′ = Ax and(b) the shifted system
x′ = A[x − x0] from example 41.2.

By simply adding the “shift” to the above formula, we then obtain the general solution

x(t) = CxR(t − t0) + x0

= C

([

1

−1

]

cos(t − t0) −

[

0
1

]

sin(t − t0)

)

+

[

2
1

]

for the shifted system,x′ = A[x−x0] , and, by suitably shifting the phase portrait ofx′ = Ax
in figure 41.2a, we get the phase portrait of the shifted system in figure 41.2b. Again, it is
clear that the equilibrium solutionx(t) = x0 is stable, but not asymptotically stable.

41.3 Classifying Critical Points for 2×2 Systems

Later, we will use what we’ve developed in the last few chapters for constant matrix systems
to help analyze solutions to 2×2 nonlinear systems of differential equations. So, for future
reference, let us now

1. summarize some of what we’ve derived regarding the stability, and

2. give definitions for some of the terms introduced in the previous two chapters.

In this discussion, we will assumeA is a constant 2×2 matrix with real components, and with
eigenvaluesr1 and r2 (possibly with r1 = r2 ). If r1 and r2 are complex, then we know they
are complex conjugates of each other, and we’ll denote the real and imaginary parts, respectively,
by λ and ω ,

r1 = λ + iω and r2 = λ − iω .
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Stability in Constant Matrix Systems

If you go back and review the possible cases, you will see that, whenever eitherr1 or r2 is
positive, or wheneverr1 and r2 are complex withλ positive, thenx(t) = 0 is an unstable
equilibrium for x′ = Ax (and x(t) = x0 is an unstable equilibrium forx′ = A[x − x0] ).
Otherwise,x(t) = 0 is a stable equilibrium forx′ = Ax (and x(t) = x0 is a stable equilibrium
for x′ = A[x − x0] ).

Furthermore, we have thatx(t) = 0 is an asymptotically stable equilibrium forx′ = Ax
(and x(t) = x0 is an asymptotically stable equilibrium forx′ = A[x − x0] ) if and only if both
r1 and r2 are negative, or are complex withλ < 0 .

Nodes, Saddle Points, Centers and Spiral Points in General

Let (x0, y0) be a critical point for any 2×2 system of differential equations. Then:

1. The critical point(x0, y0) is called anodeif, in a region near(x0, y0) , all of the nonequi-
librium trajectories are either straight half-lines with(x0, y0) as an endpoint, or become
tangent to such half-lines at(x0, y0) . For the basic constant matrix systemx′ = Ax ,
(0, 0) is a node if and only ifr1 and r2 are both positive or are both negative.

Sometimes, nodes are further subdivided into being either “proper” or “improper”,
with the node beingproper if and only if, for every straight half-line with(x0, y0) as an
endpoint, there is a trajectory which is that half line or which becomes tangent to that
half line at (x0, y0) . For the basic constant matrix systemx′ = Ax , (0, 0) is a proper
node if and only ifr1 = r2 , in which case we may also refer to(x0, y0) as astar node.

2. The critical point(x0, y0) is called asaddle pointif there are two nonequilibrium solutions
x1(t) and x2(t) such that

lim
t→−∞

x1(t) =

[

x0

y0

]

and lim
t→∞

x2(t) =

[

x0

y0

]

.

For our basic constant matrix systemx′ = Ax , (0, 0) is a saddle point if and only ifr1

and r2 are both real, but have opposite signs.

3. The critical point(x0, y0) is called acenterif all the nearby nonequilibrium trajectories
are closed loops about(x0, y0) . For our basic constant matrix systemx′ = Ax , (0, 0)

is a center if and only if the eigenvalues ofA are purely imaginary; that is,r1 = iω and
r2 = −iω with ω 6= 0 .

4. The critical point (x0, y0) is called aspiral point if all the nearby nonequilibrium tra-
jectories are spirals about that point. For our basic constant matrix systemx′ = Ax ,
(0, 0) is a spiral point if and only if the eigenvalues ofA are complex with both real and
imaginary parts being nonzero; that is,r1 = λ + iω and r2 = λ − iω with both λ 6= 0
and ω 6= 0 .

You you check the literature, you may find other terms used in classifying critical points.
For example, the terms “sink node” and “source node” (or just“sink” and “source”) are often
used as synonyms for stable and unstable nodes, respectively.
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41.4 Phase Portraits for Imprecisely Known Systems

Note that the basic nature of a phase portrait for a 2×2 constant matrix systemx′ = Ax depends
strongly on the whether the real and imaginary parts of the eigenvalues ofA are positive, negative
or zero. This can be a significant issue when the matrixA is only approximately known, such as
when the systemx′ = Ax arises from a “real-world application” and the components of A are
determined by “real-world measurements”. Such measurements are invariably approximate. As
a result, the eigenvalues obtained when solving the characteristic equation det[A − r I ] = 0 will
only be approximations of the true eigenvalues for the system of real interest. And, of course the
corresponding computed eigenvectors will also only be approximations of the true eigenvectors
for the system.

So let use consider some of the possibilities whenA is 2×2 , and our computed eigenvalues
are are known to be approximations of the true eigenvalues. For convenience, we will denote the
computed eigenvalues byr1 and r2 if they are real, and byλ± iω if they are complex. We will
assume each computedr1 , r2 , λ and ω is known to be “withinǫ ” of the true value, where
ǫ is some (hopefully small) positive value. To simplify notation, let us write, say,r1 ≈ r2 or
ω ≈ 0 whenever these computed values are close enough that it is possible for the corresponding
equalities to hold for the true values.

