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Power Series Solutions II:
Generalizations and Theory

A major goal in this chapter is to confirm the claims made in theorems 31.2 and 31.6 regarding the

validity of the algebraic method. Along the way, we will also expand both the set of differential

equations for which this method can be considered and our definitions of “regular” and “singular”

points. As a bonus, we’ll also obtain formulas that, at least in some cases, can simplify the

computation of the terms of the power series solutions.

32.1 Equations with Analytic Coefficients

In the previous chapter, we discussed an algebraic method for finding a general power series

solution about a point x0 to any differential equation of the form

A(x)y′ + B(x)y = 0 or A(x)y′′ + B(x)y′ + C(x)y = 0

where A(x) , B(x) and C(x) are polynomials with A(x0) 6= 0 . Note that these polynomials

can be written as

A(x) =
N
∑

k=0

ak(x − x0)
k with a0 6= 0 ,

B(x) =
N
∑

k=0

bk(x − x0)
k and C(x) =

N
∑

k=0

ck(x − x0)
k

where N is the highest power appearing in these polynomials. Now, I know just what you are

wondering: Must N be finite? Or will our algebraic method still work if N = ∞ ? That is, can

we use our algebraic method to find power series solutions about x0 to

A(x)y′ + B(x)y = 0 and A(x)y′′ + B(x)y′ + C(x)y = 0

when A(x) , B(x) and C(x) are functions expressible as power series about x0 (i.e., when A ,

B and C are functions analytic at x0 ), with A(x0) 6= 0 .

And the answer to this question is yes, at least in theory. Simply replace the coefficients in

the differential equations with their power series about x0 , and follow the steps already outlined
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in sections 31.2 and 31.4 (possibly using the formula from theorem 30.7 on page 30–12 for

multiplying infinite series).

There are, of course, some further questions you are bound to be asking regarding these

power series solutions and the finding of them. In particular:

1. What will be the radii of convergence for the resulting power series solutions?

and

2. Are there any shortcuts to what could clearly be a rather lengthy and tedious set of

calculations.

For the answers, read on.

32.2 Ordinary and Singular Points, the Radius of
Analyticity, and the Reduced Form

Introducing Complex Variables

To properly address at least one of our questions, and to simplify the statements of our theorems,

it will help to start viewing the coefficients of our differential equations as functions of a complex

variable z . We actually did this in the last chapter when we referred to a point zs in the complex

plane for which A(zs) = 0 . But A was a polynomial then, and viewing polynomials as functions

of a complex variable is so easy that we hardly noted doing so. Viewing other functions (such

as exponentials, logarithms and trigonometric functions) as functions of a complex variable may

be a bit more challenging.

Analyticity and Power Series

Let us start by recalling that we need not restrict the variable or the center in a power series to

real values — they can be complex,

∞
∑

k=0

ak(z − z0)
k for |z − z0| < R ,

in which case the radius of convergence R is the radius of the largest open disk in the complex

plane centered at z0 on which the power series is convergent.1

Also recall that our definition of analyticity also applies to functions with complex variables;

that is, any function f of the complex variable z is analytic at a point z0 in the complex plane

if and only if f (z) can be expressed as a power series about z0 ,

f (z) =
∞
∑

k=0

ak(z − z0)
k for |z − z0| < R

for some R > 0 . Moreover, as also noted in section 30.3, if f is any function of a real variable

given by a power series on the interval (x0 − R, x0 + R) ,

f (x) =
∞
∑

k=0

ak(x − x0)
k ,

1 If you don’t recall this, quickly review section 30.3.
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then we can view this function as a function of the complex variable z = x + iy on a disk of

radius R about x0 by simply replacing the real variable x with the complex variable z ,

f (z) =
∞
∑

k=0

ak(z − x0)
k .

We will do this automatically in all that follows.

By the way, do observe that, if

lim
z→z0

| f (z)| = ∞ ,

then f certainly is not analytic at z0 !

Some Results from Complex Analysis

Useful insights regarding analytic functions can be gained from the theory normally developed

in an introductory course on “complex analysis”. Sadly, we do not have the time or space to

properly develop that theory here. As an alternative, a brief overview of the relevant parts of that

theory is given for the interested reader in an appendix near the end of this chapter (section 32.6).

From that appendix, we get the following two lemmas (both of which should seem reasonable):

Lemma 32.1

Assume F is a function analytic at z0 with corresponding power series
∑∞

k=0 fk(z − z0)
k , and

let R be either some positive value or +∞ . Then

F(z) =
∞
∑

k=0

fk(z − z0)
k whenever |z − z0| < R

if and only if F is analytic at every complex point z satisfying

|z − z0| < R .

Lemma 32.2

Assume F(z) and A(z) are two functions analytic at a point z0 . Then the quotient F/A is also

analytic at z0 if and only if

lim
z→z0

F(z)

A(x)

is finite.

Ordinary and Singular Points

Let z0 be a point on the complex plane, and let a , b and c be functions suitably defined on the

complex plane. We will say that z0 is an ordinary point for the first-order differential equation

a(x)y′ + b(x)y = 0

if and only if the quotient
b(z)

a(z)
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is analytic at z0 . And we will say that z0 is an ordinary point for the second-order differential

equation

a(x)y′′ + b(x)y′ + c(x)y = 0

if and only if the quotients
b(z)

a(z)
and

c(z)

a(z)

are both analytic at z0 .

Any point that is not an ordinary point (that is, any point at which the above quotients are

not analytic) is called a singular point for the differential equation.

Using lemma 32.2, you can easily verify the following shortcuts for determining whether

a point is a singular or ordinary point for a given differential equation. You can then use these

lemmas to verify that our new definitions reduce to those given in the last chapter when the

coefficients of our differential equation are rational functions.

Lemma 32.3

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′ + b(x)y = 0

where a and b are functions analytic at z0 . Then

1. If a(z0) 6= 0 , then z0 is an ordinary point for the differential equation.

2. If a(z0) = 0 and b(z0) 6= 0 , then z0 is a singular point for the differential equation.

3. The point z0 is an ordinary point for this differential equation if and only if

lim
z→z0

b(z)

a(z)

is finite.

Lemma 32.4

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are functions analytic at z0 . Then:

1. If a(z0) 6= 0 , then z0 is an ordinary point for the differential equation.

2. If a(z0) = 0 , and either b(z0) 6= 0 or c(z0) 6= 0 , then z0 is a singular point for the

differential equation.

3. The point z0 is an ordinary point for this differential equation if and only if

lim
z→z0

b(z)

a(z)
and lim

z→z0

c(z)

a(z)

are both finite.
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!◮Example 32.1: Consider the two differential equations

y′′ + sin(x) y = 0 and sin(x) y′′ + y = 0 .

We know that the sine function is analytic at every point on the complex plane, and that

sin(z) = 0 if z = nπ with n = 0, ±1, ±2, . . . .

Moreover, it’s not hard to show (see exercise 32.4) that the above points are the only points in

the complex plane at which the cosine is zero.

What this means is that both coefficients of

y′′ + sin(x) y = 0

are analytic everywhere, with the first coefficient (which is simply the constant 1 ) never being

zero. Thus, lemma 32.4 assures us that every point in the complex plane is an ordinary point

for this differential equation. It has no singular points.

On the other hand, while both coefficients of

sin(x) y′′ + 5y = 0

are analytic everywhere, the first coefficient is zero at z0 = 0 (and every other integral multiple

of π ). Since the second coefficient (again, the constant 1 ) is not zero at z0 = 0 , lemma

32.4 tells us that z0 = 0 (and every other integral multiple of π ) is a singular point for this

differential equation.

