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Power Series Solutions I: Basic
Computational Methods

When a solution to a differential equation is analytic at a point, then that solution can be rep-

resented by a power series about that point. In this and the next chapter, we will discuss when

this can be expected, and how we might use this fact to obtain usable power series formulas for

the solutions to various differential equations. In this chapter, we will concentrate on two basic

methods — an “algebraic method” and a “Taylor series method” — for computing our power

series. Our main interest will be in the algebraic method. It is more commonly used and is the

method we will extend in chapter 33 to obtain “modified” power series solutions when we do

not quite have the desired analyticity. But the algebraic method is not well suited for solving

all types of differential equations, especially when the differential equations in question are not

linear. For that reason (and others) we will also introduce the Taylor series method near the end

of this chapter.

31.1 Basics
General Power Series Solutions

If it exists, a power series solution for a differential equation is just a power series formula

y(x) =

∞
∑

k=0

ak(x − x0)
k

for a solution y to the given differential equation in some open interval containing x0 . The

series is a general power series solution if it describes all possible solutions in that interval.

As noted in the last chapter (corollary 30.10 on page 30–16), if y(x) is given by the above

power series, then

a0 = y(x0) and a1 = y′(x0) .

Because a general solution to a first-order differential equation normally has one arbitrary con-

stant, we should expect a general power series solution to a first-order differential equation to

also have a single arbitrary constant. And since that arbitrary constant can be determined by a

given initial value y(x0) , it makes sense to use a0 as that arbitrary constant.
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On the other hand, a general solution to a second-order differential equation usually has

two arbitrary constants, and they are normally determined by initial values y(x0) and y′(x0) .

Consequently, we should expect the first two coefficients, a0 and a1 , to assume the roles of the

arbitrary constants in our general power series solutions for second-order differential equations.

The Two Methods, Briefly

The basic ideas of both the “algebraic method” and the “Taylor series method” are fairly simple.

The Algebraic Method

The algebraic method starts by assuming the solution y can be written as a power series

y(x) =

∞
∑

k=0

ak(x − x0)
k

with the ak’s being constants to be determined. This formula for y is then plugged into the

differential equation. By using a lot of algebra and only a little calculus, we then “simplify” the

resulting equation until it looks something like

∞
∑

n=0

[

nth formula of the ak’s
]

xn = 0 .

As we saw in the last chapter, this means

nth formula of ak’s = 0 for n = 0, 1, 2, 3, . . . ,

which (as we will see) can be used to determine all the ak’s in terms of one or two arbitrary

constants. Plugging these ak’s back into the series then gives the power series solution to our

differential equation about the point x0 .

We will outline the details for this method in the next two sections for first- and second-order

homogeneous linear differential equations

a(x)y′ + b(x)y = 0 and a(x)y′′ + b(x)y′ + c(x)y = 0

in which the coefficients are rational functions. These are the equations for which the method is

especially well suited.1 For pedagogic reasons, we will deal with first-order equations first, and

then expand our discussion to include second-order equations. It should then be clear that this

approach can easily be extended to solve higher-order analogs of the equations discussed here.

The Taylor Series Method

The basic ideas behind the Taylor series method are even easier to describe. We simply use the

given differential equation to find the values of all the derivatives of the solution y(x) when

x = x0 , and then plug these values into the formula for the Taylor series for y about x0 (see

corollary 30.11 on page 30–16). Details will be laid out in section 31.6.

1 Recall that a rational function is a function that can be written as one polynomial divided by another polynomial.

Actually, in theory at least, the algebraic method is “well suited” for a somewhat larger class of first- and second-

order linear differential equations. We’ll discuss this in the next chapter.
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31.2 The Algebraic Method with First-Order Equations
Details of the Method

Here are the detailed steps of our algebraic method for finding a general power series solution to

a(x)y′ + b(x)y = 0

assuming a(x) and b(x) are rational functions. To illustrate these steps, we’ll find a general

power series solution to

y′ +
2

x − 2
y = 0 . (31.1)

Admittedly you could solve this differential equation easier using methods from either chapter

4 or 5, but it is a good equation for our first example.2

Before actually starting the method, there are two preliminary steps:

Pre-step 1: Rewrite your differential equation in the form

A(x)y′ + B(x)y = 0

where A and B are polynomials, preferably without common factors.

To get differential equation (31.1) into the form desired, we multiply the

equation by x − 2 . That gives us

(x − 2)y′ + 2y = 0 . (31.2)

Pre-step 2: If not already specified, choose a value for x0 . For reasons we will discuss later,

x0 should be chosen so that A(x0) 6= 0 . If initial conditions are given for y(x) at

some point, then use that point for x0 (provided A(x0) 6= 0 ). Otherwise, choose x0 as

convenient — which usually means choosing x0 = 0 .3

For our example, we have no initial values at any point, and the first coefficient,

x − 2 , is zero only if x0 = 2 . So let us choose x0 as simply as possible;

namely, x0 = 0 .

Now for the basic method:

Step 1: Assume a power series solution

y = y(x) =

∞
∑

k=0

ak(x − x0)
k (31.3)

2 Truth is, power series are rarely used to solve first-order differential equations because these equations are often

more easily solved using the more direct methods developed earlier in this text. In fact, many texts don’t even

mention using power series with first-order equations. We’re doing first-order equations here because this author

like to start as simple as possible.
3 The requirement that A(x0) 6= 0 is a slight simplification of requirements we’ll develop in the next section. But

“A(x0) 6= 0” will suffice for now, especially if A and B are polynomials with no common factors.
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with a0 being arbitrary and the other ak’s “to be determined”, and then compute/write

out the corresponding first derivative

y′ =
d

dx

∞
∑

k=0

ak(x − x0)
k

=

∞
∑

k=0

d

dx

[

ak(x − x0)
k
]

=

∞
∑

k=1

kak(x − x0)
k−1 .

(Remember that the derivative of the a0 term is zero. Explicitly dropping this zero term

in the series for y′ is not necessary, but can simplify bookkeeping, later.)

Since we’ve already decided x0 = 0 , we assume

y = y(x) =

∞
∑

k=0

ak xk , (31.4)

and compute

y′ =
d

dx

∞
∑

k=0

ak xk =

∞
∑

k=0

d

dx

[

ak xk
]

=

∞
∑

k=1

kak xk−1 .

Step 2: Plug the series for y and y′ back into the differential equation and “multiply things

out”. (If x0 6= 0 , see the comments on page 31–11.)

Some notes:

i. Absorb any x’s from A(x) and B(x) into the series.

ii. Your goal is to get an equation in which zero equals the sum of a few power series

about x0 .

