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Piecewise-Defined Functions and
Periodic Functions

At the start of our study of the Laplace transform, it was claimed that the Laplace transform is

“particularly useful when dealing with nonhomogeneous equations in which the forcing func-

tions are not continuous”. Thus far, however, we’ve done precious little with any discontinuous

functions other than step functions. Let us now rectify the situation by looking at the sort of

discontinuous functions (and, more generally, “piecewise-defined” functions) that often arise in

applications, and develop tools and skills for dealing with these functions.

We will also take a brief look at transforms of periodic functions other than sines and cosines.

As you will see, many of these functions are, themselves, piecewise defined. And finally, we

will use some of the material we’ve recently developed to re-examine the issue of resonance in

mass/spring systems.

28.1 Piecewise-Defined Functions
Piecewise-Defined Functions, Defined

When we talk about a “discontinuous function f ” in the context of Laplace transforms, we

usually mean f is a piecewise continuous function that is not continuous on the interval (0,∞) .

Such a function will have jump discontinuities at isolated points in this interval. Computationally,

however, the real issue is often not so much whether there is a nonzero jump in the graph of f

at a point t0 , but whether the formula for computing f (t) is the same on either side of t0 . So

we really should be looking at the more general class of “piecewise-defined” functions that, at

worst, have jump discontinuities.

Just what is a piecewise-defined function? It is any function given by different formulas on

different intervals. For example,

f (t) =











0 if t < 1

1 if 1 < t < 2

0 if 2 < t

and g(t) =











0 if t ≤ 1

t − 1 if 1 < t < 2

1 if 2 ≤ t

are two relatively simple piecewise-defined functions. The first (sketched in figure 28.1a) is

discontinuous because it has nontrivial jumps at t = 1 and t = 2 . However, the second
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Figure 28.1: The graphs of two piecewise-defined functions.

function (sketched in figure 28.1b) is continuous because t − 1 goes from 0 to 1 as t goes

from 1 to 2 . There are no jumps in the graph of g .

By the way, we may occasionally refer to the sort of lists used above to define f (t) and

g(t) as conditional sets of formulas or sets of conditional formulas for f and g , simply because

these are sets of formulas with conditions stating when each formula is to be used.

Do note that, in the above formula set for f , we did not specify the values of f (t) when

t = 1 or t = 2 . This was because f has jump discontinuities at these points and, as we agreed

in chapter 24 (see page 496), we are not concerned with the precise value of a function at its

discontinuities. On the other hand, using the formula set given above for g , you can easily verify

that

lim
t→1−

g(t) = 0 = lim
t→2+

g(t) and lim
t→1−

g(t) = 1 = lim
t→2+

g(t) ;

so there is not a true jump in g at these points. That is why we went ahead and specified that

g(1) = 0 and g(2) = 1 .

In the future, let us agree that, even if the value of a particular function f or g is not explicitly

specified at a particular point t0 , as long as the left- and right-hand limits of the function at t0

are defined and equal, then the function is defined at t0 and is equal to those limits. That is,

we’ll assume

f (t0) = lim
t→t0

−
f (t) = lim

t→t0
+

f (t)

whenever

lim
t→t0

−
f (t) = lim

t→t0
+

f (t) .

This will simplify notation a little, and may keep us from worrying about issues of continuity

when those issues are not important.

Step Functions, Again

Most people would probably consider the step functions to be the simplest piecewise-defined

functions. These include the basic step function,

step(t) =

{

0 if t < 0

1 if 0 ≤ t

(sketched in figure 28.2a), as well as the step function at a point α ,

stepα(t) = step(t − α) =

{

0 if t < α

1 if α < t
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Figure 28.2: The graphs of (a) the basic step function step(t) and (b) a shifted step

function stepα(t) with α > 0 .

(sketched in figure 28.2b).

We will be dealing with other piecewise-defined functions, but, even with these other func-

tions, we will find step functions useful. Step functions can be used as ‘switches’ — turning on

and off the different formulas in our piecewise-defined functions. In this regard, let us quickly

observe what we get when we multiply the step function by any function/formula g(t) :

g(t) stepα(t) =

{

g(t) · 0 if t < α

g(t) · 1 if α < t

}

=

{

0 if t < α

g(t) if α < t
.

Here, the step function at α ‘switches on’ g(t) at t = α . For example,

t2 step3(t) =

{

0 if t < 3

t2 if 3 < t

and

sin(t − 4) step4(t) =

{

0 if t < 4

sin(t − 4) if 4 < t
.

This fact will be especially useful when applying Laplace transforms in problems involving

piecewise-defined functions, and we will find ourselves especially interested in cases where the

formula being multiplied by stepα(t) describes a function that is also translated by α (as in

sin(t − 4) step4(t) ).

The Laplace transform of stepα(t) was computed in chapter 24. If you don’t recall how to

compute this transform, it would be worth your while to go back to review that discussion. It is

also worthwhile for us to look at a differential equation involving a step function.

!◮Example 28.1: Consider finding the solution to

y′′ + y = step3 with y(0) = 0 and y′(0) = 0 .