Radius of Analyticity
The Definition, Recycled

Why waste a perfectly good definition? Given

a(x)y′ + b(x)y = 0 or a(x)y′′ + b(x)y′ + c(x)y = 0

we define the radius of analyticity (for the differential equation) about any given point z0 to be

the distance between z0 and the singular point closest to z0 , unless the differential equation has

no singular points, in which case we define the radius of analyticity to be +∞ .

This is precisely the same definition as given (twice) in the previous chapter.

Is the Radius Well Defined?

When the coefficients of our differential equations were just polynomials, it should have been

obvious that there really was a “singular point closest to z0 ” (provided the equation had singular

points). But a cynical reader — especially one who has seen some advanced analysis — may

wonder if such a singular point always exists with our more general equations, or if, instead,

a devious mathematician could construct a differential equation with an infinite set of singular

points, none of which are closest to the given ordinary point. Don’t worry, no mathematician is

devious enough.
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Lemma 32.5

Let z0 be an ordinary point for some first- or second-order linear homogeneous differential

equation. Then, if the differential equation has singular points, there is at least one singular point

zs such that no other singular point is closer to z0 .

The zs in this lemma is a “singular point closest to z0 ”. There may, in fact, be other singular

points at the same distance from z0 , but none closer. Anyway, this ensures that “the radius of

analyticity” for a given differential equation about a given point is well defined.

The proof of lemma 32.5 is subtle, and is discussed in an appendix (section 32.7).

32.3 The Reduced Forms
A Standard Way to Rewrite Our Equations

There is some benefit in dividing a given differential equation

ay′ + by = 0 or ay′′ + by′ + cy = 0

by the equation’s leading coefficient, obtaining the equation’s corresponding reduced form2

y′ + Py = 0 or y′′ + Py′ + Qy = 0

(with P = b/a and Q = c/a ). For one thing, it may reduce the number of products of infinite

series to be computed. In addition, it will allow us to use the generic recursion formulas that

we will be deriving in a little bit. However, the advantages of using the reduced form depends

somewhat on the ease in finding and using the power series for P (and, in the second-order case,

for Q ). If the differential equation can be written as

Ay′ + By = 0 or Ay′′ + By′ + Cy = 0

where the coefficients are given by relatively simple known power series, then the extra effort in

finding and using the power series for the coefficients of the corresponding reduced equations

y′ + Py = 0 or y′′ + Py′ + Qy = 0

may out-weigh any supposed advantages of using these reduced forms. In particular, if A , B

and C are all relatively simple polynomials (with A not being a constant), then dividing

Ay′′ + By′ + Cy = 0

by A is unlikely to simplify your computations — don’t do it unless ordered to do so in an

exercise.

2 also called the normal form by some authors
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Ordinary Points and the Reduced Form

The next two lemmas will be important in deriving the general formulas for power series solutions.

However, they follow almost immediately from lemma 32.1 along with the definitions of “reduced

form”, “regular and singular points”, “radius of convergence” and “analyticity at z0 ”.

Lemma 32.6

Let

ay′ + by = 0

have reduced form

y′ + Py = 0 .

Then z0 is an ordinary point for this differential equation if and only if P is analytic at z0 .

Moreover, if z0 is an ordinary point, then P has a power series representation

P(z) =
∞
∑

k=0

pk(z − z0)
k for |z − z0| < R

where R is the radius of analyticity for this differential equation about z0 .

Lemma 32.7

Let

ay′′ + by′ + cy = 0

have reduced form

y′′ + Py′ + Qy = 0 .

Then z0 is an ordinary point for this differential equation if and only if both P and Q are analytic

at z0 . Moreover, if z0 is an ordinary point, then P and Q have power series representations

P(z) =
∞
∑

k=0

pk(z − z0)
k for |z − z0| < R

and

Q(z) =
∞
∑

k=0

qk(z − z0)
k for |z − z0| < R .

where R is the radius of analyticity for this differential equation about z0 .
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32.4 Existence of Power Series Solutions
Generic Recursion Formulas
First-Order Case

For the moment, let’s assume power series solutions exist, and consider finding the general power

series solution to

y′ + Py = 0

about x0 = 0 when P is analytic at x0 = 0 . This analyticity means P has a power series

representation

P(x) =
∞
∑

k=0

pk xk for |x | < R

for some R > 0 . We’ll assume that this series and a value for R are known.

Proceeding with the method described in section 31.2, we set

y(x) =
∞
∑

k=0

ak xk ,

compute y′ , plug into the differential equation, and “compute” (using the above series for P

and the formula for series multiplication from theorem 30.7 on page 30–12):

y′ + Py = 0

→֒
∞
∑

k=1

kak xk−1 +

( ∞
∑

k=0

ak xk

)( ∞
∑

k=0

pk xk

)

= 0

→֒
∞
∑

k=1

kak xk−1

︸ ︷︷ ︸

n = k−1

+
∞
∑

k=0

[ k
∑

j=0

a j pk− j

]

xk

︸ ︷︷ ︸

n = k

= 0

→֒
∞
∑

n=0

(n + 1)an+1xn +
∞
∑

n=0

[ n
∑

j=0

a j pn− j

]

xn = 0

→֒
∞
∑

n=0

[

(n + 1)an+1 +
n
∑

j=0

a j pn− j

]

xn = 0 .

Thus,

(n + 1)an+1 +
n
∑

j=0

a j pn− j = 0 for n = 0, 1, 2, . . . .

Solving for an+1 and letting k = n + 1 gives us

ak = −1

k

k−1
∑

j=0

a j pk−1− j for k = 1, 2, 3, . . . . (32.1)

Of course, we would have obtained the same recursion formula with x0 being any ordinary point

for the given differential equation (just replace x in the above computations with X = x − x0 ).
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Second-Order Case

We will leave this derivation as an exercise.

?◮Exercise 32.1: Assume that, over some interval containing the point x0 , P and Q are

functions given by power series

P(x) =
∞
∑

k=0

pk(x − x0)
k and Q(x) =

∞
∑

k=0

qk(x − x0)
k ,

and derive the recursion formula

ak = − 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)a j+1 pk−2− j + a j qk−2− j

]

(32.2)

for the series solution

y(x) =
∞
∑

k=0

ak(x − x0)
k

to

y′′ + Py′ + Qy = 0 .

(For simplicity, start with the case in which x0 = 0 .)

Validity of the Power Series Solutions

Here are the big theorems on the existence of power series solutions. They are also theorems on

the computation of these solutions since they contain the recursion formulas just derived.

Theorem 32.8 (first-order series solutions)

Suppose x0 is an ordinary point for a first-order homogeneous differential equation whose

reduced form is

y′ + Py = 0 .

Then P has a power series representation

P(x) =
∞
∑

k=0

pk(x − x0)
k for |x − x0| < R

where R is the radius of analyticity about x0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(x) =
∞
∑

k=0

ak(x − x0)
k for |x − x0| < R

where a0 is arbitrary, and the other ak’s satisfy the recursion formula

ak = −1

k

k−1
∑

j=0

a j pk−1− j . (32.3)
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Theorem 32.9 (second-order series solutions)

Suppose x0 is an ordinary point for a second-order homogeneous differential equation whose

reduced form is

y′′ + Py′ + Qy = 0 .