Using the above series with the given differential equation, we get

0 = (x − 2)y′ + 2y

= (x − 2)

∞
∑

k=1

kak xk−1 + 2

∞
∑

k=0

ak xk

=

[

x

∞
∑

k=1

kak xk−1 − 2

∞
∑

k=1

kak xk−1

]

+ 2

∞
∑

k=0

ak xk

=

∞
∑

k=1

kak xk +

∞
∑

k=1

(−2)kak xk−1 +

∞
∑

k=0

2ak xk .

Step 3: For each series in your last equation, do a change of index4 so that each series looks

like
∞

∑

n=something

[

something not involving x
]

(x − x0)
n .

Be sure to appropriately adjust the lower limit in each series.

4 see Changing the Index on page 30–11
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In all but the second series in the example, the “change of index” is trivial

( n = k ). In the second series, we set n = k − 1 (equivalently, k = n + 1 ):

0 =

∞
∑

k=1

kak xk

︸ ︷︷ ︸

n = k

+

∞
∑

k=1

(−2)kak xk−1

︸ ︷︷ ︸

n = k−1

+

∞
∑

k=0

2ak xk

︸ ︷︷ ︸

n = k

=

∞
∑

n=1

nan xn +

∞
∑

n+1=1

(−2)(n + 1)an+1xn +

∞
∑

n=0

2an xn

=

∞
∑

n=1

nan xn +

∞
∑

n=0

(−2)(n + 1)an+1xn +

∞
∑

n=0

2an xn .

Step 4: Convert the sum of series in your last equation into one big series. The first few terms

will probably have to be written separately. Go ahead and simplify what can be simplified.

Since one of the series in the last equation begins with n = 1 , we need to

separate out the terms corresponding to n = 0 in the other series before

combining series:

0 =

∞
∑

n=1

nan xn +

∞
∑

n=0

(−2)(n + 1)an+1xn +

∞
∑

n=0

2an xn

=

∞
∑

n=1

nan xn +

[

(−2)(0 + 1)a0+1x0 +

∞
∑

n=1

(−2)(n + 1)an+1xn

]

+

[

2a0x0 +

∞
∑

n=1

2an xn

]

= [−2a1 + 2a0]x
0 +

∞
∑

n=1

[nan − 2(n + 1)an+1 + 2an]x
n

= 2[a0 − a1]x
0 +

∞
∑

n=1

[

(n + 2)an − 2(n + 1)an+1

]

xn .

Step 5: At this point, you have an equation basically of the form

∞
∑

n=0

[

nth formula of the ak’s
]

(x − x0)
n = 0 ,

which is possible only if

nth formula of the ak’s = 0 for n = 0, 1, 2, 3, . . . .

Using this last equation:



Chapter & Page: 31–6 Power Series Solutions I: Basic Computational Methods

(a) Solve for the ak with the highest index, obtaining

ahighest index = formula of n and lower-indexed coefficients .

A few of these equations may need to be treated separately, but you should obtain

one relatively simple formula that holds for all indices above some fixed value. This

formula is a recursion formula for computing each coefficient from the previously

computed coefficients.

(b) To simplify things just a little, do another change of indices so that the recursion

formula just derived is rewritten as

ak = formula of k and lower-indexed coefficients .

From the last step in our example, we have

2[a0 − a1]x
0 +

∞
∑

n=1

[

(n + 2)an − 2(n + 1)an+1

]

xn = 0 .

So,

2[a0 − a1] = 0 , (31.5a)

and, for n = 1, 2, 3, 4, . . . ,

(n + 2)an − 2(n + 1)an+1 = 0 . (31.5b)

In equation (31.5a), a1 is the highest indexed ak ; solving for it in terms of

the lower-indexed ak’s (i.e., a0 ) yields

a1 = a0 .

Equation (31.5b) also just contains two ak’s : an and an+1 . Since n+1 > n ,

we solve for an+1 ,

an+1 =
n + 2

2(n + 1)
an for n = 1, 2, 3, 4, . . . .

Letting k = n + 1 (equivalently, n = k − 1 ), this becomes

ak =
k + 1

2k
ak−1 for k = 2, 3, 4, 5, . . . . (31.6)

This is the recursion formula we will use.

Step 6: Use the recursion formula (and any corresponding formulas for the lower-order terms)

to find all the ak’s in terms of a0 . Look for patterns!

In the last step, we saw that

a1 = a0 .

Using this and the recursion formula (31.6) with k = 2, 3, 4, . . . (and looking

for patterns), we obtain the following:

a2 =
2 + 1

2 · 2
a2−1 =

3

2 · 2
a1 =

3

2 · 2
a0 ,
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a3 =
3 + 1

2 · 3
a3−1 =

4

2 · 3
a2 =

4

2 · 3
·

3

2 · 2
a0 =

4

23
a0 ,

a4 =
4 + 1

2 · 4
a4−1 =

5

2 · 4
a3 =

5

2 · 4
·

4

23
a0 =

5

24
a0 ,

a5 =
5 + 1

2 · 5
a5−1 =

6

2 · 5
a4 =

6

2 · 5
·

5

25
a0 =

6

25
a0 ,

...

The pattern here is obvious:

ak =
k + 1

2k
a0 for k = 2, 3, 4, . . . .

Note that this formula even gives us our a1 = a0 equation,

a1 =
1 + 1

21
a0 =

2

2
a0 = a0 ,

and is even valid with k = 0 ,

a0 =
0 + 1

22
a0 = a0 .

So, in fact,

ak =
k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . . (31.7)

Step 7: Using the formulas just derived for the coefficients, write out the resulting series for

y(x) . Try to simplify it and factor out the a0 .

Plugging the formulas just derived for the ak’s into the power series assumed

for y ,

y(x) =

∞
∑

k=0

ak xk =

∞
∑

k=0

k + 1

2k
a0xk = a0

∞
∑

k=0

k + 1

2k
xk .

So we have

y(x) = a0

∞
∑

k=0

k + 1

2k
xk

= a0

[

0 + 1

20
x0 +

1 + 1

21
x1 +

2 + 1

22
x2 +

3 + 1

23
x3 + · · ·

]

= a0

[

1 + x +
3

4
x2 +

1

2
x3 + · · ·

]

as the series solution for our first-order differential equation (assuming it con-

verges).

Last Step: See if you recognize the series derived as the series for some well-known function

(you probably won’t!).
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By an amazing stroke of luck, in exercise 30.9 a on page 30–24 we saw that

2

(2 − x)2
=

1

2

∞
∑

k=0

k + 1

2k
xk .

So our formula for y simplifies considerably:

y(x) = a0

∞
∑

k=0

k + 1

2k
xk = a0

[

2 ·
2

(2 − x)2

]

=
4a0

(2 − x)2
.

