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Validating the Method of Frobenius

Let us now focus on verifying the claims made in the big theorems of section 34.1: theorem 34.1

on the indicial equation, and theorem 34.2 on solutions about regular singular points.

We will begin our work in a rather obvious manner — by applying the basic Frobenius method

to a generic differential equation with a regular singular point (after rewriting the equation in a

“reduced form”) and then closely looking at the results of these computations. This, along with a

theorem on convergence that we’ll discuss, will tell us precisely when the basic method succeeds

and why it fails for certain cases. After that, we will derive the alternative solution formulas

(formulas (34.3) and (34.4) in theorem 34.2 on page 34–2) and verify that they truly are valid

solutions. Dealing with these later cases will be the challenging part.

35.1 Basic Assumptions and Symbology

Throughout this chapter, we are assuming that we have a second-order linear homogeneous

differential equation having a point x0 on the real line as a regular singular point, and having

R as the Frobenius radius of convergence about x0 . For simplicity, we will further assume

x0 = 0 , keeping in mind that corresponding results can be obtained when the regular singular

point is nonzero by using the substitution X = x − x0 . Also, (after recalling the comments

made on page 33–23 about solutions when x < x0 ), let us agree that we can restrict ourselves

to analyzing the possible solutions on the interval (0, R) .

As noted in theorem 33.4 on page 33–10, our differential equation can be written as

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 , (35.1a)

where α , β and γ are functions analytic at x0 = 0 and with α(0) 6= 0 . The associated

differential equation is then

α(x)y′′ + β(x)y′ + γ (x)y = 0 . (35.1b)

Dividing through by α , we get the corresponding reduced forms for our original differential

equation

x2 y′′ + x P(x)y′ + Q(x)y = 0 , (35.2a)

and for the associated differential equation

y′′ + P(x)y′ + Q(x)y = 0 . (35.2b)
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In each of these equations,

P(x) =
β(x)

α(x)
and Q(x) =

γ (x)

α(x)
.

Do observe that, because of the relation between equations (35.2a) and (35.2b), each equation

will have the same nonzero singular points as the other. Hence, R is also the radius of analyticity

for equation (35.2b). This means (see lemma 32.7 on page 32–7) that we can express P and Q

as power series

P(x) =

∞
∑

k=0

pk xk for |x | < R (35.3a)

and

Q(x) =

∞
∑

k=0

qk xk for |x | < R . (35.3b)

For the rest of this chapter, we will be doing computations involving the above pk’s and

qk’s . Don’t forget this. And don’t forget the relation between P and Q , and the coefficients of

the first version of our differential equation. In particular, we might as well note here that

p0 = P(0) =
β(0)

α(0)
and q0 = Q(0) =

γ (0)

α(0)
.

Finally, throughout this chapter, we will let L be the linear differential operator

L[y] = x2 y′′ + x P(x)y′ + Q(x)y ,

so that we can write the differential equation we wish to solve, equation (35.2a), in the very

abbreviated form

L[y] = 0 .

This will make it easier to describe some of our computations.

35.2 The Indicial Equation and Basic Recursion
Formula

Basic Derivations

First, let’s see what we get from plugging the arbitrary modified power series

y(x) = xr

∞
∑

k=0

ck xk =

∞
∑

k=0

ck xk+r

into L :

L[y] = x2 y′′ + x P(x)y′ + Q(x)y

= x2

∞
∑

k=0

ck(k + r)(k + r − 1)xk+r−2

+ x

(
∞
∑

k=0

pk xk

)(
∞
∑

k=0

ck(k + r)xk+r−1

)

+

(
∞
∑

k=0

qk xk

)(
∞
∑

k=0

ck xk+r

)
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=

∞
∑

k=0

ck(k + r)(k + r − 1)xk+r

+

∞
∑

k=0

k
∑

j=0

c j pk− j ( j + r)xk+r +

∞
∑

k=0

k
∑

j=0

c jqk− j x
k+r

= xr

∞
∑

k=0

[

ck(k + r)(k + r − 1) +

k
∑

j=0

c j

[

pk− j( j + r) + qk− j

]
]

xk .

That is,

L

[

xr

∞
∑

k=0

ck xk

]

= xr

∞
∑

k=0

Lk xk

where

Lk = ck(k + r)(k + r − 1) +

k
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]

.

Let’s now look at the individual Lk’s .

For k = 0 ,

L0 = c0(0 + r)(0 + r − 1) +

0
∑

j=0

c j

[

p0− j ( j + r) + q0− j

]

= c0r(r − 1) + c0 [p0r + q0]

= c0

[

r(r − 1) + p0r + q0

]

.

The expression in the last bracket will arise several more times in our computations. For conve-

nience, we will let I be the corresponding polynomial function

I (ρ) = ρ(ρ − 1) + p0ρ + q0 .

Then

L0 = c0 I (r) .

For k > 0 ,

Lk = ck(k + r)(k + r − 1) +

k
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]

= ck(k + r)(k + r − 1) +

k−1
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]

+ ck

[

pk−k(k + r)qk−k

]

= ck

[

(k + r)(k + r − 1) + p0(k + r) + q0
︸ ︷︷ ︸

I (k+r) !

]

+

k−1
∑

j=0

c j

[

pk− j( j + r) + qk− j

]

.