Then P and Q have power series representations

P(x) =
∞
∑

k=0

pk(x − x0)
k for |x − x0| < R

and

Q(x) =
∞
∑

k=0

qk(x − x0)
k for |x − x0| < R

where R is the radius of analyticity about x0 for this differential equation.

Moreover, a general solution to the differential equation is given by

y(x) =
∞
∑

k=0

ak(x − x0)
k for |x − x0| < R

where a0 and a1 are arbitrary, and the other ak’s satisfy the recursion formula

ak = − 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)a j+1 pk−2− j + a j qk−2− j

]

. (32.4)

There are four major parts to the proof of each of these theorems:

1. Deriving the recursion formula. (Done!)

2. Assuring ourselves that the coefficient functions in the reduced forms have the stated

power series representations. (Done! See lemmas 32.6 and 32.6.)

3. Verifying that the radius of convergence for the power series generated from the given

recursion formula is at least R .

4. Noting that the calculations used to obtain each recursion formula also confirm that

the resulting series is the solution to the given differential equation over the interval

(x0 − R, x0 + R) . (So noted!)

Thus, all that remains to proving these two major theorems to verify the claimed radii of con-

vergence for the given series solutions. This verification is not difficult, but is a bit lengthy and

technical, and may not be as exciting to the reader as was the derivation of the recursion formulas.

Those who are interested should proceed to section 32.5.

But now, let us try using our new theorems.

!◮Example 32.2: Consider, again, the differential equation from example 31.7 on page 31–33,

y′′ + cos(x)y = 0 .

Again, let us try to find at least a partial sum of the general power series solution about x0 = 0 .

This time, however, we will use the results from theorem 32.9.
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The equation is already in reduced form

y′′ + Py′ + Qy = 0

with P(x) = 0 and Q(x) = cos(x) . Since both of these functions are analytic on the entire

complex plane, the theorem assures us that there is a general power series solution

y(x) =
∞
∑

k=0

ak xk for |x | < ∞

with a0 and a1 being arbitrary, and with the other ak’s being given through recursion for-

mula (32.4). And to use this recursion formula, we need the corresponding power series

representations for P and Q . The series for P , of course, is trivial,

P(x) = 0 ⇐⇒ P(x) =
∞
∑

k=0

pk xk with pk = 0 for all k .

Fortunately, the power series for Q is well-known, and only needs to be slightly rewritten for

use in our recursion formula:

Q(x) = cos(x)

=
∞
∑

m=0

(−1)m 1

(2m)!
x2m

= 1 − 1

2!
x2 + 1

4!
x4 − 1

6!
x6 + · · ·

= (−1)
0/2x0 + 0x1 + (−1)

2/2
1

2!
x2 + 0x3

+ (−1)
4/2

1

4!
x4 + 0x5 + (−1)

6/2
1

6!
x6 + 0x7 + · · · .

That is,

Q(x) =
∞
∑

k=0

qk xk with qk =
{

(−1)
k/2

1

k!
if k is even

0 if k is odd
.

Using the above with recursion formula (32.4) gives us, for k ≥ 2 ,

ak = − 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)a j+1 pk−2− j
︸ ︷︷ ︸

0

+ a j qk−2− j

]

= − 1

k(k − 1)

k−2
∑

j=0

a j







(−1)
(k−2− j)/2

1

(k − 2 − j)!
if k − 2 − j is even

0 if k − 2 − j is odd






,

which simplifies, slightly, to

ak = 1

k(k − 1)

k−2
∑

j=0

a j







(−1)
(k− j)/2

1

(k − 2 − j)!
if k − j is even

0 if k − j is odd






.
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Repeatedly using this formula, we see that

a2 = 1

2(2 − 1)

2−2
∑

j=0

a j







(−1)
(2− j)/2

1

(2 − 2 − j)!
if 2 − j is even

0 if 2 − j is odd







= 1

2
a0







(−1)
(2−0)/2

1

(2 − 2 − 0)!
if 2 − 0 is even

0 if 2 − 0 is odd







= 1

2
a0{−1}

= −1

2
a0 ,

a3 = 1

3(3 − 1)

3−2
∑

j=0

a j







(−1)
(3− j)/2

1

(3 − 2 − j)!
if 3 − j is even

0 if 3 − j is odd







= 1

3 · 2



a0







(−1)
(3−0)/2

1

(3 − 2 − 0)!
if 3 − 0 is even

0 if 3 − 0 is odd







+ a1







(−1)
(3−1)/2

1

(3 − 2 − 1)!
if 3 − 1 is even

0 if 3 − 1 is odd











= 1

3 · 2
[a0 · 0 + a1(−1)]

= − 1

3 · 2
a1 ,

a4 = 1

4(4 − 1)

4−2
∑

j=0

a j







(−1)
(4− j)/2

1

(4 − 2 − j)!
if 4 − j is even

0 if 4 − j is odd







= 1

4 · 3



a0







(−1)
(4−0)/2

1

(4 − 2 − 0)!
if 4 − 0 is even

0 if 4 − 0 is odd







+ a1







(−1)
(4−1)/2

1

(4 − 2 − 1)!
if 4 − 1 is even

0 if 4 − 1 is odd







+ a2







(−1)
(4−2)/2

1

(4 − 2 − 2)!
if 4 − 2 is even

0 if 4 − 2 is odd











= 1

4 · 3

[

a0

1

2!
+ 0 − a2

]
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= 1

4 · 3

[
1

2
a0 + 0 −

(

− 1

2
a0

)]

= 2

4!
a0 ,

a5 = 1

5(5 − 1)

5−2
∑

j=0

a j







(−1)
(5− j)/2

1

(5 − 2 − j)!
if 5 − j is even

0 if 5 − j is odd







= 1

5 · 4



a0







(−1)
(5−0)/2

1

(5 − 2 − 0)!
if 5 − 0 is even

0 if 5 − 0 is odd







+ · · ·

+ a3







(−1)
(5−3)/2

1

(5 − 2 − 3)!
if 5 − 3 is even

0 if 5 − 3 is odd











= 1

5 · 4

[

a0 · 0 + a1 · 1

2
+ a2 · 0 + a3(−1)

]

= 1

5 · 4

[

0 + 1

2
a1 + 0 −

(

− 1

3 · 2
a1

)]

= 4

5!
a1 ,

and

a6 = 1

6(6 − 1)

6−2
∑

j=0

a j







(−1)
(6− j)/2

1

(6 − 2 − j)!
if 6 − j is even

0 if 6 − j is odd







= · · ·

= 1

6 · 5

[

− 1

4!
a0 + 0a1 + 1

2!
a2 + 0a3 − a4

]

= 1

6 · 5

[

− 1

4!
a0 + 0 + 1

2!

(

− 1

2
a0

)

+ 0 −
(

2

4!
a0

)]

= − 9

6!
a0 .

Thus, the sixth partial sum of the power series for y about 0 is

S6(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6

= a0 + a1x + −a0

2
x2 + −a1

3!
x3 + 2a0

4!
x4 + 4a1

5!
x5 + −9a0

6!
x6

= a0

[

1 − 1

2
x2 + 1

12
x4 − 1

80
x6

]

+ a1

[

x − 1

6
x3 + 1

30
x5

]

,

just as we had found, using the Taylor series method, in example 31.7 on page 31–33.

If you compare the work done in the last example with the work done in example 31.7, it

may appear that, while we obtained identical results, we expended much more work in using
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the recursion formula from theorem 32.9 than in using the Taylor series method. On the other

hand, all the computations done in the last example were fairly simple arithmetic computations

— computations that we could have easily programmed a computer to do. So there can be

computational advantages to using our new results.