Practical Advice on Using the Method
General Comments

The method just described is a fairly straightforward procedure, at least up to the point where

you are trying to “find a pattern” for the ak’s . The individual steps are, for the most part, simple

and only involve elementary calculus and algebraic computations — but there are a lot of these

elementary computations, and an error in just one can throw off the subsequent computations with

disastrous consequences for your final answer. So be careful, write neatly, and avoid shortcuts

and doing too many computations in your head. It may also be a good idea to do your work with

your paper turned sideways, just to have enough room for each line of formulas.

On Finding Patterns

In computing the ak’s , we usually want to find some “pattern” described by some reasonably

simple formula. In our above example, we found formula (31.7),

ak =
k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . .

Using this formula, it was easy to write out the power series solution.

More generally, we will soon verify that the ak’s obtained by this method can all be simply

related to a0 by an expression of the form

ak = αka0 for k = 0, 1, 2, 3, 4, . . .

where α0 = 1 and the other αk’s are fixed numbers (hopefully given by some simple formula

of k ). In the example cited just above,

αk =
k + 1

2k
for k = 0, 1, 2, 3, 4, . . . .

Finding that pattern and its formula (i.e., the above mentioned αk’s ) is something of an art,

and requires a skill that improves with practice. One suggestion is to avoid multiplying factors

out. It was the author’s experience that, in deriving formula (31.7), led him to leave 22 and 23 as

22 and 23 , instead of as 4 and 8 — he suspected a pattern would emerge. Another suggestion is

to compute “many” of the ak’s using the recursion formula before trying to identify the pattern.

And once you believe you’ve found that pattern and derived that formula, say,

ak =
k + 1

2k
a0 for k = 0, 1, 2, 3, 4, . . . ,
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test it by computing a few more ak’s using both the recursion formula directly and using your

newly found formula. If the values computed using both methods don’t agree, your formula is

wrong. Better yet, if you are acquainted with the method of induction, use that to rigorously

confirm your formula.5

Unfortunately, in practice, it may not be so easy to find such a pattern for your ak’s . In fact,

it is quite possible to end up with a three (or more) term recursion formula, say,

an =
1

n2 + 1
an−1 +

2

3n(n + 3)
an−2 ,

which can make “finding patterns” quite difficult.

Even if you do see a pattern, it might be difficult to describe. In these cases, writing out a

relatively simple formula for all the terms in the power series solution may not be practical. What

we can still do, though, is to use the recursion formula to compute (or have a computer compute)

as many terms as we think are needed for a reasonably accurate partial sum approximation.

Terminating Series

It’s worth checking your recursion formula

ak = formula of k and lower-indexed coefficients

to see if the right side becomes zero for some value of k , say k = K . Then, of course,

aK = 0

and the computation of the subsequent ak’s may become especially simple. In fact, you may

well have

ak = 0 for all k ≥ K .

This, essentially, “terminates” the series and gives you a polynomial solution — something that’s

usually easier to handle that a true infinite series solution.

!◮Example 31.1: Consider finding the power series solution to

(

x2 + 1
)

y′ − 4xy = 0

about x0 = 0 .

It is already in the right form. So, following the procedure, we let

y(x) =

∞
∑

k=0

ak(x − x0)
k =

∞
∑

k=0

ak xk ,

and ‘compute’

y′(x) =
d

dx

∞
∑

k=0

ak xk =

∞
∑

k=0

d

dx

[

ak xk
]

=

∞
∑

k=1

akkxk−1 .

5 And to learn about using induction, see section 31.7.
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Plugging this into the differential equation and carrying out the index manipulation and algebra

of our method:

0 =
(

x2 + 1
)

y′ − 4xy

=
(

x2 + 1
)

∞
∑

k=1

akkxk−1 − 4x

∞
∑

k=0

ak xk

= x2

∞
∑

k=1

akkxk−1 + 1

∞
∑

k=1

akkxk−1 − 4x

∞
∑

k=0

ak xk

=

∞
∑

k=1

akkxk+1

︸ ︷︷ ︸

n = k+1

+

∞
∑

k=1

akkxk−1

︸ ︷︷ ︸

n = k−1

−

∞
∑

k=0

4ak xk+1

︸ ︷︷ ︸

n = k+1

=

∞
∑

n=2

an−1(n − 1)xn +

∞
∑

n=0

an+1(n + 1)xn −

∞
∑

n=1

4an−1xn

=

∞
∑

n=2

an−1(n − 1)xn +

[

a0+1(0 + 1)x0 + a1+1(1 + 1)x1 +

∞
∑

n=2

an+1(n + 1)xn

]

−

[

4a1−1x1 +

∞
∑

n=2

4an−1xn

]

= a1x0 + [2a2 − 4a0] x1 +

∞
∑

n=2

[

an−1(n − 1) + an+1(n + 1) − 4an−1

]

xn

= a1x0 + [2a2 − 4a0] x1 +

∞
∑

n=2

[

(n + 1)an+1 + (n − 5)an−1

]

xn .

Remember, the coefficient in each term must be zero. From the x0 term, we get

a1 = 0 .

From the x1 term, we get

2a2 − 4a0 = 0 .

And for n ≥ 2 , we have

(n + 1)an+1 + (n − 5)an−1 = 0 .

Solving each of the above for the ak with the highest index, we get

a1 = 0 ,

a2 = 2a0

and

an+1 =
5 − n

n + 1
an−1 for n = 2, 3, 4, . . . .
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Letting k = n + 1 then converts the last equation to the recursion formula

ak =
6 − k

k
ak−2 for k = 3, 4, 5, . . . .

Now, using our recursion formula, we see that

a3 =
6 − 3

3
a3−2 =

3

3
a1 =

1

2
· 0 = 0 ,

a4 =
6 − 4

4
a4−2 =

2

4
a2 =

1

2
· 2a0 = a0 ,

a5 =
6 − 5

5
a5−2 =

1

5
a3 =

1

5
· 0 = 0 ,

a6 =
6 − 6

6
a6−2 =

0

6
a4 = 0 ,

a7 =
6 − 7

7
a7−2 = −

1

7
a5 = −

1

7
· 0 = 0 ,

a8 =
6 − 8

8
a8−2 −

2

8
a6 = −

1

4
· 0 = 0

Clearly, the vanishing of both a5 and a6 means that the recursion formula will give us

ak = 0 whenever k > 4 .

Thus,

y(x) =

∞
∑

k=0

ak xk

= a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + · · ·

= a0 + 0x + 2a0x2 + 0x3 + a0x4 + 0x5 + 0x6 + 0x7 + · · ·

= a0 + 2a0x2 + a0x4 .

That is, the power series for y reduces to the polynomial

y(x) = a0

[

1 + 2x2 + x4
]

.