We’ll be repeating the above computations at least two more times in this chapter. To save

time, let’s summarize what we have.
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Lemma 35.1

Let L be the differential operator

L[y] = x2 y′′ + x P(x)y′ + Q(x)y

where

P(x) =

∞
∑

k=0

pk xk and Q(x) =

∞
∑

k=0

qk xk .

Then, for any modified power series xr
∑∞

k ck xk ,

L

[

xr

∞
∑

k=0

ck xk

]

= xr

[

c0 I (r) +

∞
∑

k=1

(

ck I (k + r) +

k−1
∑

j=0

c j

[

pk− j( j + r) + qk− j

]
)

xk

]

where

I (ρ) = ρ(ρ − 1) + p0ρ + q0 .

Our immediate interest is in finding a modified power series

y(x) = xr

∞
∑

k=0

ck xk with c0 6= 0

that satisfies our differential equation,

L[y] = 0 .

Applying the above lemma, we see that we must have

xr

[

c0 I (r) +

∞
∑

k=1

(

ck I (k + r) +

k−1
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]
)

xk

]

= 0 ,

which means that each term in the above power series must be zero. That is,

I (r) = 0 (35.4a)

and

ck I (k + r) +

k−1
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]

= 0 for k = 1, 2, 3, . . . . (35.4b)

The Indicial Equation
The Equation and Its Solutions

You probably already recognized equation (35.4a) as the indicial equation from the basic method

of Frobenius. In more explicit form, it’s the polynomial equation

r(r − 1) + p0r + q0 = 0 . (35.5a)

Equivalently, we can write this equation as

r 2 + (p0 − 1)r + q0 = 0 , (35.5b)



The Indicial Equation and Basic Recursion Formula Chapter & Page: 35–5

or even

(r − r1)(r − r2) = 0 (35.5c)

or

r 2 − (r1 + r2)r + r1r2 = 0 (35.5d)

where r1 and r2 are the solutions to the indicial equation,

r1 =
1 − p0 +

√

(p0 − 1)2 − 4q0

2
and r2 =

1 − p0 −
√

(p0 − 1)2 − 4q0

2
.

This, of course, also means that we can write the formula for I in four different ways:

I (ρ) = ρ(ρ − 1) + p0ρ + q0 , (35.6a)

I (ρ) = ρ2 + (p0 − 1)ρ + q0 , (35.6b)

I (ρ) = (ρ − r1)(ρ − r2) (35.6c)

and

I (ρ) = ρ2 − (r1 + r2)ρ + r1r2 . (35.6d)

For the rest of this chapter, we will use whichever of the above formulas for I seems most

convenient at the time. Also, r1 and r2 will always denote the two values given above. Do note

that if both are real, then r1 ≥ r2 .

By the way, if you compare the second and last of the above formulas for I (ρ) , you’ll see

that

p0 = 1 − (r1 + r2) and q0 = r1r2 .

Later, we may find these observations useful.

Proof of Theorem 34.1

Recall that p0 and q0 are related to the coefficients in the equation we first started with,

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 ,

via

p0 = P(0) =
β0

α0

and q0 = Q(0) =
γ0

α0

where

α0 = α(0) , β0 = β(0) and γ0 = γ (0) .

Using these relations, we can rewrite the first version of the indicial equation (equation (35.5a))

as

r(r − 1) +
β0

α0

r +
γ0

α0

= 0 ,

which, after multiplying through by α0 is

α0r(r − 1) + β0r + γ0 = 0 .

This, along with the formulas for r1 and r2 , completes the proof of theorem 34.1 on page 34–1.
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Recursion Formulas
The Basic Recursion Formula
You probably also recognized that equation (35.4b) is, essentially, a recursion formula for any

given value of r . Let us first rewrite it as

ck I (k + r) = −

k−1
∑

j=0

c j

[

pk− j( j + r) + qk− j

]

for k = 1, 2, 3, . . . . (35.7)

If

I (k + r) 6= 0 for k = 1, 2, 3, . . . ,

then we can solve the above for ck , obtaining the generic recursion formula

ck =
−1

I (k + r)

k−1
∑

j=0

c j

[

pk− j( j + r) + qk− j

]

for k = 1, 2, 3, . . . . (35.8)

It will be worth noting that p0 and q0 does not explicitly appear in this recursion formula

except in the formula for I (k + r) .

More General Recursion Formulas and a Convergence Theorem

Later, we will have to deal with recursion formulas of the form

ck =
1

I (k + r)

(

fk −

k−1
∑

j=0

c j

[

pk− j ( j + r) + qk− j

]
)

where the fk’s are coefficients of some power series convergent on (−R, R) . (Note that this

reduces to recursion formula (35.8) if each fk is 0 .) To deal with the convergence of any power

series based on any such a recursion formula, we have the following theorem:

Theorem 35.2

Let R > 0 . Assume
∞
∑

k=0

pk xk ,

∞
∑

k=0

qk xk and

∞
∑

k=0

fk xk

are power series convergent for |x | < R , and

∞
∑

k=0

ck xk

is a power series such that, for some value ω and some integer K0 ,

ck =
1

J (k)

(

fk −

k−1
∑

j=0

c j

[

pk− j( j + ω) + qk− j

]
)

for k ≥ K0

where J is some second-degree polynomial function satisfying

J (k) 6= 0 for k = K0, K0 + 1, K0 + 2, . . . .