You also certainly noticed that a few computations were skipped over. You do them.

?◮Exercise 32.2: Fill in the missing details in the computations of a5 and a6 in the last

example.

32.5 The Radius of Convergence for the Solution
Series

To finish our proofs of theorems 32.9 and 32.8, we need to verify that the radius of convergence

for each of the given series solutions is at least the given value for R . We will do this for the

solution series in theorem 32.9, and leave the corresponding verification for theorem 32.8 (which

will be slightly easier) as an exercise.

What We Have, and What We Need to Show

Recall: We have a positive value R and two power series

∞
∑

k=0

pk X k and

∞
∑

k=0

qk X k

that we know converge when |X | < R (for simplicity, we’re letting X = x − x0 ). We also have

a corresponding power series
∞
∑

k=0

ak X k

where a0 and a1 are arbitrary, and the other coefficients are given by the recursion formula

ak = − 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)a j+1 pk−2− j + a j qk−2− j

]

for k = 2, 3, 4, . . . .

We now only need to show that
∑∞

k=0 ak X k converges whenever |X | < R , and to do that, we

will produce another power series
∑∞

k=0 bk X k whose convergence is “easily” shown using the

limit ratio test, and which is related to our first series by

|ak | ≤ bk for k = 0, 1, 2, 3, . . . .

By the comparison test, it then immediately follows that
∑∞

k=0

∣
∣ak X k

∣
∣ , and hence also

∑∞
k=0 ak X k ,

converges.

So let X be any value with |X | < R .
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Constructing the Series for Comparison

Our first step in constructing
∑∞

k=0 bk X k is to pick some value r between |X | and R ,

0 ≤ |X | < r < R .

Since |r | < R , we know the series

∞
∑

k=0

pkr k and

∞
∑

k=0

qkr k

both converge. But a series cannot converge if the terms in the series become arbitrarily large in

magnitude. So the magnitudes of these terms — the
∣
∣pkr k

∣
∣’s and

∣
∣qkr k

∣
∣’s — must be bounded;

that is, there must be a finite number M such that
∣
∣pkr k

∣
∣ < M and

∣
∣qkr k

∣
∣ < M for k = 0, 1, 2, 3, . . . .

Equivalently (since r > 0 ),

|pk| <
M

rk
and |qk | <

M

rk
for k = 0, 1, 2, 3, . . . .

These inequalities, the triangle inequality and the recursion formula combine to give us, for

k = 2, 3, 4, . . . ,

|ak | =
∣
∣
∣
∣
− 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)a j+1 pk−2− j + a j qk−2− j

]
∣
∣
∣
∣

≤ 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)
∣
∣a j+1

∣
∣
∣
∣pk−2− j

∣
∣ +

∣
∣a j

∣
∣
∣
∣qk−2− j

∣
∣
]

≤ 1

k(k − 1)

k−2
∑

j=0

[

( j + 1)
∣
∣a j+1

∣
∣

M

rk−2− j
+
∣
∣a j

∣
∣

M

rk−2− j

]

,

which we will rewrite as

|ak | ≤ 1

k(k − 1)

k−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−2− j
.

Now let b0 = |a0| , b1 = |a1| and

bk =
k−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−2− j
for k = 2, 3, 4, . . . .

From the preceding inequality, it is clear that we’ve chosen the bk’s so that

|ak | ≤ bk for k = 0, 1, 2, 3, . . . .

In fact, we even have

|ak | ≤ 1

k(k − 1)
bk for k = 2, 3, . . . . (32.5)

Thus,
∣
∣ak X k

∣
∣ ≤ bk |X |k for k = 2, 3, . . . ,

and (by the comparison text) we can confirm the convergence of
∑∞

k=0 ak X k by simply verifying

the convergence of
∑∞

k=0 bk |X |k .
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Convergence of the Comparison Series

According to the limit convergence test (theorem 30.2 on page 30–6),
∑∞

k=0 bk |X |k converges

if

lim
k→∞

∣
∣
∣
∣

bk+1 Xk+1

bk Xk

∣
∣
∣
∣

< 1 .

Well, let k > 2 . Using the formula for the bk’s with k replaced with k + 1 , we get

bk+1 =
[k+1]−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

r [k+1]−2− j

=
k−1
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−1− j

=
k−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−1− j
+

M
[

([k − 1] + 1)
∣
∣a[k−1]+1

∣
∣+

∣
∣a[k−1]

∣
∣
]

rk−1−[k−1]

= 1

r

k−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−2− j
+ M

[

k |ak | + |ak−1|
]

= 1

r
bk + kM |ak | + M |ak−1|

But, by inequality (32.5),

kM |ak | ≤ kM
1

k(k − 1)
bk = M

k − 1
bk . (32.6)

Moreover, because the terms in the summation for bk are all nonnegative real numbers,

bk =
k−2
∑

j=0

M
[

( j + 1)
∣
∣a j+1

∣
∣+

∣
∣a j

∣
∣
]

rk−2− j

≥ the last term in the summation

=
M( j + 1)

∣
∣a j+1

∣
∣

rk−2− j
with j = k − 2

=
M([k − 2] + 1)

∣
∣a[k−2]+1

∣
∣

rk−2−[k−2]

= M(k − 1) |ak−1| .

Thus,

M |ak−1| ≤ 1

(k − 1)
bk . (32.7)

Combining inequalities (32.6) and (32.7) with the last formula above for bk+1 gives us

bk+1 = 1

r
bk + kM |ak | + M |ak−1|

≤ 1

r
bk + M

(k − 1)
bk + 1

(k − 1)
bk =

[

1

r
+ M + 1

k − 1

]

bk .
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That is,
bk+1

bk

≤ 1

r
+ M + 1

k − 1
.

From this and the fact that |X | < r , we see that

lim
k→∞

∣
∣
∣
∣

bk+1 Xk+1

bk Xk

∣
∣
∣
∣

= lim
k→∞

[

1

r
+ M + 1

k − 1

]

|X | =
[

1

r
+ 0

]

|X | = |X |
r

< 1 ,

confirming (by the limit ratio test) that
∑∞

k=0 bk X k converges, and, thus, completing our proof

of theorem 32.9.

To finish the proof of theorem 32.8, do the following exercise:

?◮Exercise 32.3: Let
∑∞

k=0 pk X k be a power series that converges for |X | < R , and let
∑∞

k=0 ak X k be a power series where a0 is arbitrary, and the other coefficients are given by

the recursion formula

ak = −1

k

k−1
∑

j=0

a j pk−1− j for k = 1, 2, 3, . . . .

Show that
∑∞

k=0 ak X k converges also for |X | < R .

(Suggestion: Go back to the start of this section and “redo” the computations step by

step, making the obvious modifications to deal with the given recursion formula.)

32.6 Appendix: A Brief Overview of Complex Calculus

To properly address issues regarding the analyticity of our functions and the regions of con-

vergence of their power series, we need to delve deeper into the theory of analytic functions —

much deeper than normally presented in elementary calculus courses. Instead, we want the theory

normally developed in introductory courses in complex analysis. That’s because the complex-

variable theory exposes a much closer relation between “differentiability” and “analyticity” than

does the real-variable theory developed in elementary calculus. If you’ve had such a course,

good; the following will be a review. If you’ve not had such a course, think about taking one, and

read on. What follows is a brief synopsis of the relevant concepts and results from such a course,

written assuming you have not had such a course (but have, at least, skimmed the introductory

section on complex variables in section 30.3, starting on page 30–19).