ǫ < r1 < r2 with r1 6≈ r2

According to the computed eigenvalues, the origin is an unstable node. In this case, the true
values of the eigenvalues still must both be positive and different. So, using the true eigenvalues,
the origin is still an unstable node. Moreover, (assuming the errors are reasonably small) the
computed eigenvectors will be reasonably close to the true eigenvectors. Consequently, the
phase portraits generated by the computed values will be good approximations of the true phase
portraits, and will all look something like that sketched infigure 39.4a on page 39–21.

ǫ < r1 < r2 with r1 ≈ r2

Again, according to the computed eigenvalues, the origin isan unstable node, and any phase
portrait based on the computed eigenvalues will be similar to that sketched in figure 39.4a on
page 39–21. In this case, however, there are four general possibilities for the true values of the
eigenvalues:

1. The true eigenvalues are two different positive numbers. Inthis case, the origin is truly
an unstable node, and the phase portraits drawn using the computed eigenvalues and
eigenvectors will be good approximations of the true phase portraits.

2. The true eigenvalues are equal and real. In this case there two additional possibilities:

(a) If the true eigenvalue has geometric multiplicity two, thenthe true trajectories are
all straight half-lines, and the origin is an unstable star node.

(b) If the true eigenvalue has geometric multiplicity one, thenthe origin is still an
unstable node, but the true trajectories will be similar to those in figure 40.4a on
page 40–16.
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3. The true eigenvalues are complex, with the same real parts and small (but nonzero)
imaginary parts. In this case, the origin is a unstable spiral point, and the true phase
portrait will be somewhat similar to that in figure 40.2a on page 40–9.

Observe that, no matter what, we can be sure that the equilibrium solution x(t) = 0 is an
unstable equilibrium solution. However, the actual trajectories can vary radically from case to
case.

r = λ ± iω with ǫ < λ and ǫ < ω

According to the computed eigenvalues, the origin is an unstable spiral point, and the phase
portrait is similar to that in figure 40.2a on page 40–9. In this case, the computed values ofλ

and ω are large enought to assure us that the true eigenvalues are complex with similar values
for the real and imaginary parts. In particular, the real part of the true eigenvalues will be a single
positive value. Consequently, the origin must be an unstable spiral point, and a phase portrait
based on the true eigenvalues and eigenvectors will be similar to that based on the computed
values.

r = λ ± iω with 0 < λ < ǫ and ǫ < ω

According to the computed eigenvalues, the origin is an unstable spiral point, and the phase
portrait is similar to that in figure 40.2a on page 40–9. Here,the imaginary parts of the computed
eigenvalues are large enough to ensure that the true eigenvalues have nonzero imaginary parts, but
the real parts of the computed eigenvalues are so close to 0 that we have three possibilities:

1. The real parts of the true eigenvalues are positive. In this case the origin is an unstable
spiral point and a true phase portrait will be somewhat similar to that of the computed
phase portrait.

2. The real part of the true eigenvalues is zero. In this case theorigin is a center,x(t) = 0 is
a stable equilibrium solution, and a true phase portrait will consist of a bunch of ellipses
centered at the origin, and not the spirals drawn using the computed eigenvalues.

3. The real part of the true eigenvalues is negative. In this case the origin is a stable spiral
point, x(t) = 0 is an asymptotically stable equilibrium solution, and a true phase portrait
will consist of spirals, just as in a phase portrait drawn using the computed eigenvalues,
but with the direction of travel being towards the origin instead of away.

Other Cases

In exercise 41.3, you will briefly go through some of the otherpossible cases, comparing what
the computed eigenvalues tell us with what the true eigenvalues would have told us. One thing
to observe: If the eigenvalues or the real parts of the eigenvalues of the computed eigenvalues
are close to zero, then you have little idea as to whether the equilibrium solution x(t) = 0 is
asymptotically stable, stable, or unstable.
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41.5 Using Fundamental and Exponential Matrices
Fundamental Matrices

Let’s go back to a fairly general linear system of the form

x′ = Px

where P is an N×N matrix of functions on some interval(α, β) . Recall that a fundamental
matrix for this system is anyN×N matrix of functions on(α, β)

X =













x1
1 x2

1 · · · xN
1

x1
2 x2

2 · · · xN
2

...
...

. . .
...

x1
N x2

N · · · xN
N













whose columns

x1 =













x1
1

x1
2
...

x1
N













, x2 =













x2
1

x2
2
...

x2
N













, · · · and xN =













xN
1

xN
2
...

xN
N













make up a fundamental set of solutions for our linear systemx′ = Px .
Here are some simple observations and recollections regarding the above fundamental matrix

X and corresponding fundamental set of solutions
{

x1, x2, . . . , xN
}

:

1. Because each columnx satisfiesx′ = Px , it is easy to verify that any fundamental
matrix X satisfies the “matrix/matrix” system of differential equations

X ′ = PX

where X ′ , the derivative ofX , is simply the matrix obtained by differentiating each
component ofX .

Moreover, it should be clear that the theory discussed for the matrix/vector system
of differential equationsx = Px extends naturally to the matrix/matrix system. This
includes the facts regarding the existence and uniqueness of solutions.