Then
∑∞

k ck xk is also convergent for |x | < R .

The proof of this convergence theorem will be given in section 35.6. It is very similar to the

convergence proofs developed in chapter 32 for power series solutions.
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35.3 The Easily Obtained Series Solutions

Now let r j be either of the two solutions r1 and r2 to the indicial equation,

I (r) = 0 .

To use recursion formula (35.8) with r = r j , it suffices to have

I (k + r j) 6= 0 for k = 1, 2, 3, . . . .

But r1 and r2 are the only solutions to I (r) = 0 , so the last line tells us that, to use recursion

formula (35.8) with r = r j , it suffices to have

k + r j 6= r1 and k + r j 6= r2 for k = 1, 2, 3, . . . ;

that is, it suffices to have

r1 − r j 6= k and r2 − r j 6= k for k = 1, 2, 3, . . . .

As long as this holds, we can start with any nonzero constant c0 and generate subsequent ck’s

via the basic recursion formula (35.8) to create a power series

∞
∑

k=0

ck xk .

Moreover, theorem 35.2 assures us that this series is convergent for |x | < R . Consequently,

y(x) = xr j

∞
∑

k=0

ck xk

is a well-defined function, at least on (0, R) (just what happens at x = 0 depends on the xr j

factor in this formula). Plugging this formula back into our differential equation and basically

repeating the computations leading to the indicial equation and the recursion formula would then

confirm that this y is, indeed, a solution on (0, R) to our differential equation.

Lemma 35.3

For the problem considered in this chapter: If r j is either of the two solutions r1 and r2 to the

indicial equation, and

r1 − r j 6= k and r2 − r j 6= k for k = 1, 2, 3, . . . , (35.9)

then a solution on (0, R) to the original differential equation is given by

y(x) = xr j

∞
∑

k=0

ck xk

where c0 is any nonzero constant, and c1 , c2 , c3 , . . . are given by recursion formula (35.8)

with r = r j .

Now let us consider the r j = r1 and r j = r2 cases separately, adding the assumption that

the coefficients of our original differential equation are all real-valued in some interval about

x0 = 0 . This means that the coefficients in the indicial equation are all real. Hence, we may

assume that either both r1 and r2 are real with r1 ≥ r2 , or that r1 and r2 are complex conjugates

of each other.
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Solutions Corresponding to r1

With r j = r1 , condition (35.9) in the above lemma becomes

r1 − r1 6= k and r2 − r1 6= k for k = 1, 2, 3, . . . ,

Clearly, the only way this cannot be satisfied is if

r2 − r1 = K for some positive integer K .

But, using the formulas for r1 and r2 from page 35–5, you can easily verify that

r2 − r1 = = −
√

(p0 − 1)2 − 4q0 ,

which cannot equal some positive integer. Thus, the above lemma assures us that

One solution on (0, R) to our differential equation is given by

y(x) = xr1

∞
∑

k=0

ck xk

where c0 is any nonzero constant, and c1 , c2 , c3 , . . . are given by recursion

formula (35.8) with r = r1 .

This confirms statement 1 in theorem 34.2.

In particular, for the rest of our discussion, let us let y1 be the solution

y1(x) = xr1

∞
∑

k=0

ak xk (35.10)

where a0 = 1 and

ak =
−1

I (k + r1)

k−1
∑

j=0

a j

[

pk− j ( j + r1) + qk− j

]

for k = 1, 2, 3, . . . .

On occasion, we may call this our “first” solution.

“Unexceptional” Solutions Corresponding to r2

With r j = r2 , condition (35.9) in lemma 35.3 becomes

r1 − r2 6= k and r2 − r2 6= k for k = 1, 2, 3, . . . ,

which, obviously, is the same as

r1 − r2 6= K for some positive integer K .

Unfortunately, this requirement does not automatically hold. It is certainly possible that

r1 − r2 = K for some positive integer K .

This is an “exceptional” case which we will have examine further. For now, the lemma above

simply assures us that:
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If r1 − r2 is not a positive integer, then a solution on (0, R) to our differential

equation is given by

y(x) = xr2

∞
∑

k=0

ck xk

where c0 is any nonzero constant, and the other ck’s are given by recursion formula

(35.8) with r = r2 .

Of course, the solutions just described corresponding to r2 will be the same as those corre-

sponding to r1 if r2 = r1 (i.e., r1 − r2 = 0 ). This is another exceptional case that we will have

to examine later.

For the rest of this chapter, let us say that, if r1 and r2 are not equal and do not differ by an

integer, then the “second solution” to our differential equation on (0, R) is

y2(x) = xr2

∞
∑

k=0

bk xk

where b0 = 1 and

bk =
−1

I (k + r2)

k−1
∑

j=0

b j

[

pk− j ( j + r2) + qk− j

]

for k = 1, 2, 3, . . . .

We should note that, if r1 and r2 are two different values not differing by an integer, then the

above y1 and y2 are clearly not constant multiples of each other (at least, it should be clear once

you realize that the first terms of y1(x) and y2(x) are, respectively, xr1 and xr2 ). Consequently

{y1, y2} is a fundamental set of solutions to our differential equation on (0, R) , and

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) . That finishes the proof of theorem

34.2 up through statement 2.