If x0 6= 0

The computations in our procedure (and the others we’ll develop) tend to get a little messier

when x0 6= 0 , and greater care needs to be taken. In particular, before you ”multiply things out”

in step 2, you should rewrite your polynomials A(x) and B(x) in terms of (x − x0) instead of

x to better match the terms in the series. For example, if

A(x) = x2 + 2 and x0 = 1 ,

then rewrite A(x) as follows:

A(x) = [(x − 1) + 1]2 + 2

=
[

(x − 1)2 + 2(x − 1) + 1
]

+ 2 = (x − 1)2 + 2(x − 1) + 3 .
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Alternatively (and probably better), just convert the differential equation

A(x)y′ + B(x)y = 0 (31.8a)

using the change of variables X = x − x0 . That is, first set

Y (X) = y(x) with X = x − x0

and then rewrite the differential equation for y(x) in terms of Y and X . After noting that

x = X + x0 and that (via the chain rule)

y′(x) =
d

dx
[y(x)] =

d

dx
[Y (X)] =

dY

d X

d X

dx
=

dY

d X

d

dx
[x − 2] =

dY

d X
= Y ′(X) ,

we see that this converted differential equation is simply

A(X + x0)Y
′ + B(X + x0)Y = 0 . (31.8b)

Consequently, if we can find a general power series solution

Y (X) =

∞
∑

k=0

ak X k

to the converted differential equation (equation (31.8b)), then we can generate the corresponding

general power series to the original equation (equation (31.8a)) by rewriting X in terms of x ,

y(x) = Y (X) = Y (x − x0) =

∞
∑

k=0

ak(x − x0)
k .

!◮Example 31.2: Consider the problem of finding the power series solution about x0 = 3 for

(

x2 − 6x + 10
)

y′ + (12 − 4x)y = 0 .

Proceeding as suggested, we let

Y (X) = y(x) with X = x − 3 .

Then x = X + 3 , and
(

x2 − 6x + 10
)

y′ + (12 − 4x)y = 0

→֒
(

[X + 3]2 − 6[X + 3] + 10
)

Y ′ + (12 − 4[X + 3])Y = 0

After a bit of simple algebra, this last equation simplifies to

(

X2 + 1
)

Y ′ − 4XY = 0 ,

which, by an amazing stroke of luck, is the differential equation we just dealt with in example

31.1 (only now written using capital letters). From that example, we know

Y (X) = a0

[

1 + 2X2 + X4
]

.

Thus,

y(x) = Y (X) = Y (x − 5) = a0

[

1 + 2(x − 3)2 + (x − 3)4
]

.
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Initial-Value Problems (and Finding Patterns, Again)

The method just described yields a power series solution

y(x) =

∞
∑

k=0

ak(x − x0)
k = a0 + a1(x − x0) + a2(x − x0)

2 + a3(x − x0)
3 + · · ·

in which a0 is an arbitrary constant. Remember,

y(x0) = a0 .

So the general series solution y(x) =
∑∞

k=0 ak(x − x0)
k obtained by the algebraic method for

A(x)y′ + B(x)y = 0

becomes the solution to the initial-value problem

A(x)y′ + B(x)y = 0 with y(x0) = y0

if we simply replace the arbitrary constant a0 with the value y0 .

Along these lines, it is worth recalling that we are dealing with first-order, homogeneous

linear differential equations, and that the general solution to any such equation can be given as an

arbitrary constant times any nontrivial solution. In particular, we can write the general solution

y to any given first-order, homogeneous linear differential equation as

y(x) = a0 y1(x)

where a0 is an arbitrary constant and y1 is the particular solution satisfying the initial condition

y(x0) = 1 . So if our solutions can be written as power series about x0 , then there is a particular

power series solution

y1(x) =

∞
∑

k=0

αk(x − x0)
k

where α0 = y1(x0) = 1 and the other αk’s are fixed numbers (hopefully given by some simple

formula of k ). It then follows that the general solution y is given by

y(x) = a0 y1(x0) = a0

∞
∑

k=0

αk(x − x0)
k =

∞
∑

k=0

ak(x − x0)
k

where

ak = αka0 for k = 0, 1, 2, 3, . . . ,

just as was claimed a few pages ago when we discussed “finding patterns”. (This also confirms

that we will always be able to factor out the a0 in our series solutions.)

One consequence of these observations is that, instead of assuming a solution of the form

∞
∑

k=0

ak(x − x0)
k with a0 arbitrary

in the first step of our method, we could assume a solution of the form

∞
∑

k=0

αk(x − x0)
k with α0 = 1 ,

and then just multiply the series obtained by an arbitrary constant a0 . In practice, though, this

approach is no simpler than that already outlined in the steps of our algebraic method.



Chapter & Page: 31–14 Power Series Solutions I: Basic Computational Methods

31.3 Validity of of the Algebraic Method for
First-Order Equations

Our algebraic method will certainly lead to a general solution of the form

y(x) =

∞
∑

k=0

ak(x − x0)
k with a0 arbitrary ,

provided such a general solution exists. But what assurance do we have that that such solutions

exist? And what about the radius of convergence? What good is a formula for a solution if we

don’t know the interval over which that formula is valid? And while we are asking these sorts

of question, why do we insist that A(x0) 6= 0 in pre-step 2?

Let’s see if we can at least partially answer these questions.

Non-Existence of Power Series Solutions

Let a and b be functions on an interval (α, β) containing some point x0 , and let y be any

function on that interval satisfying

a(x)y′ + b(x)y = 0 with y(x0) 6= 0 .

For the moment, assume this differential equation has a general power series solution about x0

valid on (α, β) . This means there are finite numbers a0 , a1 , a2 , . . . such that

y(x) =

∞
∑

k=0

ak(x − x0)
k for α < x < β .

In particular, there are finite numbers a0 and a1 with

y(x0) = a0 6= 0 and y′(x0) = a1 .

Also observe that we can algebraically solve our differential equation for y′ , obtaining

y′(x) = −
b(x)

a(x)
y(x) .

Thus,

a1 = y(x0) = −
b(x0)

a(x0)
y(x0) = −

b(x0)

a(x0)
a0 , (31.9)

provided the above fraction is a finite number — which will certainly be the case if a(x) and

b(x) are polynomials with a(x0) 6= 0 .

More generally, the fraction in equation (31.9) might be indeterminant. To get around this

minor issue, we’ll take limits:

a1 = y′(x0) = lim
x→x0

y′(x) = lim
x→x0

[

−
b(x)

a(x)
y(x)

]

= − lim
x→x0

[

b(x)

a(x)

]

y(x0) = − lim
x→x0

[

b(x)

a(x)

]

a0 .
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Solving for the limit, we then have

lim
x→x0

b(x)

a(x)
= −

a1

a0

.

This means the above limit must exist and be a well-defined finite number whenever the solution

y can be given by the above power series. And if you think about what this means when the

above limit does not exist as a finite number, you get:

Lemma 31.1 (nonexistence of a power series solution)

Let a and b be two functions on some interval containing a point x0 . If

lim
x→x0

b(x)

a(x)

does not exist as a finite number, then

a(x)y′ + b(x)y = 0

does not have a general power series solution about x0 with arbitrary constant term.