2. It is also easy to verify that, ifF and G are any matrices such that the productFG
exists, then the standard product rule

(FG)′ = F′G + FG′

holds. Moreover, ifG is a constantN×N matrix, then

G′ = O

whereO is the constantN×N matrix whose every component is 0 , and

(XG)′ = X ′G = (PX) G = P (XG) .
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3. If c = [c1, c2, . . . , cN]T then (as derived inA “Matrix/Vector” Formula for Linear
Combinationson page 38–5)

[X(t)]c = c1x1(t) + c2x2(t) + · · · + cNxN .

That is,
x(t) = [X(t)]c

is a general solution forx′ = Px .

Let’s now include an initial conditionx(t0) = a for some suitable real numbert0 and
constant vectora . From the above observations, we know the solution to the resulting initial-
value problem

x′ = Px with x(t0) = a

is given by
x(t) = [X(t)]c (41.2)

wherec = [c1, c2, . . . , cN]T is chosen so that

[X(t0)]c = a .

But, as noted in chapter 38, fundamental matrices are invertible. So we can easily solve the above
for the c using the inverse ofX(t0) ,

c = [X(t0)]
−1a .

Combining this with formula (41.2) forx (and recalling the requirements we made onP in
chapter 38) gives us:

Theorem 41.1
Let X(t) be a fundamental matrix for anN×N systemx′ = Px over an interval on which each
component ofP(t) is continuous. Lett0 be in this interval anda any column vector. Then the
solution to

x′ = Px with x(t0) = a

is given by
x(t) = [X0(t)]a where X0(t) = [X(t)][X(t0)]

−1 .

From our observations and basic linear algebra, it follows that theX0 described in the last
theorem satisfies both

dX0

dt
= PX0

and
X0(t0) = [X(t0)][X(t0)]

−1 = I .

So X0 is the one solution to the matrix/matrix initial-value problem

x′ = PX with X(t0) = I .

From this, our discussions in chapter 38, and the fact det(X(t0)) = det(I ) = 1 , it quickly
follows that X0 is a fundamental matrix forx′ = Px . Clearly, it is the one we would want if we
had to solve

x′ = Px with x(t0) = a

for several different choices ofa (but the samet0 for each).
At this point, we have two ways of finding thisX0 :
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1. We first solve theN initial-value problems

dxk

dt
= Pxk with xk(t0) = ek

where ek is the N ×1 column matrix whose components are all 0 except for thekth

component which is 1 . Then we use eachxk(t) just found as thekth column of X0(t) .

2. We take any fundamental matrixX(t) already found forx′ = Px , computeX(t0) and
its inverse and finally compute the productX0(t) = [X(t)][X(t0)]−1 .

!◮Example 41.3: In example 38.6 on page 38–16, we saw that one fundamental matrix for

x′ = Ax with A =











2 −
12

5

4

5

2 −3 1

0
6

5

8

5











is

X(t) =







e2t 2e−2t 3e2t

e2t 3e−2t e2t

3e2t −e−2t 3e2t






.

To find the fundamental matrixX0 such that

dX0

dt
= AX0 with X0(0) = I ,

we first find the inverse ofX(0) (using whichever method you prefer),

[X(0)]−1 =







e2·0 2e−2·0 3e2·0

e2·0 3e−2·0 e2·0

3e2·0 −e−2·0 3e2·0







−1

=







1 2 3

1 3 1

3 −1 3







−1

= · · · =











−
1

2

9

20

7

20

0
3

10
−

1

10
1

2
−

7

20
−

1

20











Then

X0(t) = [X(t)][X(t0)]
−1 =







e2t 2e−2t 3e2t

e2t 3e−2t e2t

3e2t −e−2t 3e2t

















−
1

2

9

20

7

20

0
3

10
−

1

10
1

2
−

7

20
−

1

20











= · · · =











e2t −
3

5
e2t +

3

5
e−2t 1

5
e2t −

1

5
e−2t

0
1

10
e2t +

9

10
e−2t 3

10
e2t −

3

10
e−2t

0
3

10
e2t −

3

10
e−2t 9

10
e2t +

1

10
e−2t











.
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While the formula forX0 is not as simple as what we had originally obtained forX , this
more complicated formula will simplify solving

dx
dt

= Ax with x(0) = a .

For example, ifa = [1, 2, 3]T , then

x(t) = [X0(t)]a =











e2t −
3

5
e2t +

3

5
e−2t 1

5
e2t −

1

5
e−2t

0
1

10
e2t +

9

10
e−2t 3

10
e2t −

e

10
e−2t

0
3

10
e2t −

3

10
e−2t 9

10
e2t +

1

10
e−2t



















1

2

3









= · · · =











2

5
e2t +

3

5
e−2t

11

10
e2t +

9

10
e−2t

33

10
e2t −

3

10
e−2t











=
1

10







4

11

33






e2t +

1

10







6

9

3






e−2t .

And if a = [20, 0, 30]T , then

x(t) = [X0(t)]a =











e2t −
3

5
e2t +

3

5
e−2t 1

5
e2t −

1

5
e−2t

0
1

10
e2t +

9

10
e−2t 3

10
e2t −

e

10
e−2t

0
3

10
e2t −

3

10
e−2t 9

10
e2t +

1

10
e−2t



















20

0

30









= · · · =









26e2t − 6e−2t

9e2t − 9e−2t

27e2t + 3e−2t









=







26

9

27






e2t +







−6

−9

3






e−2t .

The Exponential Matrix

Let us now limit ourselves to the cases we’ve been considering in the last few chapters; namely,
where P(t) = A , and A is a constant realN × N matrix. If t0 = 0 , then we would be
particularly interest in the fundamental matrixX = X0 satisfying

X ′ = AX with X(0) = I . (41.3)

Observe the similarity between this initial-value problemand the first-order initial-value problem

x′ = ax with x(0) = 1

wherea is some constant. This is a simple problem with a simple solution:

x(t) = eat .