Deriving the “Exceptional” Solutions

In the next two sections, we will derive formulas for the solutions corresponding to r = r2 when

r1 and r2 are equal or differ by a nonzero integer. In deriving these solutions, we could use the

first solution, y1 , with the reduction of order method from chapter 13. Unfortunately, that gets

somewhat messy and does not directly lead to useful recursion formulas. So, instead, we will

take somewhat different approaches.

Since the approach we’ll take when r2 = r1 is a bit more elementary (but still tedious) and

somewhat less “clever” than the approach we’ll take when r1 − r2 is a positive integer, we will

consider the case where r2 = r1 first.
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35.4 Second Solutions When r2 = r1

Recall that, based on what we learned from studying Euler equations, we suspected that a second

solution to our differential equation when r2 = r1 will be of the form

y(x) = ln |x | Y (x) with Y (x) = xr1

∞
∑

k=0

bk xk .

Unfortunately, this turns out to not be generally true. But since it seemed so reasonable at the

time, let us still try using this, but with an added “error term”. That is, let’s try something of the

form

y(x) = ln |x | Y (x) + ǫ(x) . (35.11)

Plugging this into the differential equation:

0 = L[y]

= x2 y′′ + x Py′ + Qy

= x2

[

ln |x | Y ′′ +
2

x
Y ′ −

1

x2
Y + ǫ′′

]

+ x P

[

ln |x | Y ′ +
1

x
Y + ǫ′

]

+ Q [ln |x | Y (x) + ǫ(x)]

= ln |x |
[

x2Y ′′ + x PY ′ + QY
︸ ︷︷ ︸

L[Y ]

]

+ 2xY ′ − Y + PY + x2ǫ′′ + x Pǫ′ + Qǫ
︸ ︷︷ ︸

L[ǫ]

.

Choosing Y to be our first solution,

Y (x) = y1(x) = xr1

∞
∑

k=0

ak xk ,

causes the natural log term to vanish, leaving us with

0 = 2x y1
′ − y1 + Py1 + L[ǫ] ,

which we can rewrite as

L[ǫ] = F(x) (35.12a)

with

F(x) = y1(x) − 2x y1
′(x) − P(x)y1(x) . (35.12b)

It turns out that we will be seeing both the above differential equation and the function F

when we deal with the case where r2 and r1 differ by a nonzero integer. So, for now, let’s

expand F(x) using the series formulas for y1 and P without assuming r2 = r1 :

F(x) = y1(x) − 2x y1
′(x) − P(x)y1(x)

= xr1

∞
∑

n=0

an xn − 2x

(

xr1

∞
∑

n=0

an(r1 + n)xn−1

)

−

(
∞
∑

n=0

pnxn

)(

xr1

∞
∑

m=0

am xm

)
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= xr1

[
∞
∑

n=0

an xn −

∞
∑

n=0

an(2r1 + 2n)xn −

(
∞
∑

n=0

pnxn

)(
∞
∑

m=0

am xm

)]

= xr1

∞
∑

n=0

(

an [1 − 2r1 − 2n] −

n
∑

j=0

a j pn− j

)

xn .

Recalling that a0 = 1 and that, in general p0 = 1 − r1 − r2 , we see that the first term in the

series simplifies somewhat,

a0 [1 − 2r1 − 2 · 0)] −

0
∑

j=0

a j p0− j = a0[1 − 2r1 − p0] = r2 − r1 .

For the other terms, we have

an [1 − 2r1 − 2n] −

n
∑

j=0

a j pn− j = an [1 − 2r1 − 2n] −

n−1
∑

j=0

a j pn− j − an p0

= an [1 − 2r1 − p0 − 2n] −

n−1
∑

j=0

a j pn− j

= an [r2 − r1 − 2n] −

n−1
∑

j=0

a j pn− j .

So, in general,

F(x) = xr1

[

r2 − r1 +

∞
∑

n=1

(

an [r2 − r1 − 2n] −

n−1
∑

j=0

a j pn− j

)

xn

]

. (35.13)

We should also note that, because of the way F was constructed from power series convergent

for |x | < R , we automatically have that the power series factor in the above formula for F(x)

is convergent for |x | < R .

Now, let’s again assume r2 = r1 . With this assumption and the change of index k = n −1 ,

the above formula for F(x) reduces further,

F(x) = xr1

[

0 +

∞
∑

n=1

(

− 2nan −

n−1
∑

j=0

a j pn− j

)

xn

]

= xr1

∞
∑

k=0

(

− 2(k + 1)ak+1 −

k
∑

j=0

a j pk+1− j

)

xk+1

]

,

which we can write more succinctly as

F(x) = xr1+1

∞
∑

k=0

fk xk (35.14a)

with

fk = −2(k + 1)ak+1 −

k
∑

j=0

a j pk+1− j . (35.14b)
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Let us now consider a modified power series formula for our error term

ǫ(x) = xρ

∞
∑

k=0

ǫk xk .