Functions of a Complex Variable

In “complex analysis”, the basic concepts and theories developed in elementary calculus are

extended so that they apply to complex-valued functions of a complex variable. Thus, for

example, where we may have considered the “real” polynomial and “real” exponential

p(x) = 3x2 + 4x − 5 and h(x) = ex for all x in R
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in elementary calculus, in complex analysis we consider the “complex” polynomial and “com-

plex” exponential

p(z) = 3z2 + 4z − 5 and h(z) = ez for all z = x + iy in C .

Note that we treat z as a single entity. Still, the complex variable z is just x + iy . Consequently,

much of complex analysis follows from what you already know about the calculus of functions

of two variables. In particular, the partial derivatives with respect to x and y are defined just as

they were defined back in your calculus course (and section 3.7 of this text), and when we say

f is continuous at z0 , we mean that

f (z0) = lim
z→z0

f (z)

with the understanding that

lim
z→z0

f (z) = lim
x→x0
y→y0

f (x + iy) with z0 = x0 + iy0 .

Along these lines, you should be aware that, in complex variables, we normally assume that

functions are defined over subregions of the complex plane, instead of subintervals of the real

line. In what follows, we will often require our region of interest to be open (as discussed in

section 3.7). For example, we will often refer to the disk of all z satisfying |z − z0| < R for

some complex point z0 and positive value R . Any such disk is an open region.

Complex Differentiability

Given a function f and a point z0 = x0 + iy0 in the complex plane, the complex derivative of

f at z0 — denoted by f ′(z0) or d f/dz

∣
∣
z0

— is given by

f ′(z0) = d f

dz

∣
∣
∣
∣
z0

= lim
z→z0

f (z) − f (z0)

z − z0

.

If this limit exists as a finite complex number, we will say that f is differentiable with respect

to the complex variable at z0 (complex differentiable for short). Remember, z = x + iy ; so,

for the above limit to make sense, the formula for f must be such that f (x + iy) makes sense

for every x + iy in some open region about z0 .

We further say that f is complex differentiable on a region of the complex plane if and only

if it is complex differentiable at every point in the region.

Naturally, we can extend the complex derivative to higher orders:

f ′′ = d2 f

dz2
= d

dz

d f

dz
, f ′′′ = d3 f

dz3
= d

dz

d2 f

dz2
, · · · .

As with functions of a real variable, if f (k) exists for every positive integer k (at a point or in a

region), then we say f is infinitely differentiable (at the point or in the region).

In many ways, the complex derivative is analogous to derivative you learned in elementary

calculus (the real-variable derivative). The same basic basic computational formulas apply,

giving us, for example,

d

dz
zk = kzk−1 ,

d

dz
eαz = αeαz and

d

dz
[α f (z) + βg(z)] = α f ′(z) + βg′(z) .
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In addition, the well-known product and quotient rules can easily be verified, and, in verifying

these rules, you automatically verify the following:

Theorem 32.10

Assume f and g are complex differentiable on some open region of the complex plane. Then

their product f g is also complex differentiable on that region. Moreover, so is their quotient
f/g , provided g(z) 6= 0 for every z in this region.

Testing for Complex Diffentiability

If f is complex differentiable in some open region of the complex plane, then, unsurprisingly,

the chain rule can be shown to hold. In particular,

∂

∂x
f (x + iy) = f ′(x + iy) · ∂

∂x
[x + iy] = f ′(x + iy) · 1 = f ′(x + iy)

and
∂

∂y
f (x + iy) = f ′(x + iy) · ∂

∂y
[x + iy] = f ′(x + iy) · i = i f ′(x + iy) .

Combining these two equations, we get

∂

∂y
f (x + iy) = i f ′(x + iy) = i

∂

∂x
f (x + iy) .

Thus, if f is complex differentiable in some open region, then

∂

∂y
f (x + iy) = i

∂

∂x
f (x + iy) (32.8)

at every point z = x + iy in that region.3 Right off, this gives us a test for “nondifferentiability”:

If equation (32.8) does not hold throughout some region, then f is not complex differentiable on

that region. Remarkably, it can be shown that equation (32.8) can also be used to verify complex

differentiability. More precisely, the following theorem can be verified using tools developed in

a typical course in complex analysis.

Theorem 32.11

A function f is complex differentiable on an open region if and only if

∂

∂y
f (x + iy) = i

∂

∂x
f (x + iy)

at every point z = x + iy in the region. Moreover, in any open region on which f is complex

differentiable,

f ′(z) = d

dz
f (z) = ∂

∂x
f (x + iy) .

3 The two equations you get by splitting equation (32.8) into its real and imaginary parts are the famous Cauchy-

Riemann equations.
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Differentiability of an Analytic Function

In the subsection starting on page 30–13 of section 30.2, we discussed differentiating power

series and analytic functions when the variable is real. That discussion remains true if we replace

the real variable x with the complex variable z and use the complex derivative. In particular,

we have

Theorem 32.12 (differentiation of power series)

Suppose f is a function given by a power series,

f (z) =
∞
∑

k=0

ak(z − z0)
k for |z − z0| < R

for some R > 0 . Then, for any positive integer n , the nth derivative of f exists. Moreover,

f (n)(x) =
∞
∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1) ak(z − z0)
k−n for |z − z0| < R .

As an immediate corollary, we have:

Corollary 32.13

Let f be analytic at z0 with power series representation

f (z) =
∞
∑

k=0

ak(z − z0)
k whenever |z − z0| < R .

Then f is infinitely complex differentiable on the disk of all z with |z − z0| < R . Moreover

ak = f (k)(z0)

k!
for k = 0, 1, 2, . . . .

Complex Differentiability and Analyticity

Despite the similarity between complex differentiation and real-variable differentiation, complex

differentiability is a much stronger condition on functions than is real-variable differentiability.

The next theorem illustrates this.

Theorem 32.14

Assume f (z) is complex differentiable in some open region R . Then f is analytic at each

point z0 in R , and is given by its Taylor series

f (z) =
∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k whenever |z − z0| < R

where R is the radius of any open disk centered at z0 and contained in region R .

This remarkable theorem tells us that complex differentiability on an open region automat-

ically implies analyticity on that region, and tells us the region over which a function’s Taylor
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series converges and equals the function. Proving this theorem is beyond this text. It is, in fact,

a summary of results normally derived over the course of many chapters of a typical text in

complex variables.

Keep in mind that we already saw that analyticity implied complex differentiability (corollary

32.13). So as immediate corollaries to the above, we have:

Corollary 32.15

A function f is analytic at every point in an open region of the complex plane if and only if it

is complex differentiable at every point in that region.

Corollary 32.16

Assume F is a function analytic at z0 with corresponding power series
∑∞

k=0 fk(z − z0)
k , and

let R be either some positive value or +∞ . Then

F(z) =
∞
∑

k=0

fk(z − z0)
k whenever |z − z0| < R

if and only if F is analytic at every complex point z satisfying

|z − z0| < R .

The second corollary is especially of interest to us because it is the same as lemma 32.1 on

page 32–3, which we used extensively in this chapter. And the other lemma that we used, lemma

32.2 on page 32–3? Well, from the first corollary above and theorem 32.10 on the products and

quotients of complex differentiable functions we immediately have:

Corollary 32.17

Assume F(z) and A(z) are two functions analytic at a point z0 . If A(z0) 6= 0 , then the quotient
F/A is also analytic at z0 . However, if A(z0) = 0 with F(z0) 6= 0 , then the quotient F/A is not

analytic at z0 .