!◮Example 31.3: Consider the differential equation

(x − 2)y′ + 2y = 0 .

This equation is

a(x)y′ + b(x)y = 0

with

a(x) = (x − 2) and b(x) = 2 .

Note that these are polynomials without common factors but with a(2) = 0 . Consequently,

lim
x→2

b(x)

a(x)
= lim

x→2

2

(x − 2)
=

2

0
,

which is certainly not a finite number. Lemma 31.1 then tells us to not bother looking for a

solution of the form

y(x) =

∞
∑

k=0

ak(x − 2)k with a0 arbitrary .

No such solution exists.

Singular and Ordinary Points, and the Radius of Analyticity

Because of the ‘singular’ behavior just noted, we refer to any point z0 for which

lim
z→z0

b(z)

a(z)

is not a well-defined finite number as a singular point for the differential equation

a(x)y′ + b(x)y = 0 .
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Note that we used “ z ” in this definition, suggesting that we may be considering points on the

complex plane as well. This can certainly be the case when a and b are rational functions. And

if a and b are rational functions, then the nonsingular points (i.e., the points that are not singular

points) are traditionally referred to as ordinary points for the above differential equation.

A related concept is that of the radius of analyticity (for the above differential equation)

about any given point z0 . This is the distance between z0 and the singular point zs closest

to z0 , provided the differential equation has at least one singular point. If the equation has no

singular points, then we define the equation’s radius of analyticity (about z0 ) to be +∞ . For

this definition to make sense, of course, we need to be able to view the functions a and b as

functions on the complex plane, as well as functions on a line. Again, this is certainly the case

when a and b are rational functions.

Validity of the Algebraic Method

We just saw that our algebraic method for finding power series solutions about x0 will fail if x0

is a singular point. On the other hand, there is a theorem assuring us that the method will succeed

when x0 is an ordinary point for our differential equation, and even giving us a good idea of the

interval over which the general power series solution is valid. Here is that theorem:

Theorem 31.2 (existence of power series solutions)

Let x0 be an ordinary point on the real line for

a(x)y′ + b(x)y = 0

where a and b are rational functions. Then this differential equation has a general power series

solution

y(x) =

∞
∑

k=0

ak(x − x0)
k

with a0 being the arbitrary constant. Moreover, this solution is valid at least on the interval

(x0 − R, x0 + R) where R it the radius of analyticity about x0 for the differential equation.

The proof of this theorem requires a good deal more work than did our derivation of the

previous lemma. We will save that labor for the next chapter.

Identifying Singular and Ordinary Points

The basic approach to identifying a point z0 as being either a singular or ordinary point for

a(x)y′ + b(x)y = 0

is to look at the limit

lim
z→z0

b(z)

a(z)
.

If the limit is a finite number, x0 is an ordinary point; otherwise x0 is a singular point. And if

you think about how this limit is determined by the values of a(z) and b(z) as z → z0 , you’ll

derive the shortcuts listed in the next lemma.
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Lemma 31.3

Let z0 be a point in the complex plane, and consider the differential equation

a(x)y′ + b(x)y = 0

where a and b are rational functions. Then

1. If a(z0) and b(z0) are both finite numbers with a(z0) 6= 0 , then z0 is an ordinary point

for the differential equation.

2. If a(z0) and b(z0) both finite numbers with a(z0) = 0 and b(z0) 6= 0 , then z0 is a

singular point for the differential equation.

3. If a(z0) is a finite nonzero number, and

lim
z→z0

|b(z)| = ∞ ,

then z0 is a singular point for the differential equation.

4. If b(z0) is a finite number, and

lim
z→z0

|a(z)| = ∞ ,

then z0 is an ordinary point for the differential equation.

As actually illustrated in example 31.3, applying the above to the differential equations of

interest here, rewritten in the form recommended for the algebraic method, yields the following

corollary.

Corollary 31.4

Let A(x) and B(x) be polynomials having no factors in common. Then a point z0 on the

complex plane is a singular point for

A(x)y′ + B(x)y = 0

if and only if A(z0) = 0 .

!◮Example 31.4: To first illustrate the algebraic method, we used

y′ +
2

x − 2
y = 0 ,

which we rewrote as

(x − 2)y′ + 2y = 0 .

Now

A(zs) = zs − 2 = 0 ⇐⇒ zs = 2 .

So this differential equation has just one singular point, zs = 2 . Any x0 6= 2 is then an

ordinary point for the differential equation, and the corresponding radius of analyticity is

Rx0
= distance from x0 to zs = |zs − x0| = |2 − x0| .
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Theorem 31.2 then assures us that, about any x0 6= 2 , the general solution to our differ-

ential equation has a power series formula, and its radius of convergence is at least equal to

|2 − x0| . In particular, the power series we found,

y = a0

∞
∑

k=0

k + 1

2k
xk ,

is centered at x0 = 0 . So the corresponding radius of analyticity is

R = |2 − 0| = 2

and our theorems assure us that our series solution is valid at least on the interval (x0 − R, x0 +

R) = (−2, 2) .

In this regard, let us note the following:

1. If |x | ≥ 2 , then the terms of our power series solution

y = a0

∞
∑

k=0

k + 1

2k
xk = a0

∞
∑

k=0

(k + 1)

(
x

2

)k

,

clearly increase in magnitude as k increases. Hence, this series diverges whenever

|x | ≥ 2 . So, in fact, the radius of convergence is 2 , and our power series solution is

only valid on (−2, 2) .

2. As we observed on page 31–8, the above power series is the power series about x0 for

y(x) =
4a0

(2 − x)2
.

But you can easily verify that this simple formula gives us a valid general solution to

our differential equation on any interval not containing the singular point x = 2 , not

just (−2, 2) .

The last example shows that a power series for a solution may be valid over a smaller interval

than the interval of validity for another formula for that solution. Of course, finding that more

general formula may not be so easy, especially after we start dealing with higher-order differential

equations.

The next example illustrates something slightly different; namely that the radius of conver-

gence for a power series solution can, sometimes, be much larger than the corresponding radius

of analyticity for the differential equation.

!◮Example 31.5: In example 31.2, we considered the problem of finding the power series

solution about x0 = 3 for

(

x2 − 6x + 10
)

y′ + (12 − 4x)y = 0 .

Any singular point z for this differential equation is given by

z2 − 6z + 10 = 0 .
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Using the quadratic formula, we see that we have two singular points z+ and z− given by

z± =
6 ±

√

(−6)2 − 4 · 10

2
= 3 ± 1i .