In analogy to this, we often refer to the solutionX0 of initial-value problem (41.3) as the (matrix)
exponential (ofAt ), writing

X0(t) = eAt = exp(At) .
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We can then write the solution to

dx
dt

= Ax with x(0) = a

as
x(t) = eAta .

More generally, we can define the exponential of anyN×N matrix M by the exponential
Taylor series

eM = exp(M ) =

∞
∑

k=0

M k

k!

where

M 0 = I , M 1 = M , M 2 = MM , M 3 = MMM , . . . . (41.4)

In particular,

eAt = exp(At) =

∞
∑

k=0

Ak

k!
tk . (41.5)

The theory for power series of square matrices is a straightforward extension of the theory for
power series discussed in chapter 30, and we can safely use the “matrix” versions of the results
discussed in 30 (with one warning to be mentioned in a moment). From that, we know the series
for eM converges for every square matrixM . Moreover, for any constantN×N matrix A ,

d

dt

[

∞
∑

k=0

Ak

k!
tk

]

=

∞
∑

k=1

Ak

k!
ktk−1 = A

∞
∑

k=1

Ak−1

(k − 1)!
tk−1 = A

∞
∑

n=0

An

(n)!
tn

So
d

dt

[

eAt
]

= AeAt (41.6)

and

eA0 =

∞
∑

k=0

Ak

k!
0k = A0 = I ,

verifying that the solution to initial-value problem (41.3) is, indeed, given byX0(t) = eAt using
the more general definition of the exponential.

Formula (41.5) provides another way for computing the fundamental matrix satisfying initial-
value problem (41.3). However, unlessA is particularly simple, it may be easier to compute
formula (41.5) for a givenA by solving initial-value problem (41.3) as discussed earlier in this
section.

!◮Example 41.4: Let α be any constant or function oft , and set

P =

[

α 0
0 0

]

and Q =

[

0 α

0 0

]

By basic matrix computations,

P2 =

[

α 0
0 0

] [

α 0
0 0

]

=

[

α2 0
0 0

]

and Q2 =

[

0 α

0 0

] [

0 α

0 0

]

=

[

0 0
0 0

]

.
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Continuing these calculations, we see that

Pk =

[

αk 0
0 0

]

for k = 1, 2, 3, . . . ,

but that

Qk =

[

0 0
0 0

]

= O for k = 2, 3, . . . .

So

eP =

∞
∑

k=0

Pk

k!
= P0 +

∞
∑

k=1

Pk

k!

=

[

1 0
0 1

]

+

∞
∑

k=1

1

k!

[

αk 0
0 0

]

=







∞
∑

k=0

αk

k!
0

0 1






=

[

eα 0
0 1

]

,

while

eQ =

∞
∑

k=0

Qk

k!

=

[

1 0
0 1

]

+
1

1!

[

0 α

0 0

]

+
1

2!

[

0 0
0 0

]

+
1

3!

[

0 0
0 0

]

+ · · · =

[

1 α

0 1

]

.

In exercise 41.4 c, you will extend the computations done in the above exercise foreP to
show that, ifP is any diagonal matrix

P =















r1 0 0 · · · 0
0 r2 0 · · · 0
0 0 r3 · · · 0
...

...
...

. . . . . .

0 0 0 · · · r N















,

then

eP =















er1 0 0 · · · 0
0 er2 0 · · · 0
0 0 er3 · · · 0
...

...
...

. . . . . .

0 0 0 · · · er N















.

However, the above computation ofeQ shows that, in general, the entries in the exponential of
a given matrix are not simply the exponentials of the corresponding entries of the given matrix.

Inverses and Limitations of Matrix Exponentials

In extending the theory of power series to a theory of power series of matrices, it is important to
remember that matrix multiplication is not commutative; that is, AB 6= BA in general. Because
of this, it turns out that the matrix versions of some of the standard exponential identities are not
generally valid. For example, while we knowea+b = eaeb for any two numbersa and b , it can
also be demonstrated that there areN×N matricesA and B such that

eA+B 6= eAeB



Chapter & Page: 41–14 Miscellaneous Topics Involving Homogeneous Constant Matrix Systems

(see exercise 41.5 a). That said, we do have some commutativity that will be helpful in verifying
at least one identity we would hope to hold. From formula (41.5) and the almost trivial fact that

(

Ak
)

A = Ak+1 = A
(

Ak
)

,

you can easily confirm that
eAA = AeA (41.7)

for any square matrixA , and that will help us prove one favorite identity for exponentials:

Lemma 41.2
Let A be any N×N matrix. Then the exponential ofAt , eAt , is invertible, and its inverse is
e−At .

PROOF: Let
X(t) = eAte−At ,

and observe that we can verify this lemma by showing thatX(t) = I for every t .
For t = 0 , this is easy,

X(0) = eA0e−A0 = Ie−A0 = e−A0 = I .

To extend this, we will be computingX ′ using the product rule. But first, observe that, by
equation (41.6)

deAt

dt
e−At =

(

AeAt
)

e−At = A
(

eAte−At
)

= AX ,

and by equations (41.6) and (41.7),

eAt de−At

dt
= eAt

(

−Ae−At
)

= −
(

eAtA
)

e−At = −AeAte−At = −AX .