From lemma 35.2, we know that

L[ǫ(x)] = xρ

[

ǫ0 I (ρ) +

∞
∑

k=1

(

ǫk I (k + ρ) +

k−1
∑

j=0

ǫ j

[

pk− j ( j + ρ) + qk− j

]
)

xk

]

Thus, the differential equation L[ǫ] = F becomes

xρ

[

ǫ0 I (ρ) +

∞
∑

k=1

(

ǫk I (k + ρ) +

k−1
∑

j=0

ǫ j

[

pk− j( j + ρ) + qk− j

]
)

xk

]

= xr1+1

∞
∑

k=0

fk xk

which is satisfied when

ρ = r1 + 1 , (35.15a)

ǫ0 I (ρ) = f0 (35.15b)

and, for k = 1, 2, 3, . . . ,

ǫk I (k + ρ) +

k−1
∑

j=0

ǫ j

[

pk− j( j + r1 + 1) + qk− j

]

= fk . (35.15c)

So let ρ = r1 + 1 and observe that because r1 is a double root of I (r) ,

I (k + ρ) = I (k + r1 + 1) = ([r1 + k + 1] − r1)
2 = (k + 1)2 .

System (35.15) now reduces to

ǫ0 = f0

and, when k = 1, 2, 3, . . . ,

ǫk(k + 1)2 +

k−1
∑

j=0

ǫ j

[

pk− j ( j + r1 + 1) + qk− j

]

= fk .

That is,

ǫ0 = f0 (35.16a)

and, for k = 1, 2, 3, . . . ,

ǫk =
1

(k + 1)2

(

fk −

k−1
∑

j=0

ǫ j

[

pk− j ( j + r1 + 1) + qk− j

]
)

(35.16b)

where the fk’s are given by formula (35.14b).

Now recall just what we are looking for: We are looking for a function ǫ(x) such that

y2(x) = y1(x) ln |x | + ǫ(x)

is a solution to our original differential equation. We have obtained

ǫ(x) = xρ

∞
∑

k=0

ǫk xk
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where ρ = r1 + 1 and the ǫk’s are given by formula set (35.16). Plugging this formula back

into the original differential equation and repeating the computations used to derive the above

will confirm that y2 is, indeed, a solution over (0, R) , provided the series for ǫ converges.

Fortunately, using theorem 35.2 on page 35–6 this convergence is easily confirmed.

Thus, the above y2 is a solution to our original differential equation on the interval (0, R) .

Moreover, y2 is clearly not a constant multiple of y1 . So {y1, y2} is a fundamental set of

solutions,

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) , and we have verified statement 3

in theorem 34.2 (with bk = ǫk ).

35.5 Second Solutions When r1 − r2 = K

Preliminaries

Let’s now assume r1 and r2 differ by some positive integer K , r1 − r2 = K . Setting

y(x) = xr2

∞
∑

k=0

bk xk

with bk = 1 and using recursion formula (35.8) gives us

bk =
−1

I (r2 + k)

k−1
∑

j=0

b j

[

pk− j ( j + r) + qk− j

]

for k = 1, 2, 3, . . . , K − 1 .

Unfortunately, I (r2 + K ) = I (r1) = 0 , giving us a “division by zero” when we attempt to

compute bK . This is the complication we will deal with for the rest of this section. It turns out

that there are two subcases, depending on whether

ΓK =

K−1
∑

j=0

b j

[

pK− j ( j + r2) + qK− j

]

is zero or not. If it is zero, we get lucky.

The Case Where We Get Lucky

Recall that we actually derived our recursion formula from the requirement that, for

y(x) = xr2

∞
∑

k=0

bk xk

to be a solution to our differential equation, it suffices to have

bk I (r2 + k) = −

k−1
∑

j=0

b j

[

pk− j( j + r) + qk− j

]

for k = 1, 2, 3, . . . , . (35.17)
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As noted above, we can use this to find bk for k < K . For k = K , we have I (r2 + K ) =

I (r1) = 0 and the above equation becomes

bK · 0 = ΓK

If we are lucky, then ΓK = 0 and the above equation is trivially true for any value of bK . So

bK is arbitrary if ΓK = 0 . Pick any value you wish (say, bK = 0 ) and use equation (35.17) to

compute the rest of the bk’s for

y2(x) = xr2

∞
∑

k=0

bk xk .

Convergence theorem 35.2 on page 35–6 now applies and assures us that the above power series

converges for |x | < R . And then, again, the very computations leading to the indicial equation

and recursion formulas verify that this y(x) is a solution to our differential equation. Moreover,

the leading term is xr2 . Consequently, y1(x) and y2(x) are not constant multiples of each other.

Hence, {y1, y2} is a fundamental set of solutions, and

y(x) = c1 y1(x) + c2 y2(x)

is a general solution to our differential equation over (0, R) .

If you go back and check, you will see that the above y2 is the solution claimed to exist in

statement 4 of theorem 34.2 when µ = 0 . Hence we’ve confirmed that part of the claim.

?◮Exercise 35.1: Show that, if we took b0 = 0 and bK = 1 in the above (instead of b0 = 1

and bK = 0 ), we would have obtained the first solution, y1(x) . (Thus, if r1 − r2 = K

and Γk = 0 , the Frobenius method will generate the complete general solution when using

r = r2 .)