By then taking into account the power series formulas of analytic functions that vanish at a point

z0 , you can easily extend this last corollary to the following (which is the same as lemma 32.2):

Corollary 32.18

Assume F(z) and A(z) are two functions analytic at a point z0 . Then the quotient F/A is also

analytic at z0 if and only if

lim
z→z0

F(z)

A(x)

is finite.

The details are left to you (see exercise 32.11).
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32.7 Appendix: The “Closest Singular Point”

Here we want to answer a subtle question: Is it possible to have a first- or second-order linear

homogeneous differential equation whose singular points are arranged in such a manner that

none of them is the closest to some given ordinary point?

For example, could there be a differential equation having z0 = 0 as an ordinary point, but

whose singular points form an infinite sequence

z1, z2, z3, . . . with |zk | = 1 + 1

k
,

possibly located in the complex plane so that they “spiral around” the circle of radius 1 about

z0 = 0 without converging to some single point? Each of these singular points is closer to

z0 = 0 than the previous ones in the sequence, so not one of them can be called “a closest

singular point”.

Lemma 32.5 on page 32–6 claims that this situation cannot happen. Let us see why we

should believe this lemma.

The Problem and Fundamental Theorem

We are assuming that we have some first- or second-order linear homogeneous differential equa-

tion having singular points. We also assume z0 is not one of these singular points — it is an

ordinary point. Our goal is to show that

there is a singular point zs such that no other singular point is closer to z0 .

If we can confirm such a zs exists, then we’ve shown that the answer to this section’s opening

question is No (and proven lemma 32.5).

We start our search for this zs by rewriting our differential equation in reduced form

y′ + P(x)y = 0 or y′′ + P(x)y′ + Q(x)y = 0

and recalling that a point z is an ordinary point for our differential equation if and only if the

coefficient(s) ( P for the first-order equation, and both P and Q for the second-order equation)

are all analytic at z (see lemmas 32.6 and 32.7). Consequently,

1. zs is a closest singular point to z0 for the first-order differential equation if and only if

zs is a point closest to z0 at which P is not analytic,

and

2. zs is a closest singular point to z0 for the second-order differential equation if and only

if zs is a point closest to z0 at which either P or Q is not analytic.

Either way, our problem of verifying the existence of a singular point zs “closest to z0 ” is

reduced to the problem of verifying the existence of a point zs “closest to z0 ” at which a given

function F is not analytic while still being analytic at z0 . That is, to prove lemma 32.5, it will

suffice to prove the following:

Theorem 32.19

Let F be a function that is analytic at some, but not all, points in the complex plane, and let z0

be one of the points at which F is analytic. Then there is a positive value R0 and a point zs in

the complex plane such that all the following hold:
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1. R0 = |zs − z0| .

2. F is not analytic at zs .

3. F is analytic at every z with |z − z0| < R0 .

The point zs in the above theorem is a point closest to z0 at which F is not analytic. There

may be other points the same distance from z0 at which F is not analytic, but the last statement

in the theorem tells us that there is no point closer to z0 than zs at which F is not analytic.

Verifying Theorem 32.19
The Radius of Analyticity Function

Our proof of theorem 32.19 will rely on properties of the radius of analyticity function RA for

F , which we define at each point z in the complex plane as follows:

• If F is not analytic at z , then RA(z) = 0 .

• If F is analytic at z , then RA(z) is the largest value of R such that

F is analytic on the open disk of radius R about z . (32.9)

(To see that this “largest value of R ” exists when f is analytic at z , first note that the set of

all positive values of R for which (32.9) holds forms an interval with 0 as the lower endpoint.

Since we are assuming there are points at which F is not analytic, this interval must be finite,

and, hence, has a finite upper endpoint. That endpoint is RA(z) .)

The properties of this function that will be used in our proof of theorem 32.19 are summarized

in the following lemmas.

Lemma 32.20

Let RA be the radius of analyticity function corresponding to a function F analytic at some, but

not all, points of the complex plane, and let z0 be a point at which F is analytic. Then:

1. If |ζ − z| < RA(z) , then F is analytic at ζ .

2. If F is not analytic at a point ζ , then |ζ − z| ≥ RA(z) .

3. If ρ is any nonnegative real number such that

|z − z0| < RA(z0) + ρ H⇒ F is analytic at z ,

then ρ = 0 .

Lemma 32.21

Let F be a function which is analytic at some, but not all, points of the complex plane, and let

RA be the radius of analyticity function corresponding to F . Then, for each complex point z ,

F is analytic at z ⇐⇒ RA(z) > 0 .

Equivalently,

F is not analytic at z ⇐⇒ RA(z) = 0 .
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Lemma 32.22

If F is a function which is analytic at some, but not all, points of the complex plane, then RA ,

the radius of analyticity function corresponding to F , is a continuous function on the complex

plane.

The claims in the first lemma follow immediately from the definition of RA ; so let us

concentrate on proving the other two lemmas.

PROOF (lemma 32.21): First of all, by definition

F is not analytic at z H⇒ RA(z) = 0 .

Hence, we also have

RA(z) > 0 H⇒ F is analytic at z .

On the other hand, if F is analytic at z , then there is a power series
∑∞

k=0 ak(ζ − z)k and

a R > 0 such that

F(ζ ) =
∞
∑

k=0

ak(ζ − z)k whenever |ζ − z| < R .

Corollary 32.16 immediately tells us that F is analytic on the open disk of radius R about z .

Since RA(z) is the largest such R , R ≤ RA(z) . And since 0 < R , we now have

F is analytic at z H⇒ RA(z) > 0 .

This also means

RA = 0 H⇒ F is not analytic at z .

Combining all the implications just listed yields the claims in the lemma.

PROOF (lemma 32.22): To verify the continuity of RA , we need to show that

lim
z→z1

RA(z) = RA(z1) for each complex value z1 .

There are two cases: The easy case with F not being analytic at z1 , and the less-easy case with

F being analytic at z1 . For the second case, we will use pictures.

Consider the first case, where F is not analytic at z1 (hence, RA(z1) = 0 ). Then, as noted

in lemma 32.20,

0 ≤ RA(z) ≤ |z1 − z| for any z in C .

Taking limits, we see that

0 ≤ lim
z→z1

RA(z) ≤ lim
z→z1

|z1 − z| = 0 ,

which, since RA(z1) = 0 , gives us

lim
z→z1

RA(z) = RA(z1) .

Next, assume F is analytic at z1 (so that RA(z1) > 0 ), and let z be a point “close” to z1 .

For notational convenience, let

δ = |z − z1| and R1 = RA(z1) .

Also, let D1 be the open disk centered at z1 of radius R1 , as sketched in figure 32.1a. Note

that, by the definition of R1 ,
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(a) (b)

z1z1z
δ R1

D1

Rm

Dm

RM

DM

z0

z
R0 Rs

Rs

Figure 32.1: (a) Limits on the radius of analyticity at z based on the radius of analyticity

R1 at z1 , with RM = R1 + 2δ and Rm = R1 − δ , and (b) three points in a

line with |z − z0| < R0 + Rs , |z1 − z0| < R0 and |z − z1| < Rs .