From this and the product rule, we see that

dX
dt

=
d

dt

[

eAte−At
]

=
deAt

dt
e−At + eAt de−At

dt
= AX − AX = [A − A]X = 0X .

So X is the solution to the initial-value problem

X ′ = 0X with X(0) = I .

But it is trivial to verify that the one solution to this simple initial-value problem is given by
X(t) = I for all t . Thus,

eAte−At = X(t) = I for all t .

Another formula we would probably like to extend is the differentiation formula
(

em(t)
)′

=

em(t)m′(t) , which is valid wheneverm is a differentiable function of one variable. Unfortunately,
this formula does not extend to the matrix exponential. It iseasy to come up with anN × N
matrix M with differentiable elements such that

d

dt

[

eM (t)
]

6= eM (t) dM
dt

and
d

dt

[

eM (t)
]

6=
dM
dt

eM (t)
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(see exercise 41.7 a). The best we can say is that

sometimes
d

dt

[

eM (t)
]

= eM (t) dM
dt

.

For example, from our derivations of formulas (41.6) and (41.7), we know that

d

dt

[

eM (t)
]

= eM (t) dM
dt

if M (t) = At

for a constantN×N matrix A . Other cases for which we can so differentiateeM (t) are described
in exercise 41.7 b.

41.6 Using Similarity Transforms

Two constantN×N matricesA and B are said to be related by asimilarity transformif and
only if there is an invertibleN×N matrix T such that

B = T−1AT . (41.8)

Note that this is completely equivalent to saying

A = TBT−1

(just multiply both sides of equation (41.8) on the left byT and on the right byT−1 ).
Similarity transforms are quite important in linear algebra. For example, from the theory of

linear algebra, we have the following:

Lemma 41.3
Let A be a constantN×N matrix. Then there is an invertible matrixT such that

T−1AT = B

where all the entries ofB are0 except, possibly, for those on the main diagonal and immediately
above the main diagonal. In fact,

B =



















r1 s1 0 0 · · · 0 0
0 r2 s2 0 · · · 0 0
0 0 r2 s3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · r N−1 sN−1

0 0 0 0 · · · 0 r N



















where therk’s are the eigenvalues ofA , and eachsk is either0 or 1 . Moreover:

1. The number of times a particular eigenvalue appears in the main diagonal is equal to the
algebraic multiplicity of that eigenvalue (as an eigenvalue of A ).
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2. A has a complete set of eigenvectors if and only if

sk = 0 for k = 1, 2, . . . , N − 1 .

This lemma tells us that everyN × N matrix is related by a similarity transform to a
particularly simple matrix. To see the importance of that tous, let A and B be two constant
N×N matrices related by

B = T−1AT (equivalently,TBT−1 = A )

for some invertible matrixT . Also let x and y be two vector-valued functions on the real line
related to each other via

y = T−1x (equivalently,Ty = x ) .

Now supposex satisfiesx′ = Ax . Observe that (using the above, the product rule for
matrices, and the fact thatx = Ix = TT−1x ),

y′ =
(

T−1x
)′

= T−1x′ = T−1Ax = T−1A
(

TT−1x
)

=
(

T−1AT
) (

T−1x
)

= By ,

showing thaty satisfies the constant matrix systemy′ = By . And if we had instead assumed
y′ = By , then we would have

x′ = (Ty)′ = Ty ′ = TBy = TBT−1Ty = Ax ,

showing thatx satisfies the constant matrix systemx′ = Ax . And if you then take into account
the fact that, because matrix multiplication is linear,

T
[

c1y1(t) + c2y2(t) + · · · + cNyN(t)
]

= c1Ty1(t) + c2Ty2(t) + · · · + cNTyN(t) ,

you can easily finish proving the next theorem.

Theorem 41.4
Let A and B be two constantN×N matrices related by a similarity transform

B = T−1AT ,

and let
{

x1, x2, . . . , xN
}

and
{

y1, y2, . . . , yN
}

be two sets ofN vector-valued functions on the real line with

xk = Tyk for k = 1, 2, . . . , N .

Then
{

x1, x2, . . . , xN
}

is a fundamental set of solutions forx′ = Ax if and only if

{

y1, y2, . . . , yN
}

is a fundamental set of solutions fory′ = By .
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So, if we can find aT so thatB = T−1AT is of the form described in lemma 41.3, then
we can find a fundamental set of solutions{x1, x2, . . . , xN} for x′ = Ax by first finding a
fundamental set of solutions{y1, y2, . . . , yN} for the much simpler systemy′ = By , and then
setting

yk = T−1xk for k = 1, 2, . . . , N .

Do observe how simple this systemy′ = By is: If A has a complete set of eigenvectors, then
B is diagonal,y′ = By is completely uncoupled, and a fundamental set can be found almost
by inspection. Otherwise, it is still a very simple, “weaklycoupled” system which is still easily
solved.

Doubtlessly, you are wondering how we find that matrixT . Here is part of the answer:

?◮Exercise 41.1: Let A be a constantN × N matrix with a complete set of eigenvectors.
Show the following:

a: If T is as in lemma 41.3, then thekth column ofT is an eigenvector forA corresponding
to rk .

b: Let B = T−1AT where T is any matrix whosekth column is given byuk where
{u1, u2, · · · , uN} is any complete set of eigenvectors forA . ThenB is of the form described
in lemma 41.3.

Thus, to find that matrixT when A has a complete set of eigenvectors, we first need to find
a complete set of eigenvectors forA . And if A does not have a complete set of eigenvectors,
then you can show thatT is constructed from thewk, j ’s described in lemma 40.7 on page 40–18.