The Other Case

Let us now assume

ΓK =

K−1
∑

j=0

b j

[

pK− j ( j + r2) + qK− j

]

6= 0 .

Ultimately, we want to confirm that formula (34.4) in theorem 34.2 does describe a solution to

our differential equation. Before doing that, however, let us see how anyone could have come

up with formula (34.4) in the first place.

Deriving a Solution as the Limit of Other Second Solutions

Suppose we have two differential equations that are very similar to each other. Does it not

seem reasonable to expect one solution of one of these equations to also be very similar to some

solution to the other differential equation? I hope your answer is yes, because this what we will

use to derive the second solution to our differential equation,

x2 y′′ + x Py′ + Qy = 0 . (35.18)
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Remember: This has the corresponding indicial equation

I (r) = 0 with I (ρ) = (ρ − r2)(ρ − r1) .

Also remember that we are assuming r1 = r2 + K for some positive integer K , and that ΓK

(as defined above) is nonzero.

Now let r be any real value close to r2 (say, |r − r2| < 1 ) and consider

x2 y′′ + x Pr y′ + Qr y = 0

where Pr and Qr differ from P and Q only in having the first coefficients in their power series

about 0 adjusted so that the corresponding indicial equation is

Ir (r) = 0 with Ir (ρ) = (ρ − r)(ρ − r1) .

If r = r2 , this is our original equation. If r 6= r2 , this is our “approximating differential

equation”. From our discussion in section 35.3 on the “easily obtained solutions”, we know that,

when r 6= r2 , a second solution to this equation is given by

y(x, r) = xr

∞
∑

k=0

bk(r)xk

with b0(r) = 1 and

bk(r) = −
1

Ir (r + k)

k−1
∑

j=0

b j(r)[Pk− j( j + r) + Qk− j ] for k = 1, 2, . . . .

This, presumably, will approximate some second solution y(x, r1) to equation (35.18),

y(x, r2) ≈ y(x, r) .

Presumably, also, this approximation improves as r → r1 . So, let us go further and seek the

y(x, r2) given by

y(x, r2) = lim
r→r2

y(x, r)

Before going further, let us observe that

Ir (r + k) = (r + k − r)(r + k − r1)

= k(k + r − [r2 + K ]) = k(k − K + r − r2) .

Thus,

bk(r) =
−1

k(k − K + r − r2)

k−1
∑

j=0

b j (r)[Pk− j( j + r) + Qk− j ] for k = 1, 2, . . . .

In particular,

bK (r) =
−1

K (r − r2)

K−1
∑

j=0

b j (r)[PK− j( j + r) + QK− j ]

So, while we have

bk(r2) = lim
r→r2

bk(r) when k < K
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being well-defined finite values, we also have

lim
r→r2

|bK (r)| = ∞ ,

suggesting that

lim
r→r2

|bk(r)| = ∞ for k > K

since the recursion formula for these bk(r)’s all contain bK (r) .

It must be noted, however, that we are assuming limr→r2
y(x, r) exists despite the fact that

individual terms in y(x, r) behave badly as r → r2 . Let’s hold to this hope. Assuming this,

lim
r→r2

xr

∞
∑

k=K

bk(r)xk = lim
r→r2

[

xr

∞
∑

k=0

bk(r)xk − xr

K−1
∑

k=0

bk(r)xk

]

= lim
r→r2

[

y(x, r) − xr

K−1
∑

k=0

bk(r)xk

]

= y(x, r2) − xr2

K−1
∑

k=0

bk(r2)xk ,

which is finite for each x in the interval of convergence. Consequently,

lim
r→r2

(r − r2)xr

∞
∑

k=K

bk(r)xk = 0 .

which we will rewrite as

lim
r→r2

xr

∞
∑

k=K

βk(r)xk = 0 . (35.19)

by letting

βk(r) = (r − r2)bk(r) for r 6= r2 .

Now, let’s start computing y(x, r2) as a limit using a simple, cheap trick:

y(x, r2) = lim
r→r2

y(x, r)

= lim
r→r2

xr

∞
∑

k=0

bk(r)xk

= lim
r→r2

xr

K−1
∑

k=0

bk(r)xk + lim
r→r2

xr

∞
∑

k=K

bk(r)xk

= xr2

K−1
∑

k=0

bk(r2)xk + lim
r→r2

r − r2

r − r2

xr

∞
∑

k=K

bk(r)xk

= xr2

K−1
∑

k=0

bk(r2)xk + lim
r→r2

xr
∑∞

k=K βk(r)xk

r − r2

.

Using L’Hôpital’s rule, we see that

lim
r→r2

xr
∑∞

k=K βk(r)xk

r − r2

= lim
r→r2

∂

∂r

[

xr
∑∞

k=K βk(r)xk
]

∂

∂r
[r − r2]
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= lim
r→r2

xr ln |x |
∑∞

k=K βk(r)xk + xr
∑∞

k=K βk
′(r)xk

1

= xr2 ln |x |

∞
∑

k=K

βk(r2)xk + xr2

∞
∑

k=K

βk
′(r2)xk

Combining the last two results gives

y(x, r2) = xr2 ln |x |

∞
∑

k=K

βk(r2)xk + xr2

∞
∑

k=0

{

bk(r2) if k < K

βk
′(r2) if K ≤ k

}

xk .