The radius of analyticity about x0 = 3 for our differential equation is the distance between

each of these singular points and x0 = 3 ,

|z± − x0| = |[3 ± 1i] − 3| = |±i | = 1 .

So the radius of convergence for our series is at least 1 , which means that our series solution

is valid on at least the interval

(x0 − R, x0 + R) = (3 − 1, 3 + 1) = (2, 4) .

Recall, however, that example 31.2 demonstrated the possibility of a “terminating series”,

and that our series solution to the above differential equation actually ended up being the

polynomial

y(x) = a0

[

1 + 2x2 + x4
]

,

which is easily verified to be a valid solution on the entire real line (−∞,∞) , not just (2, 4) .

31.4 The Algebraic Method with Second-Order
Equations

Extending the algebraic method to deal with second-order differential equations is straightfor-

ward. The only real complication (aside from the extra computations required) comes from

the fact that our solutions will now involve two arbitrary constants instead of one, and that

complication won’t be particularly troublesome.

Details of the Method

Our goal, now, is to find a general power series solution to

a(x)y′′ + b(x)y′ + c(x)u = 0

assuming a(x) , b(x) and c(x) are rational functions. As hinted above, the procedure given

here is very similar to that given in the previous section. Because of this, some of the steps will

not be given in the same detail as before.

To illustrate the method, we will find a power series solution to

y′′ − xy = 0 . (31.10)

This happens to be Airy’s equation. It is a famous equation and cannot be easily solved by any

method we’ve discussed earlier in this text.

Again, we have two preliminary steps:
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Pre-step 1: Get the differential equation into the form

A(x)y′′ + B(x)y′ + C(x)y = 0

where A(x) , B(x) and C(x) are polynomials, preferably with no factors shared by all

three.

Our example is already in the desired form.

Pre-step 2: If not already specified, choose a value for x0 such that that A(x0) 6= 0 . If

initial conditions are given for y(x) at some point, then use that point for x0 (provided

A(x0) 6= 0 ). Otherwise, choose x0 as convenient — which usually means choosing

x0 = 0 .6

For our example, we have no initial values at any point, so we choose x0 as

simply as possible; namely, x0 = 0 .

Now for the basic method:

Step 1: Assume

y = y(x) =

∞
∑

k=0

ak(x − x0)
k (31.11)

with a0 and a1 being arbitrary and the other ak’s “to be determined”, and then com-

pute/write out the corresponding series for the first two derivatives,

y′ =

∞
∑

k=0

d

dx

[

ak(x − x0)
k
]

=

∞
∑

k=1

kak(x − x0)
k−1

and

y′′ =

∞
∑

k=1

d

dx

[

kak(x − x0)
k−1

]

=

∞
∑

k=2

k(k − 1)ak(x − x0)
k−2 .

Step 2: Plug these series for y , y′ , and y′′ back into the differential equation and “multiply

things out” to get zero equalling the sum of a few power series about x0 .

Step 3: For each series in your last equation, do a change of index so that each series looks like

∞
∑

n=something

[

something not involving x
]

(x − x0)
n .

Step 4: Convert the sum of series in your last equation into one big series. The first few terms

may have to be written separately. Simplify what can be simplified.

Since we’ve already decided x0 = 0 in our example, we let

y = y(x) =

∞
∑

k=0

ak xk , (31.12)

6 Again, the requirement that A(x0) 6= 0 is a simplification of requirements we’ll develop in the next section. But

“A(x0) 6= 0” will suffice for now, especially if A , B and C are polynomials with no factors shared by all three.
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and “compute”

y′ =

∞
∑

k=0

d

dx

[

ak xk
]

=

∞
∑

k=1

kak xk−1

and

y′′ =

∞
∑

k=1

d

dx

[

kak xk−1
]

=

∞
∑

k=2

k(k − 1)ak xk−2 .

Plugging these into the given differential equation and carrying out the other

steps stated above then yields the following sequence of equalities:

0 = y′′ − xy

=

∞
∑

k=2

k(k − 1)ak xk−2 − x

∞
∑

k=0

ak xk

=

∞
∑

k=2

k(k − 1)ak xk−2

︸ ︷︷ ︸

n = k−2

+

∞
∑

k=0

(−1)ak xk+1

︸ ︷︷ ︸

n = k+1

=

∞
∑

n=0

(n + 2)(n + 1)an+2xn +

∞
∑

n=1

(−1)an−1xn

= (0 + 2)(0 + 1)a0+2x0 +

∞
∑

n=1

(n + 2)(n + 1)an+2xn +

∞
∑

n=1

(−1)an−1xn

= 2a2x0 +

∞
∑

n=1

[(n + 2)(n + 1)an+2 − an−1]x
n .

Step 5: At this point, you will have an equation of the basic form

∞
∑

n=0

[

nth formula of the ak’s
]

(x − x0)
n = 0 .

Now:

(a) Solve

nth formula of the ak’s = 0 for n = 0, 1, 2, 3, 4, . . . .

for the ak with the highest index,

ahighest index = formula of n and lower-indexed coefficients .

Again, a few of these equations may need to be treated separately, but you will

also obtain a relatively simple formula that holds for all indices above some fixed

value. This is a recursion formula for computing each coefficient from previously

computed coefficients.

(b) Using another change of indices, rewrite the recursion formula just derived so that

it looks like

ak = formula of k and lower-indexed coefficients .
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From the previous step in our example, we have

2a2x0 +

∞
∑

n=1

[(n + 2)(n + 1)an+2 − an−1]x
n = 0 .

So

2a2 = 0 ,

and, for n = 1, 2, 3, 4, . . . ,

(n + 2)(n + 1)an+2 − an−1 = 0 .

The first tells us that

a2 = 0 .

Solving the second for an+2 yields the recursion formula

an+2 =
1

(n + 2)(n + 1)
an−1 for n = 1, 2, 3, 4, . . . .

Letting k = n + 2 (equivalently, n = k − 2 ), this becomes

ak =
1

k(k − 1)
ak−3 for k = 3, 4, 5, 6, . . . . (31.13)

This is the recursion formula we will use.

Step 6: Use the recursion formula (and any corresponding formulas for the lower-order terms)

to find all the ak’s in terms of a0 and a1 . Look for patterns!

We already saw that

a2 = 0 .