This relation between theT in lemma 41.3 and the eigenvectors ofA (or the “wk, j ’s ”
from lemma 40.7) rather lowers the value of similarity transformations as a practical tool for
solving homogeneous constant coefficient systems of differential equations. After all, if we have
already found those vectors, then it is easier to finish solving x′ = Ax via the methods discussed
in the last two chapters. Still, similarity transforms has theoretical value. In fact, lemmas 40.6
and 40.7 in the last chapter are really corollaries of lemma 41.3. In addition, we may find some
use for similarity transformation when dealing with nonhomogeneous constant matrix systems.

Let’s just do one example, and move on to other topics.

!◮Example 41.5: Let us reconsider (again) the system in example 41.3,

x′ = Ax with A =











2 −
12

5

4

5

2 −3 1

0
6

5

8

5











.

We already know thatA has eigenpairs


2 ,





1
1
3







 ,



−2 ,





2
3

−1







 and



2 ,





3
1
3









with the three above eigenvectors forming a complete set of eigenvectors forA . So it imme-
diately follows that











1
1
3



 e2t ,





2
3

−1



 e−2t ,





3
1
3



 e2t









Chapter & Page: 41–18 Miscellaneous Topics Involving Homogeneous Constant Matrix Systems

is a fundamental set of solutions forx′ = Ax , and

X(t) = X(t) =







e2t 2e−2t 3e2t

e2t 3e−2t e2t

3e2t −e−2t 3e2t







is the corresponding fundamental matrix.
Ignoring the fact that we can so readily find the solutions from the eigenpairs ofA let’s

find the matrixT using the above eigenvectors,

T =







1 2 3

1 3 1

3 −1 3






.

(Observe that, in this case at least,T = X(0) !) Computing the inverse ofT however you
wish, you will find that

T−1 =







1 2 3

1 3 1

3 −1 3







−1

= · · · =
1

20







−10 9 7

0 6 −2

10 −7 −1







So,

B = T−1AT

=
1

20







−10 9 7

0 6 −2

10 −7 −1

















2 −
12

5

4

5

2 −3 1

0
6

5

8

5

















1 2 3

1 3 1

3 −1 3






= · · · =







2 0 0

0 −2 0

0 0 2







Clearly B has eigenpairs



2 ,





1
0
0







 ,



−2 ,





0
1
0







 and



2 ,





0
0
1









with the three above eigenvectors forming a complete set of eigenvectors forB . Hence, a
fundamental set of solutions fory′ = By is

{

y1, y2, y3
}

with

y1(t) =





1
0
0



 e2t , y2(t) =





0
1
0



 e2t and y3(t) =





0
0
1



 e2t .

Theorem 41.4 now assures us that a fundamental set of solution to x′ = Ax is
{

x1, x2, x3
}

with

x1(t) = Ty1(t) =







1 2 3

1 3 1

3 −1 3













1

0

0






e2t =







1

1

3






e2t ,
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x2(t) = Ty1(t) =







1 2 3

1 3 1

3 −1 3













0

1

0






e−2t =







2

3

−1






e−2t

and

x3(t) = Ty3(t) =







1 2 3

1 3 1

3 −1 3













0

0

1






e2t =







3

1

3






e2t ,

just as we had noted near the start of this example.

41.7 Euler Systems
What Is An Euler System?

We will refer to anyN×N system of differential equations as anEuler system if it can be given
by

dx
dt

=
1

t
Ax for 0 < t < ∞

whereA is constantN×N matrix with real components. Such a system is a natural first-order
system extension of the Euler equations discussed in chapter 19 (see exercises 36.11 and 36.12
on page 36.11). As with the Euler equations, the domains of our solutions will not includet = 0 .
For convenience, we will insist that 0< t < ∞ .

Our interest in Euler systems is mainly so that we can have systems that we can ‘easily’
solve other than constant matrix systems. And Euler systemscan be solved just as easily as
constant matrix systems. In fact, with only a few hints, you should be able to figure out how
to solve Euler systems by building on what you know about Euler equations and what we’ve
learned about solving constant matrix systems.

Direction Fields and Trajectories

Do observe that an Euler system is a homogeneous linear system, but, because of the1/t factor,
it is not an autonomous system. So the “velocity”x′(t) of a solution as it goes through a given
position will depend both on that position and on when (i.e.,t ) it goes through that point. Still,
as illustrated in the next example, changes int only affects the magnitude ofx′(t) , not its
direction. Consequently, as we’ll see, we can still construct a direction field for an Euler system
that does not depend ont .

!◮Example 41.6: Let consider the direction arrows at various points on theXY–plane for
both

dx
dt

=
1

t
Ax and

dx
dt

= Ax with A =
1

2

[

5 −3

3 −5

]

.

The first is an Euler system, while the second is a constant matrix system.
Clearly, x(t) = 0 is a constant solution for each.
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Now, let xE(t) andxC M be solutions to the Euler system and the constant matrix system,
respectively, that satisfy

xE(t0) =

[

1

2

]

and xC M(t0) =

[

1

2

]

for somet0 > 0 .
For the constant matrix system, the direction arrow that we would sketch at(1, 2) would

be a short arrow in the same direction as

dxC M

dt

∣

∣

∣

∣

t=t0

=
1

2

[

5 −3
3 −5

]

[

1

2

]

=
1

2

[

−1

−7

]

,

which, as should be expected, does not depend ont0 .
However, for the Euler system, the direction arrow that we would sketch at(1, 2) would

be a short arrow in the same direction as

dxE

dt

∣

∣

∣

∣

t=t0

=
1

2t0

[

5 −3

3 −5

][

1

2

]

=
1

2t0

[

−1

−7

]

,

which does depend ont0 , but only very simple manner: Its dependence is in a factor that
scales the vector by some positive quantity. But that does not affect the direction. In fact,

dxE

dt

∣

∣

∣

∣

t=t0

=
1

t0

dxC M

dt

∣

∣

∣

∣

t=t0

.