1. F is analytic at every point in D1 , but

2. any open disk centered at z1 which is larger than D1 (such as the one in figure 32.1a

enclosed by the dashed-line circle) must contain a point at which F is not analytic.

Because we are just interested in limits as z → z1 , we can assume z is close enough to z1 that

δ < R1 . Let Dm and DM be the open disks about z with radii

Rm = R1 − δ and RM = R1 + 2δ ,

as also illustrated in figure 32.1a. Now since Dm is contained in D1 , F is analytic at every

point in Dm . Hence,

Rm ≤ RA(z) with Rm = RA(z1) − |z − z1| .

On the other hand, inside DM is another open disk that we had already noted contains a point

at which F is not analytic. So F is not analytic at every point in DM . Thus,

RA(z) < RM with RM = RA(z1) + 2 |z − z0| .

Combining the two inequalities above gives us

RA(z1) − |z − z1| ≤ RA(z) ≤ RA(z1) + 2 |z − z1|

which, after letting z → z1 , becomes

RA(z1) − 0 ≤ lim
z→z1

RA(z) ≤ RA(z1) + 2 · 0 ,

clearly implying that

lim
z→z1

RA(z) = RA(z1)
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Proof of Theorem 32.19

Remember: F is a function analytic at some, but not all, points in the complex plane, and z0 is

a point at which f is analytic.

Let

R0 = RA(z0) .

Because of the definition and properties of RA , and the analyticity of F at z0 , we automatically

have that R0 > 0 and that F is analytic at every z with |z − z0| < R0 . All that remains to

proving our theorem is to show that there is a zs at which F is not analytic and which satisfies

|zs − z0| = R0 .

Now consider the possible values of RA(z) on the closed disk |z − z0| ≤ R0 . Since RA

is continuous, it must have a minimum value at some point in this closed disk. Let zs be this

point. Keep in mind that

|zs − z0| ≤ R0 .

If we can also show that

|zs − z0| ≥ R0 ,

then we must have the desired equality

|zs − z0| = R0 .

But lemmas 32.20 and 32.21 remind us that, to show that |zs − z0| ≥ R0 , it suffices to show

F is not analytic at zs , and to show that, it suffices to show that RA(zs) = 0 .

Thus, we can complete the proof of our theorem by showing RA(zs) = 0 . To do this, pick

any point z satisfying

|z − z0| < R0 + RA(zs) ,

and observe that there must also be a point z1 on a straight line between z0 and z such that

|z1 − z0| < R0 and |z − z1| < RA(zs) . (32.10)

(see figure 32.1b). By the first of these two inequalities (and the definitions of R0 and zs ), we

know f is analytic at z1 with

RA(zs) ≤ RA(z1) .

Consequently, the second inequality in set (32.10) tells us that z is within the radius of analyticity

of z1 ; that is, F is analytic at z . Thus, (after recalling that R0 = RA(z0) ), we see that

|z − z0| < RA(z0) + RA(zs) H⇒ f is analytic at z ,

which, as stated in lemma 32.20, implies that RA(zs) = 0 , completing our proof.

Additional Exercises

32.4 a. Using the fact that

ex+iy = ex [cos(y) + i sin(y)] ,

show that ez can never equal zero for any z in the complex plane.
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b. In chapter 16 we saw that

sin(z) = ei z − e−i z

2i
and cos(z) = ei z + e−i z

2
,

at least when z was a real value (see page 350). In fact, these formulas (along with

the definition of the complex exponential) can define the sine and cosine functions at

all values of z , real and complex. Using these formulas

i. Verify that

sin(x + iy) = 1

2

{[

ey + e−y
]

sin(x) + i
[

ey − e−y
]

cos(x)
}

and

cos(x + iy) = 1

2

{[

ey + e−y
]

cos(x) − i
[

ey − e−y
]

sin(x)
}

.

ii. Using the above formulas, verify that

sin(z) = 0 ⇐⇒ z = nπ with n = 0, ±1, ±2, . . .

and

cos(z) = 0 ⇐⇒ z =
[

n + 1

2

]

π with n = 0, ±1, ±2, . . . .

c. The hyperbolic sine and cosine are defined on the complex plane by

sinh(z) = ez − e−z

2
and cosh(z) = ez + e−z

2
.

Show that

sinh(z) = 0 ⇐⇒ z = inπ with n = 0, ±1, ±2, . . .

and

cosh(z) = 0 ⇐⇒ z = i
[

n + 1

2

]

π with n = 0, ±1, ±2, . . . .

32.5. Find all singular points for each of the following differential equations. You may have

to use results from the previous problem. You may even have to expand on some of

those results. And you may certainly need to rearrange a few equations.

a. y′ − ex y = 0

b. y′ − tan(x)y = 0

c. sin(πx) y′′ + x2 y′ − ex y = 0

d. sinh(x) y′′ + x2 y′ − ex y = 0

e. sinh(x) y′′ + x2 y′ − sin(x) y = 0

f. e3x y′′ + sin(x) y′ + 2
(

x2 + 4
) y = 0

g. y′′ − 1 + ex

(1 − ex )
y

h.
[

x2 − 4
]

y′′ +
[

x2 + x − 6
]

y = 0
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i. xy′′ +
[

1 − ex
]

y = 0

j. sin
(

πx2
)

y′′ + x2 y = 0

32.6. Using recursion formula (32.3) on page 32–9, find the 4th-degree partial sum of the

general power series solution for each of the following about the given point x0 . Also

state the interval over which you can be sure the full power series solution is valid.

a. y′ − ex y = 0 with x0 = 0

b. y′ + e2x y = 0 with x0 = 0

c. y′ + cos(x) y = 0 with x0 = 0

d. y′ + ln |x | y = 0 with x0 = 1

32.7. Using the recursion formula (32.4) on page 32–10, find the 4th-degree partial sum of the

general power series solution for each of the following about the given point x0 . Also

state the interval over which you can be sure the full power series solution is valid.

a. y′′ − ex y = 0 with x0 = 0

b. y′′ + 3xy′ − ex y = 0 with x0 = 0

c. xy′′ + sin(x) y = 0 with x0 = 0

d. y′′ + ln |x | y = 0 with x0 = 1

e.
√

x y′′ − y = 0 with x0 = 1

f. y′′ +
[

1 + 2x + 6x2
]

y′ + [2 + 12x] y = 0 with x0 = 0

32.8 a. Using your favorite computer mathematics package (e.g., Maple or Mathematica),

along with recursion formula (32.3) on page 32–9, write a program/worksheet that

will find the N th partial sum of the power series solution about x0 to

y′ + P(x)y = 0

for any given positive integer N , point x0 and function P(x) analytic at x0 . Finding

the appropriate partial sum of the corresponding power series for P should be part

of the program/worksheet (see exercise 30.8 on page 30–23). Be sure to write your

program/worksheet so that N , x0 and P are easily changed.

b. Use your program/worksheet to find the N th-degree partial sum of the general power

series solution about x0 for each of the following differential equations and choices

for N and x0 .

i. y′ − ex y = 0 with x0 = 0 and N = 10

ii. y′ +
√

x2 + 1y = 0 with x0 = 0 and N = 8

iii. cos(x)y′ + y = 0 with x0 = 0 and N = 8

iv. y′ +
√

2x2 + 1y = 0 with x0 = 2 and N = 5

32.9 a. Using your favorite computer mathematics package (e.g., Maple or Mathematica),

along with recursion formula (32.4) on page 32–10, write a program/worksheet that
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will find the N th partial sum of the power series solution about x0 to

y′′ + P(x)y′ + Q(x)y = 0

for any given positive integer N , point x0 , and functions P(x) and Q(x) analytic at

x0 . Finding the appropriate partial sum of the corresponding power series for P and