This is not a very “pretty” expression. To simplify it, let

ǫk =

{

bk(r2) if k < K

βk
′(r2) if K ≤ k

,

and observe that, letting αk = βk+K (r2) ,

xr2

∞
∑

k=K

βk(r2)xk = xr1−K
[

α0x K + α1x K+1 + α2x K+2 + · · ·
]

= xr1

∞
∑

k=0

αk xk .

Then

y(x, r2) = ln |x | Y (x) + ǫ(x) (35.20a)

where

Y (x) = xr1

∞
∑

k=0

αk xk and ǫ(x) = xr2

∞
∑

k=0

ǫk xk . (35.20b)

Admittedly, part of the derivation of formula (35.20) was based on “hope” and assumptions

that seemed reasonable but were not rigorously justified. So we are not yet certain this formula

does yield the desired solution. Moreover, the methods given in this derivation for computing

the αk’s and ǫk’s certainly appear to be rather difficult to carry out in practice. These are valid

concerns that we will deal with by now ignoring just how we derived this formula. Instead, we

will see about validating this formula and obtaining more usable recursion formulas for the αk’s

and ǫk’s via methods that, by now, should be familiar to the reader.

Verifying Our Solution

Notice how similar formula (35.20a) for y(x, r2) is to formula (35.11) on page 35–10 from

which we derived the second solution y(x) when r1 −r2 = 0 in section 35.4. Let us be inspired

by the work done in that section (and reuse as much of that work as possible) and try to find a

solution of the form

y(x) = ln |x | Y (x) + ǫ(x)

where

ǫ(x) = xr2

∞
∑

k=0

ǫk xk .

Glancing back at the work near the beginning of section 35.4, it should be clear that

y(x) = ln |x | Y (x) + ǫ(x)
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will satisfy our differential equation L[y] = 0 if

Y (x) = y1(x) and L[ǫ] = F(x)

where, taking into account that I (r2) = 0 and r1 − r2 = K ,

L[ǫ] = xr2

[

ǫ0 I (r2) +

∞
∑

k=1

(

ǫk I (r2 + k) +

k−1
∑

j=0

ǫ j

[

pk− j(r2 + j) + qk− j

]
)

xk

]

= xr2

∞
∑

k=1

(

ǫk I (r2 + k) +

k−1
∑

j=0

ǫ j

[

pk− j(r2 + j) + qk− j

]
)

xk

and

F(x) = xr1

[

r2 − r1 +

∞
∑

n=1

(

an [r2 − r1 − 2n] −

n−1
∑

j=0

a j pn− j

)

xn

]

= xr2+K

[

− K +

∞
∑

n=1

(

an [−K − 2n] −

n−1
∑

j=0

a j pn− j

)

xn

]

= xr2

[

− K x K +

∞
∑

n=1

(

an [−K − 2n] −

n−1
∑

j=0

a j pn− j

)

x K+n

]

.

Using k = n + K , we can rewrite our last formula as

F(x) = xr2

[

− K x K +

∞
∑

k=K+1

fk xk

]

with

fk = ak−K [K − 2k] −

k−K−1
∑

j=0

a j pk−K− j .

As in the previous section, we know the power series in the formula for F(x) converges for

|x | < R because of the way it was constructed from power series already known to be convergent

for these values of x .

So the differential equation, L[ǫ] = F , expands to

xr2

∞
∑

k=1

(

ǫk I (r2 + k) +

k−1
∑

j=0

ǫ j

[

pk− j(r2 + j) + qk− j

]
)

xk = xr2

[

− K x K +

∞
∑

k=K+1

fk xk

]

,

which means that we are seeking ǫk’s satisfying the system

ǫk I (r2 + k) +

k−1
∑

j=0

ǫ j

[

pk− j(r2 + j) + qk− j

]

=











0 if 1 ≤ k < K

−K if k = K

fk if k > K

. (35.21)

Solving for ǫk in the first few equations of this set yields

ǫk =
−1

I (r2 + k)

k−1
∑

j=0

ǫ j

[

pk− j (r2 + j) + qk− j

]

for k = 1, 2, . . . , K − 1 .
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To simplify matters, let’s recall that, at the start of this section, we had already obtained a set

{b0, b1, . . . , bK−1} satisfying b0 = 1 and

bk =
−1

I (r2 + k)

k−1
∑

j=0

b j

[

pk− j(r2 + j) + qk− j

]

for k = 1, 2, . . . , K − 1 .

It is then easily verified that, whatever value we have for ǫ0 ,

ǫk = ǫ0bk for k = 1, 2, . . . , K − 1 .

Now, also recall that

ΓK =

K−1
∑

j=0

b j

[

pK− j (r2 + j) + qK− j

]

6= 0 .

and take a look at the K th equation in system (35.21):

ǫK I (r2 + K ) +

K−1
∑

j=0

ǫ j

[

pK− j (r2 + j) + qK− j

]

= −K

→֒ ǫK I (r1) +

K−1
∑

j=0

ǫ0b j

[

pK− j (r2 + j) + qK− j

]

= −K

→֒ ǫK · 0 + ǫ0ΓK = −K .

So ǫK can be any value, while

ǫ0 = −
K

ΓK

,

and

ǫk = ǫ0 · bk = −
K bk

ΓK

for k = 1, 2, . . . , K − 1 .