So, the direction arrow of the Euler system at(x, y) = (1, 2)

1. does not change witht , and

2. is the same as the direction arrow at(x, y) = (1, 2) for the constant matrix system.

Of course, there was nothing special about the point(1, 2) . If (x0, y0) is any point on the
XY–plane, andxE(t) and xC M(t) are solutions to the Euler system and the constant matrix
system, respectively, that satisfy

xE(t0) =

[

x0

y0

]

and xC M(t0) =

[

x0

y0

]

for somet0 > 0 . Then

dxE

dt

∣

∣

∣

∣

t=t0

=
1

2t0

[

5 −3

3 −5

][

x0

y0

]

=
1

t0

dxC M

dt

∣

∣

∣

∣

t=t0

,

telling us that the direction arrow of the Euler system at(x0, y0)

1. does not change witht , and

2. is the same as the direction arrow at(x0, y0) for the constant matrix system.
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X

Y

1

1

2

2

3

3

−1

−1

−2

−2

−3

−3

Figure 41.3: A direction field and some trajectories for the Euler system in example 41.6.

Thus, we can construct a well-defined direction field for our Euler system, and this direction
field

1. does not change witht , and

2. is also a direction field for the above constant matrix system.

Moreover, since the trajectories of the solutions can be determined from the direction field,
the trajectories of the solutions to the above Euler system

1. do not vary witht , and

2. are the same as the trajectories for the above constant matrix system.

A direction field for our Euler system, along with a few trajectories have been sketched in
figure 41.3.

It should be clear that the observations made in the example hold for any Euler system. In
summary:

Lemma 41.5
Let A be a constantN×N matrix with real components. Then direction fields and trajectories
for the Euler system

dx
dt

=
1

t
Ax for 0 < t < ∞

are well-defined and do not depend ont . Moreover these direction fields and trajectories are
also direction fields and trajectories for the constant matrix system

dx
dt

= Ax for 0 < t < ∞ .

Keep in mind, however, that the trajectories of an Euler system are traced out by the solutions
as t goes from 0 to∞ , unlike the trajectories of a constant matrix system that are traced out
by the solutions ast goes from−∞ to ∞ .
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Solving Euler Systems

Our solving of a constant matrix system began with the derivation that x(t) = uer t satisfies
x′ = Ax if (r, u) is an eigenpair forA , and theer t factor in this solution was inspired by the
basic solutions to the linear homogeneous differential equations with constant coefficients. From
our study of Euler equations in chapter 19 you probably suspect that, for Euler systems, we will
want to uset r instead ofer t . Well, you are correct.

Theorem 41.6
Let A be a constantN×N matrix with real components. If(r, u) is an eigenpair forA , then
x(t) = ut r is a solution to the Euler system

dx
dt

=
1

t
Ax for 0 < t < ∞ .

?◮Exercise 41.2: Verify the above theorem.

As an immediate corollary, we have:

Corollary 41.7
Let A be a constantN × N matrix with real components. AssumeA has a complete set of
eigenvectors{u1, u2, . . . , uN} , and, fork = 1, 2, . . . , N , let rk be the eigenvalue corresponding
to uk . Then the Euler system

dx
dt

=
1

t
Ax for 0 < t < ∞

has
{

u1t r1, u2t r2, · · · , uN t r N
}

as a fundamental set of solutions, and

x(t) = c1u1t r1 + c2u2t r2 + · · · + cNuNt r N

as a general solution.

!◮Example 41.7: You can easily verify that
(

−2 ,

[

1
3

])

and
(

2 ,

[

3
1

])

are eigenpairs for the matrix

A =
1

2

[

5 −3

3 −5

]

.

So, according to the above, the Euler system

dx
dt

=
1

t
Ax

has
{

x1(t), x2(t)
}

=

{[

1
3

]

t−2 ,

[

3
1

]

t2

}
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as a fundamental set of solutions, and

x(t) = c1

[

1
3

]

t−2 + c2

[

3
1

]

t2

as a general solution.
In addition, from this fundamental set of solutions, we can construct the corresponding

fundamental matrix for the Euler system,

X(t) =

[

t−2 3t2

3t−2 t2

]

and the fundamental matrixX0 that also satisfiesX0(1) = I is

X0(t) = [X(t)][X(1)]−1

=

[

t−2 3t2

3t−2 t2

]





[

1 3

3 1

]−1




=

[

t−2 3t2

3t−2 t2

](

1

8

[

−1 3

3 −1

])

=
1

8

[

−t−2 + 9t2 3t−2 − 3t2

−3t−2 + 3t2 9t−2 − t2

]

.

As with the constant matrix systems, there are two particular complications that may
arise:

1. One is thatA may have a complex eigenvaluer . If so, then taking the real and imaginary
parts of the corresponding solutionut r will yield real-valued solutions to the Euler
system, just as taking the real and imaginary parts of solutions of the formuer t yielded
real-valued solutions to the constant matrix system in section 40.1.