Q should be part of the program/worksheet (see exercise 30.8 on page 30–23). Be

sure to write your program/worksheet so that N , x0 , P and Q are easily changed.

b. Use your program/worksheet to find the N th-degree partial sum of the general power

series solution about x0 for each of the following differential equations and choices

for N and x0 .

i. y′′ − ex y = 0 with x0 = 0 and N = 8

ii. y′′ + cos(x)y = 0 with x0 = 0 and N = 10

iii. y′′ + sin(x)y′ + cos(x)y = 0 with x0 = 0 and N = 7

iv.
√

x y′′ + y′ + xy = 0 with x0 = 1 and N = 5

32.10. In this problem, we will compare two ways of finding the general power series solution
∑∞

k=0 ak xk to

(3 − x)y′ − y = 0 .

a. Using the algebraic method from section 31.2:

i. Find the corresponding recursion formula for the ak’s .

ii. Find the 6th-degree partial sum for the general power series method.

b. Observe that the reduced form of our differential equation is

y′ − 1

3 − x
y = 0 ,

and verify that

1

3 − x
=

∞
∑

k=0

1

3k+1
xk .

Then, using theorem 32.8:

i. Find the corresponding recursion formula for the ak’s .

ii. Find the 6th-degree partial sum for the general power series method.

c. Which of the two approaches just used is simpler?

32.11. The goal of this exercise is to confirm corollary 32.17 on page 32–21 (also known as

lemma 32.2 on page 32–3). In the following, A and F are two functions analytic at

some point z0 on the complex plane.

a. Show that, if G is any function analytic at z0 , then

G(z) = (z − z0)
mG0(z)

where m is some nonnegative integer, and G0 is a function analytic at z0 with

G0(z0) 6= 0 .
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Some notes on this:

i. The above holds trivially with m = 0 and G0 = G if G(z0) 6= 0 . So you

only need consider the case where G(z0) = 0 .

ii. If G(z0) = 0 , the integer m is positive and is called the multiplicity of the

zero of G at z0 .

iii. If you need a hint, see equation (30.3) on page 30–8 and the discussion just

before that equation.

b. Using the above and corollary 32.17 on page 32–21, show that there is an integer γ

and a function H which is analytic and nonzero at z0 such that

F(z)

A(z)
= (z − z0)

γ H(z) .

(What must γ be for this quotient to also be analytic at z0 ?)

c. Finish proving corollary 32.17. That is, show that the quotient F/A is analytic at z0

if and only if

lim
z→z0

F(z)

A(z)

exists as a finite number.
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They

have not been properly proofread! Errors are likely!

5a. No singular points

5b. z =
[

n + 1

2

]

π with n = 0, ±1, ±2, . . .

5c. z = 0, ±1, ±2, ±3, . . .

5d. z = inπ with n = 0, ±1, ±2, . . .

5e. z = inπ with n = ±1, ±2, . . .

5f. z = ±2i

5g. z = in2π with n = 0, ±1, ±2, . . .

5h. z = −2

5i. no singular points

5j. z = ±
√

n with n = 1, 2, 3, . . .

6a. a0

[

1 + x + x2 + 5

6
x3 + 5

8
x4
]

, (−∞,∞)

6b. a0

[

1 − x − 1

2
x2 + 1

6
x3 + 3

8
x4
]

, (−∞,∞)

6c. a0

[

1 − x − 1

2
x2 − 1

8
x4
]

, (−∞,∞)

6d. a0

[

1 − 1

2
(x − 1)2 + 1

6
(x − 1)3 + 1

24
(x − 1)4

]

, (0, 2)

7a. a0

[

1 + 1

2
x2 + 1

6
x3 + 1

12
x4
]

+ a1

[

x + 1

6
x3 + 1

12
x4
]

, (−∞,∞)

7b. a0

[

1 + 1

2
x2 + 1

6
x3 − 1

6
x4
]

+ a1

[

x − 1

3
x3 + 1

12
x4
]

, (−∞,∞)

7c. a0

[

1 − 1

2
x2 + 1

18
x4
]

+ a1

[

x − 1

6
x3
]

, (−∞,∞)

7d. a0

[

1 − 1

6
(x − 1)3 + 1

24
(x − 1)4

]

+ a1

[

(x − 1) − 1

12
(x − 1)4

]

, (0, 2)

7e. a0

[

1 − 1

2
(x − 1)2 + 1

12
(x − 1)3 + 1

96
(x − 1)4

]

+ a1

[

(x − 1) − 1

6
(x − 1)3 + 1

24
(x − 1)4

]

, (0, 2)

7f. a0

[

1 − x2 − 5

3
x3 + 11

12
x4
]

+ a1

[

x − 1

2
x2 − 1

2
x3 − 9

8
x4
]

, (−∞,∞)

8b i. a0

[

1 + x + x2 + 5

6
x3 + 5

8
x4 + 13

30
x5 + 203

720
x6 + 877

5040
x7 + 23

224
x8 + 1007

17280
x9 + 4639

145152
x10
]

8b ii. a0

[

1 − x + 1

2
x2 − 1

3
x3 + 5

24
x4 − 1

15
x5 + 13

720
x6 − 11

630
x7 + 361

40320
x8
]

8b iii. a0

[

1 − x + 1

2
x2 − 1

3
x3 + 5

24
x4 − 2

15
x5 + 61

720
x6 − 17

315
x7 + 277

8064
x8
]

8b iv. a0

[

1 − 3(x − 2) + 23

6
(x − 2)2 − 407

162
(x − 2)3 + 1241

1944
(x − 2)4 + 21629

87480
(x − 2)5

]

9b i. a0

[

1 + 1

2
x2 + 1

6
x3 + 1

12
x4 + 1

24
x5 + 13

720
x6 + 1

140
x7 + 109

40320
x8
]

+ a1

[

x + 1

6
x3 + 1

12
x4 + 1

30
x5 + 1

72
x6 + 29

5040
x7 + 1

448
x8
]

9b ii. a0

[

1 − 1

2
x2 + 1

12
x4 − 1

80
x6 + 11

8064
x8 − 17

129600
x10

]

+ a1

[

x − 1

6
x3 + 1

30
x5 − 19

5040
x7 + 29

72576
x9

]

9b iii. a0

[

1 − 1

2
x2 + 1

6
x4 − 31

720
x6
]

+ a1

[

x − 1

3
x3 + 1

10
x5 − 59

2520
x7
]

9b iv. a0

[

1 − 1

2
(x − 1)2 + 1

12
(x − 1)3 − 1

96
(x − 1)4 + 31

960
(x − 1)5

]
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+ a1

[

(x − 1) − 1

2
(x − 1)2 + 1

12
(x − 2)3 − 3

32
(x − 1)4 + 71

960
(x − 4)5

]

10a i. ak = 1

3
ak−1 for k ≥ 1

10a ii. a0

[

1 + 1

3
x + 1

32
x2 + 1

33
x3 + 1

34
x4 + 1

35
x5 + 1

36
x6
]

10b i. ak = 1

k

k−1
∑

j=0

1

3k− j
a j for k ≥ 0

10b ii. a0

[

1 + 1

3
x + 1

32
x2 + 1

33
x3 + 1

34
x4 + 1

35
x5 + 1

36
x6
]