Taking the Laplace transform of both sides:

L
[

y′′ + y
]∣
∣
s

= L
[

step3

]∣
∣
s

→֒ L
[

y′′]∣∣
s

+ L[y]|s = 1

s
e−3s

→֒ [

s2Y (s) − sy(0) − y′(0)
]

+ Y (s) = 1

s
e−3s
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→֒ [

s2 + 1
]

Y (s) = 1

s
e−3s

→֒ Y (s) = 1

s(s2 + 1)
e−3s .

Thus,

y(t) = L
−1

[

1

s(s2 + 1)
e−3s

]∣
∣
∣
∣
t

.

Here, we have the inverse transform of an exponential multiplied by a function whose inverse

transform can easily be computed using, say, partial fraction. This would be a good point to

pause and discuss, in general, what can be done in such situations.1

28.2 The “Translation Along the T -Axis” Identity
The Identity

As illustrated in the above example, we may often find ourselves with

L
−1

[

e−αs F(s)
]∣
∣
t

where α is some positive number and F(s) is some function whose inverse Laplace transform,

f = L
−1[F] , is either known or can be found with relative ease. Remember, this means

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt .

Consequently,

e−αs F(s) = e−αs

∫ ∞

0

f (t)e−st dt =
∫ ∞

0

f (t)e−αse−st dt =
∫ ∞

0

f (t)e−s(t+α) dt .

Using the change of variables τ = t + α (thus, t = τ − α ), and being careful with the limits

of integration, we see that

e−αs F(s) = · · · =
∫ ∞

t=0

f (t)e−s(t+α) dt =
∫ ∞

τ=α

f (τ − α)e−sτ dτ . (28.1)

This last integral is almost, but not quite, the integral for the Laplace transform of f (τ − α)

(using τ instead of t as the symbol for the variable of integration). And the reason it is not is

that this integral’s limits start at α instead of 0 . But that is where the limits would start if the

function being transformed were 0 for τ < α . This, along with observations made a page or

so ago, suggests viewing this integral as the transform of

f (t − α) stepα(t) =

{

0 if t < α

f (t − α) if α ≤ t
.

1 The observant reader will note that y can be found directly using convolution. However, beginners may find

the computation of the needed convolution, sin(t) ∗ step3(t) , a little tricky. The approach being developed here

reduces the need for such convolutions, and can be applied when convolution cannot be used. Still, convolutions

with piecewise-defined functions can be useful, and will be discussed in section 28.4.
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After all,
∫ ∞

τ=α

f (τ − α)e−sτ dτ =
∫ ∞

t=α

f (t − α)e−st dt

=
∫ α

t=0

f (t − α) · 0 · e−st dt +
∫ ∞

t=α

f (t − α) · 1 · e−st dt

=
∫ α

t=0

f (t − α) stepα(t)e
−st dt +

∫ ∞

t=α

f (t − α) stepα(t)e
−st dt

=
∫ ∞

t=0

f (t − α) stepα(t)e
−st dt

= L
[

f (t − α) stepα

]∣
∣
s

.

Combining the above computations with equation set (28.1) then gives us

e−αs F(s) = · · · =
∫ ∞

τ=α

f (τ − α)e−sτ dτ = · · · = L
[

f (t − α) stepα(t)
]∣
∣
s

.

Cutting out the middle, we get our second translation identity:

Theorem 28.1 (translation along the T–axis)

Let

F(s) = L[ f (t)]|s
where f is any Laplace transformable function. Then, for any positive constant α ,

L
[

f (t − α) stepα(t)
]∣
∣
s

= e−αs F(s) . (28.2a)

Equivalently,

L
−1

[

e−αs F(s)
]∣
∣
t

= f (t − α) stepα(t) . (28.2b)

Computing Inverse Transforms
The Basic Computations

Computing inverse transforms using the translation along the T –axis identity is usually straight-

forward.

!◮Example 28.2: Consider finding the inverse Laplace transform of

e−2s

s2 + 1
.

Applying the identity, we have

L
−1

[

e−2s

s2 + 1

]∣
∣
∣
∣
t

= L
−1

[

e−2s 1

s2 + 1
︸ ︷︷ ︸

F(s)

]∣
∣
∣
t

= L
−1

[

e−2s F(s)
]∣
∣
t

= f (t − 2) step2(t) .

Here the inverse transform of F is easily read off the tables:

f (t) = L
−1[F(s)]|t = L

−1

[

1

s2 + 1

]∣
∣
∣
∣
t

= sin(t) .
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Figure 28.3: The graph of sin(t − 2) step(t − 2) .

So, for any X ,

f (X) = sin(X) .

Using this with X = t − 2 in the above inverse transform computation then yields

L
−1

[

e−2s

s2 + 1

]∣
∣
∣
∣
t

= f (t − 2) step2(t) = sin(t − 2) step2(t) .

Keep in mind that

sin(t − 2) step2(t) =

{

0 if t < 2

sin(t − 2) if 2 < t
.

The graph of this function is sketched in figure 28.3.

Observe that, as illustrated in figure 28.3, the graph of

L
−1

[

e−αs F(s)
]∣
∣
t

= f (t − α) stepα(t)

is always zero for t < α , and is the graph shifted by α of f (t) on [0,∞) on α ≤ t .