For the remaining ǫk’s , we simply solve each of the remaining equations in system (35.21)

for ǫk (using whatever value of ǫK we choose), obtaining

ǫk =
1

I (r2 + k)

[

fk −

k−1
∑

j=0

ǫ j

[

pk− j (r2 + j) + qk− j

]
]

for k > K .

Theorem 35.2 tells us that the resulting
∑∞

k=0 ǫk xk converges for |x | < R , and that, along

with all the computations above, tells us that

y(x) = y1(x) ln |x | + xr2

∞
∑

k=0

ǫk xk

is a solution to our original differential equation on (0, R) . Clearly, it is not a constant multiple of

y1 , and so {y1, µy} is a fundamental set of solutions for any nonzero constant µ . In particular,

the solution mentioned in theorem 34.2 is the one with

µ =
1

ǫ0

= −
ΓK

K
.

And that, except for verifying convergence theorem 35.2, confirms statement 4 of theorem

34.2, and completes the proof of theorem 34.2, itself.
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35.6 Convergence of the Solution Series

Finally, let’s verify theorem 35.2 on page 35–6 on the convergence of our series.

Assumptions and Claim

We are assuming that ω is some constant,

∞
∑

k=0

fk xk ,

∞
∑

k=0

pk xk and

∞
∑

k=0

qk xk

are power series convergent for |x | < R , J is a second-degree polynomial function, and K0 is

some nonnegative integer such that

J (k) 6= 0 for k = K0, K0 + 1, K0 + 2, . . . .

We are also assuming that we have a power series

∞
∑

k=0

ck xk

whose coefficients satisfy

ck =
1

J (k)

[

fk −

k−1
∑

j=0

c j

[

pk− j ( j + ω) + qk− j

]
]

for k ≥ K0 .

The claim of the theorem is that
∑∞

k ck xk converges for all x satisfying |x | < R . This,

of course, can be verified by showing
∑∞

k |ck| |x |k converges for each x in (−R, R) .

The Proof

The proof is very similar to (and a bit simpler than) the proofs of convergence in chapter 32.

We start by letting x be any single value in (−R, R) . We then can (and do) choose X

to be some value with |x | < X < R . Also, by the convergence of the series, we can (and do)

choose M to be a positive value such that, for k = 0, 1, 2, . . . ,

∣
∣ fk X k

∣
∣ < M ,

∣
∣pk X k

∣
∣ < M and

∣
∣qk X k

∣
∣ < M .

Now consider the power series
∑∞

k=0 Ck xk with

Ck = |ck| for k < K0

and

Ck =

∣
∣
∣
∣

1

J (k)

∣
∣
∣
∣

[

M X−k +

k−1
∑

j=0

C j

[

M X−[k− j]( j + |ω|) + M X−[k− j]
]
]

for k ≥ K0 .

Comparing the recursion formulas for ck and Ck , it is obvious that

|ck| |x |k ≤ Ck |x |k for k = 0, 1, 2, . . . .
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Consequently, the convergence of
∑∞

k ck xk can be confirmed by showing
∑∞

k Ck |x |k con-

verges, and (by the limit ratio test) that can be shown by verifying that

lim
k→∞

∣
∣
∣
∣

Ck+1xk+1

Ck xk

∣
∣
∣
∣

≤ 1 .

Fortunately, for k > K0 ,

Ck+1 =

∣
∣
∣
∣

1

J (k + 1)

∣
∣
∣
∣

[

M X−(k+1) +

k
∑

j=0

C j

[

M X−[k+1− j]( j + |ω|) + M X−[k+1− j]
]
]

=

∣
∣
∣
∣

X−1

J (k + 1)

∣
∣
∣
∣

[(

M X−k +

k−1
∑

j=0

C j

[

M X−[k− j]( j + |ω|) + M X−[k− j]
]
)

+ Ck

[

M X−[k−k](k + |ω|) + M X−[k−k]
]
]

=

∣
∣
∣
∣

X−1

J (k + 1)

∣
∣
∣
∣
(|J (k)| Ck + Ck[M(k + ω + 1)])

=

∣
∣
∣
∣

|J (k)| + M(k + ω + 1)

J (k + 1)

∣
∣
∣
∣
·

Ck

X
.

Thus,

∣
∣
∣
∣

Ck+1xk+1

Ck xk

∣
∣
∣
∣

=
Ck+1

Ck

|x | =

∣
∣
∣
∣

|J (k)| + M(k + ω + 1)

J (k + 1)

∣
∣
∣
∣
·

|x |

X
.

Since J is a second-degree polynomial, you can easily verify that

lim
k→∞

∣
∣
∣
∣

|J (k)| + M(k + ω + 1)

J (k + 1)

∣
∣
∣
∣

= 1 .

Hence, since |x | < X ,

lim
k→∞

∣
∣
∣
∣

Ck+1xk+1

Ck xk

∣
∣
∣
∣

= lim
k→∞

∣
∣
∣
∣

|J (k)| + M(k + ω + 1)

J (k + 1)

∣
∣
∣
∣
·

|x |

X
= 1 ·

|x |

X
< 1 ,

which is all we needed to verify the claimed convergence.