Using this and recursion formula (31.13) with k = 3, 4, . . . (and looking for

patterns), we see that

a3 =
1

3(3 − 1)
a3−3 =

1

3 · 2
a0 ,

a4 =
1

4(4 − 1)
a4−3 =

1

4 · 3
a1 ,

a5 =
1

5(5 − 1)
a5−3 =

1

5 · 4
a2 =

1

5 · 4
· 0 = 0 ,

a6 =
1

6(6 − 1)
a6−3 =

1

6 · 5
a3 =

1

6 · 5
·

1

3 · 2
a0 ,

a7 =
1

7(7 − 1)
a7−3 =

1

7 · 6
a4 =

1

7 · 6
·

1

4 · 3
a1 ,

a8 =
1

8(8 − 1)
a8−3 =

1

8 · 7
a5 =

1

8 · 7
·

1

5 · 4
· 0 = 0 ,

a9 =
1

9(9 − 1)
a9−3 =

1

9 · 8
a6 =

1

9 · 8
·

1

6 · 5
·

1

3 · 2
a0 ,



The Algebraic Method with Second-Order Equations Chapter & Page: 31–23

a10 =
1

10(10 − 1)
a10−3 =

1

10 · 9
a7 =

1

10 · 9
·

1

7 · 6
·

1

4 · 3
a1 ,

...

There are three patterns here. The simplest is

ak = 0 when k = 2, 5, 8, 11, . . .

The other two are more difficult to describe. Look carefully and you’ll see that

the denominators are basically k! with every third factor removed. If k = 3,

6, 9, . . . , then

ak =
1

(2 · 3)(5 · 6)(8 · 9) · · · ([k − 1] · k)
a0 .

If k = 4, 7, 10, . . . , then

ak =
1

(3 · 4)(6 · 7)(9 · 10) · · · ([k − 1] · k)
a1 .

Let us observe that we can use the change of indices k = 3n and k = 3n + 1

to rewrite the last two expressions as

a3n =
1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0 for n = 1, 2, 3, . . .

and

a3n+1 =
1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])
a1 for n = 1, 2, 3, . . . .

Step 7: Using the formulas just derived for the coefficients, write out the resulting series for

y(x) . Try to simplify it to a linear combination of two power series, y1(x) and y2(x) ,

with y1(x) multiplied by a0 and y2(x) multiplied by a1 .

Plugging the formulas just derived for the ak’s into the power series assumed

for y , we get

y(x) =

∞
∑

k=0

ak xk

= a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + · · ·

=
[

a0 + a3x3 + a6x6 + a9x9 + · · ·
]

+
[

a1 + a4x4 + a7x7 + a10x10 + · · ·
]

+
[

a2 + a5x5 + a8x8 + a11x11 + · · ·
]

=
[

a0 + a3x3 + a6x6 + · · · + a3n x3n + · · ·
]

+
[

a1 + a4x4 + a7x7 + · · · + a3n+1x3n+1 + · · ·
]

+
[

a2 + a5x5 + a8x8 + · · · + a3n+2x3n+2 + · · ·
]
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=

[

a0 +
1

3 · 2
a0x3 + · · · +

1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
a0x3n + · · ·

]

+

[

a1x +
1

4 · 3
a1x4 + · · · +

1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])
a1x3n+1 + · · ·

]

+
[

0 + 0x5 + 0x8 + 0x11 + · · ·
]

= a0

[

1 +
1

3 · 2
x3 + · · · +

1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
x3n + · · ·

]

+ a1

[

x +
1

4 · 3
x4 + · · · +

1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])
x3n+1 + · · ·

]

So,

y(x) = a0 y1(x) + a1 y2(x) (31.14a)

where

y1(x) = 1 +

∞
∑

n=1

1

(2 · 3)(5 · 6) · · · ([3n − 1] · 3n)
x3n (31.14b)

and

y2(x) = x +

∞
∑

n=1

1

(3 · 4)(6 · 7) · · · (3n · [3n + 1])
x3n+1 . (31.14c)

Last Step: See if you recognize either of the series derived as the series for some well-known

function (you probably won’t!).

It is unlikely that you have ever seen the above series before. So we can-

not rewrite our power series solutions more simply in terms of better-known

functions.

Practical Advice on Using the Method

The advice given for using this method with first-order equations certainly applies when using this

method for second-order equations. All that can be added is that even greater diligence is needed

in the individual computations. Typically, you have to deal with more power series terms when

solving second-order differential equations, and that, naturally, provides more opportunities for

error. That also leads to a greater probability that you will not succeed in finding “nice” formulas

for the coefficients, and may have to simply use the recursion formula to compute as many terms

as you think necessary for a reasonably accurate partial sum approximation.

Initial-Value Problems (and Finding Patterns)

Observe that the solution obtained in our example (formula set 31.14) that can be written as

y(x) = a0 y1(x) + a1 y2(x)

where y1(x) and y2(x) are power series about x0 = 0 with

y1(x) = 1 + a summation of terms of order 2 or more
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and

y2(x) = 1 · (x − x0) + a summation of terms of order 2 or more .

In fact, we can derive this observation more generally after recalling that the general solution

to an second-order, homogeneous linear differential equation is given by

y(x) = a0 y1(x) + a1 y2(x)

where a0 and a1 are arbitrary constants, and y1 and y2 form a linearly independent pair of

particular solutions to the given differential equation. In particular, we can take y1 to be the

solution satisfying initial conditions

y1(x0) = 1 and y1
′(x0) = 0 ,

while y2 is the solution satisfying initial conditions

y2(x0) = 0 and y2
′(x0) = 1 .

If our solutions can be written as power series about x0 , then y1 and y2 can be written as

particular power series

y1(x0) =

∞
∑

k=0

αk(x − x0)
k and y2(x0) =

∞
∑

k=0

βk(x − x0)
k

where

α0 = y1(x0) = 1 and α1 = y1
′(x0) = 0 ,

β0 = y2(x0) = 0 and β1 = y2
′(x0) = 1 ,

and the other αk’s and βk’s are fixed numbers (hopefully given by relatively simple formulas

of k ). Thus,

y1(x) = α0 + α1(x − x0) + α2(x − x0)
2 + α3(x − x0)

3 + · · ·

= 1 + 0 · (x − x0) + α2(x − x0)
2 + α3(x − x0)

3 + · · ·

= 1 +

∞
∑

k=2

αk(x − x0)
k ,

while

y2(x) = β0 + β1(x − x0) + β2(x − x0)
2 + β3(x − x0)

3 + · · ·

= 0 + 1 · (x − x0) + β2(x − x0)
2 + β3(x − x0)

3 + · · ·

= 1 · (x − x0) +

∞
∑

k=2

βk(x − x0)
k ,

verifying that the observation made at the start of this subsection holds in general.

With regard to initial-value problems, we should note that, with these power series for y1

and y2 ,

y(x) = a0 y1(x) + a1 y2(x)

automatically satisfies the initial conditions

y(x0) = a0 and y′(x0) = a1

for any choice of constants a0 and a1
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31.5 Validity of the Algebraic Method for
Second-Order Equations

Let’s start by defining “ordinary” and “singular” points.