2. The other is thatA might not have a complete set of eigenvectors. If so, then an adaptation
of the development discussed in sections 40.3 and 40.5 is in order.

The details will be left to the interested reader.

Additional Exercises

Exercises for section 41.1 TBW
Exercises for section 41.2 TBW
Exercises for section 41.3 TBW

41.3. AssumeA is 2×2 constant matrix with real components, and let

r1 = λ1 + iω and r2 = λ2 − iω

be approximations of the true eigenvalues, withλ1 = λ2 if ω 6= 0 and r1 ≤ r2 if
ω = 0 . Assume each computedλ and ω is known to be “within ǫ ” of the true
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value, whereǫ is some (hopefully small) positive value. To simplify notation, r1 ≈ r0

or ω ≈ 0 means these computed values are close enough that it is possible for the
corresponding equalities to hold for the true values.

Several choices forr1 andr2 are given in each of the following. For each, state what
these eigenvalues tell you about the critical point(0, 0) , the stability of the equilibrium
solution x(t) ≡ 0 and the phase portraits forx′ = Ax both assuming the computed
eigenvalues are correct, and for all the other possible values of the eigenvalues (see the
discussion ofPhase Portraits for Imprecisely Known Systems).

a. r1 < r2 < −ǫ with r1 6≈ r2

b. r1 < r2 < −ǫ with r1 ≈ r2

c. r1 < −ǫ and ǫ < r2

d. λ = 0 and ǫ < ω

e. r1 ≈ 0 and r2 ≈ 0

41.4. In the following, you will compute matrix exponentials using “basic definitions”. When
they appear,a , b and c denote arbitrary numbers or functions. (Note: Some of your
results will be used in later exercises.)

a. ComputeeM for each of the following choices ofM , using formula either (41.4) or
formula (41.5):

i.
[

2t 0
0 3t

]

ii.
[

a 0
0 b

]

iii.
[

0 a
0 0

]

iv.
[

0 0
b 0

]

v.
[

1 t
0 0

]

vi.
[

t 1
0 0

]

b. By solving the appropriate initial-value problem, findeAt for each of the following
choices ofA :

i.
[

2 0
0 3

]

ii.
[

0 1
1 0

]

iii.
[

? ?
? ?

]

c. Show that

eM =















er1 0 0 · · · 0
0 er2 0 · · · 0
0 0 er3 · · · 0
...

...
...

. . .
...

0 0 0 · · · er N















when M =















r1 0 0 · · · 0
0 r2 0 · · · 0
0 0 r3 · · · 0
...

...
...

. . .
...

0 0 0 · · · r N















.

41.5. In the following, we will explore the validity (and NONvalidity) of the identityeA+B =

eAeB .

a. Let

A =

[

0 1
0 0

]

and B =

[

0 0
1 0

]

i. Using results from exercise 41.4, computeeA , eB and eA+B .
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ii. By direct computation, show that

eAeB 6= eBeA , eAeB 6= eA+B and eBeA 6= eA+B .

for the above choices forA and B .

b. Now assumeA and B are any twoN×N matrices that commute; that is,A and B
satisfy AB = BA .

i. Using series formula (41.5) foreAt and the fact thatAB = BA , show that

BeAt = eAtB .

ii. Show that
eA+B = eAeB (41.9)

by verifying thatX(t) = eAteBt satisfies

dX
dt

= [A + B]X with X(0) = I .

Be sure to explain why this verification also confirms that equality (41.9) holds.
(Hint: Take a look at the proof of lemma 41.2 on page 41–14.)

41.6. In these exercises, we will explore the validity (and NONvalidity) of a standard differ-
entiation formula.

a. Let

M (t) =

[

1 t
0 0

]

,

and verify, by direct computation, the following:

i. M
dM
dt

6=
dM
dt

M ii.
d

dt

[

M 2
]

6= 2M
dM
dt

iii.
d

dt

[

M 2
]

6= 2
dM
dt

M

b. Now let M (t) be any N×N matrix of differentiable functions that commutes with
its derivative,MM ′ = M ′M . Show that, in this case,

i.
d

dt

[

M 2
]

= 2M
dM
dt

.

ii.
d

dt

[

M k
]

= k
dM
dt

M k−1 for k = 2, 3, . . . .

41.7. In these exercises, we will explore the validity (and NONvalidity) of another standard
differentiation formula.

a. In exercise 41.4 you foundeM (t) when

M (t) =

[

1 t
0 0

]

.

Now verify, by direct computation, that

d

dt

[

eM (t)
]

6= eM (t) dM
dt

and
d

dt

[

eM (t)
]

6=
dM
dt

eM (t)

when M is as above.
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b. Now verify that

d

dt

[

eM (t)
]

= eM (t) dM
dt

and
d

dt

[

eM (t)
]

=
dM
dt

eM (t)

when

i. M and M ′ commute (Hint: See exercise 41.6 b ).

ii. M (t) = A f (t) for some constantN×N matrix A and some differentiable function
f .

Exercises for section 41.6 TBW

Exercises for section 41.7 TBW
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They
have not been properly proofread! Errors are likely!

4a i.
[

e2t 0
0 e3t

]

4a ii.
[

e2t 0
0 e3t

]

4a iii.
[

1 a
0 1

]

4a iv.
[

1 0
b 1

]

4a v.
[

e t(e− 1)

0 1

]

4a vi.
[

et t−1(et − 1)

0 1

]

4b i.
[

e2 0
0 e3

]

4b ii.
[

? ?
? ?

]

4b iii.
[

? ?
? ?

]