Ordinary and Singular Points, and the Radius of Analyticity

Given a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0 (31.15)

we classify any point z0 as a singular point if either of the limits

lim
z→z0

b(z)

a(z)
or lim

z→z0

c(z)

a(z)

fails to exist as a finite number. Note that (just as with our definition of singular points for

first-order differential equations) we used “ z ” in this definition, indicating that we may be

considering points on the complex plane as well. This can certainly be the case when a , b and

c are rational functions. And if a , b and c are rational functions, then the nonsingular points

(i.e., the points that are not singular points) are traditionally referred to as ordinary points for the

above differential equation.

The radius of analyticity (for the above differential equation) about any given point z0 is

defined just as before: It is the distance between z0 and the singular point zs closest to z0 ,

provided the differential equation has at least one singular point. If the equation has no singular

points, then we define the equation’s radius of analyticity (about z0 ) to be +∞ . For this

definition to make sense, of course, we need to be able to view the functions a , b and c as

functions on the complex plane, as well as functions on a line. Again, this is certainly the case

when these functions are rational functions.

Nonexistence of Power Series Solutions

The above definitions are inspired by the same sort of computations as led to the analogous

definitions for first-order differential equations in section 31.3. I’ll leave those computations to

you. In particular, rewriting differential equation (31.15) as

y′′(x) = −
b(x)

a(x)
y′(x) −

c(x)

a(x)
y(x) ,

and using the relations between the values y(x0) , y′(x0) and y′′(x0) , and the first three coeffi-

cients in

y(x) =

∞
∑

k=0

ak(x − x0)
k ,

you should be able to prove the second-order analog to lemma 31.1:

Lemma 31.5 (nonexistence of a power series solution)

If x0 is a singular point for

a(x)y′′ + b(x)y′ + c(x)y = 0 ,
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then this differential equation does not have a power series solution y(x) =
∑∞

k=0 ak(x − x0)
k

with a0 and a1 being arbitrary constants.

?◮Exercise 31.1: Verify lemma 31.5.

(By the way, a differential equation might have a “modified” power series solution about a

singular point. We start examining this possibility in chapter 33.)

Validity of the Algebraic Method

Once again, we have a lemma telling us that our algebraic method for finding power series

solutions about x0 will fail if x0 is a singular point (only now we are considering second-order

equations). And, unsurprisingly, we also have a second-order analog of theorem 31.6 assuring

us that the method will succeed when x0 is an ordinary point for our second-order differential

equation, and even giving us a good idea of the interval over which the general power series

solution is valid. That theorem is:

Theorem 31.6 (existence of power series solutions)

Let x0 be an ordinary point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are rational functions. Then this differential equation has a general power

series solution

y(x) =

∞
∑

k=0

ak(x − x0)
k

with a0 and a1 being the arbitrary constants. Moreover, this solution is valid at least on the

interval (x0 − R, x0 + R) where R it the radius of analyticity about x0 for the differential

equation.

And again, we will wait until the next chapter to prove this theorem (or a slightly more

general version of this theorem).

Identifying Singular and Ordinary Points

The basic approach to identifying a point z0 as being either a singular or ordinary point for

a(x)y′′ + b(x)y′ + c(x)y = 0

is to look at the limits

lim
z→z0

b(z)

a(z)
and lim

z→z0

c(z)

a(z)
.

If the limits are both a finite numbers, x0 is an ordinary point; otherwise x0 is a singular point.

And if you think about how these limits are determined by the values of a(z) and b(z) as

z → z0 , you’ll derive the shortcuts listed in the next lemma.
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Lemma 31.7 (tests for ordinary/singular points)

Let z0 be a point on the complex plane, and consider a differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

in which a , b and c are all rational functions. Then:

1. If a(z0) , b(z0) and c(z0) are all finite values with a(z0) 6= 0 , then z0 is an ordinary

point for the differential equation.

2. If a(z0) , b(z0) and c(z0) are all finite values with a(z0) = 0 , and either b(z0) 6= 0 or

c(z0) 6= 0 , then z0 is a singular point for the differential equation.

3. If a(z0) is a finite value but either

lim
z→z0

|b(z)| = ∞ or lim
z→z0

|c(z)| = ∞ ,

then z0 is a singular point for the differential equation.

4. If b(z0) and c(z0) are finite numbers, and

lim
z→z0

|a(z)| = ∞ ,

then z0 is an ordinary point for the differential equation.

Again, applying the above to the corresponding differential equation rewritten in the form

recommended in the first step of our method, we get:

Corollary 31.8

Let A , B , and C be polynomials with no factors shared by all three. Then a point z0 on the

complex plane is a singular point for

A(x)y′′ + B(x)y′ + C(x)y = 0

if and only if A(z0) = 0 .

!◮Example 31.6: The coefficients in Airy’s equation

y′′ − xy = 0

are polynomials with the first coefficient being

A(x) = 1 .

Since there is no zs in the complex plane such that A(zs) = 0 , Airy’s equation has no singular

point, and theorem 31.6 assures us that the power series solution we obtained in solving Airy’s

equation (formula set (31.14) on page 31–24) is valid for all x .
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31.6 The Taylor Series Method
The Basic Idea (Expanded)

In this approach to finding power series solutions, we compute the terms in the Taylor series for

the solution,

y(x) =

∞
∑

k=0

y(k)(x0)

k!
(x − x0)

k .

in a manner reminiscent of the way you probably computed Taylor series in elementary calculus.

Unfortunately, this approach often fails to yield a useful general formula for the coefficients of

the power series solution (unless the original differential equation is very simple). Consequently,

you typically end up with a partial sum of the power series solutions consisting of however many

terms you’ve had the time or desire to compute. But there are two big advantages to this method

over the general basic method:

1. The computation of the individual coefficients of the power series solution is a little

more direct and may require a little less work than when using the algebraic method, at

least for the first few terms (provided you are proficient with product and chain rules of

differentiation).

2. The method can be used on a much more general class of differential equations than

described so far. In fact, it can be used to formally find the Taylor series solution for any

differential equation that can be rewritten in the form

y′ = F1(x, y) or y′′ = F2(x, y, y′)

where F1 and F2 are known functions that are sufficiently differentiable with respect to

all variables.

With regard to the last comment, observe that

a(x)y′ + b(x)y = 0 and a(x)y′′ + b(x)y′ + c(x)y = 0

can be rewritten, respectively, as

y′ = −
b(x)

a(x)
y

︸ ︷︷ ︸

F1(x,y)

and y′′ = −
b(x)

a(x)
y′ −

c(x)

a(x)
y

︸ ︷︷ ︸

F2(x,y,y′)

.

So this method can be used on the same differential equations we used the algebraic method on

in the previous sections. Whether you would want to is a different matter.

The Steps in the Taylor Series Method

Here are the steps in our procedure for finding the Taylor series about a point x0 for the solution

to a fairly arbitrary first- or second-order differential equation. As an example, we will find the

power series solution to

y′′ + cos(x)y = 0 .