Remembering this can simplify graphing these types of functions.

Describing Piecewise-Defined Functions Arising From Inverse
Transforms

Let us start with a simple, but illustrative, example.

!◮Example 28.3: Consider computing the inverse Laplace transform of

F(s) = 1

s2
e−s − 1

s2
e−2s .

Going to the tables, we see that

G(s) = 1

s2
H⇒ g(t) = t .

Using this, along with linearity and the second translation identity, we get

f (t) = L
−1[F(s)]|t = L

−1

[

1

s2
e−s − 1

s2
e−2s

]∣
∣
∣
∣
t

= L
−1

[

1

s2
e−1s

]∣
∣
∣
∣
t

− L
−1

[

1

s2
e−2s

]∣
∣
∣
∣
t

= (t − 1) step1(t) − (t − 2) step2(t) .
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Note that the step functions tell us that ‘significant changes’ occur in f (t) at the points t = 1

and t = 2 .

While the above is a valid answer, it is not a particularly convenient answer. It would be

much easier to graph and see what f really is if we go further and completely compute f (t)

on the intervals having t = 1 and t = 2 as endpoints:

For t < 1 , then

f (t) = (t − 1) step1(t)
︸ ︷︷ ︸

0

− (t − 2) step2(t)
︸ ︷︷ ︸

0

= 0 − 0 = 0 .

For 1 < t < 2 , then

f (t) = (t − 1) step1(t)
︸ ︷︷ ︸

1

− (t − 2) step2(t)
︸ ︷︷ ︸

0

= (t − 1) − 0 = t − 1 .

For 2 < t , then

f (t) = (t − 1) step1(t)
︸ ︷︷ ︸

1

− (t − 2) step2(t)
︸ ︷︷ ︸

1

= (t − 1) − (t − 2) = 1 .

Thus,

f (t) =











0 if t < 1

t − 1 if 1 < t < 2

1 if 2 < t

.

(This is the function sketched in figure 28.1b on page 555.)

As just illustrated, piecewise-defined functions naturally arise when computing inverse

Laplace transforms using the second translation identity. Typically, use of this identity leads

to an expression of the form

f (t) = g0(t) + g1(t) stepα1
(t) + g2(t) stepα2

(t) + g3(t) stepα3
(t) + · · · (28.3)

where f is the function of interest, the gk(t)’s are various formulas, and the αk’s are positive

constants. This expression is a valid formula for f , and the step functions tell us that ‘significant

changes’ occur in f (t) at the points t = α1 , t = α2 , t = α3 , . . . . Still, to get a better picture

of the function f (t) , we will want to obtain the formulas for f (t) over each of the intervals

bounded by the αk’s . Assuming we were reasonably intelligent and indexed the αk’s so that

0 < α1 < α2 < α3 < · · · ,

we would have

For t < α1 ,

f (t) = g0(t) + g1(t) stepα1
(t)

︸ ︷︷ ︸

0

+ g2(t) stepα2
(t)

︸ ︷︷ ︸

0

+ g3(t) stepα3
(t)

︸ ︷︷ ︸

0

+ · · ·

= g0(t) + 0 + 0 + 0 + · · · = g0(t) .
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For α1 < t < α2 ,

f (t) = g0(t) + g1(t) stepα1
(t)

︸ ︷︷ ︸

1

+ g2(t) stepα2
(t)

︸ ︷︷ ︸

0

+ g3(t) stepα3
(t)

︸ ︷︷ ︸

0

+ · · ·

= g0(t) + g1(t) + 0 + 0 + · · · = g0(t) + g1(t) .

For α2 < t < α3 ,

f (t) = g0(t) + g1(t) stepα1
(t)

︸ ︷︷ ︸

1

+ g2(t) stepα2
(t)

︸ ︷︷ ︸

1

+ g3(t) stepα3
(t)

︸ ︷︷ ︸

0

+ · · ·

= g0(t) + g1(t) + g2(t) + 0 + · · · = g0(t) + g1(t) + g2(t) .

And so on.

Thus, the function f described by formula (28.3), above, is also given by the conditional set of

formulas

f (t) =

















f0(t) if t < α1

f1(t) if α1 < t < α2

f2(t) if α2 < t < α3

...

where

f0(t) = g0(t) ,

f1(t) = g0(t) + g1(t) ,

f2(t) = g0(t) + g1(t) + g2(t) ,

...

.

Computing Transforms with the Identity

The translation along the T –axis identity is also helpful in computing the transforms of piecewise-

defined functions. Here, though, the computations typically require little more care. We’ll deal

with fairly simple cases here, and develop this topic further in the next section.

!◮Example 28.4: Consider finding L[g(t)]|s where

g(t) =

{

0 if t < 3

t2 if 3 < t
.

Remember, this function can also be written as

g(t) = t2 step3(t) .

Plugging this into the transform and applying our new translation identity gives

L[g(t)]|s = L
[

t2 step3(t)
]∣
∣
s

= L
[

f (t − 3) step3(t)
]∣
∣
s

= e−3s F(s)
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where

f (t − 3) = t2 .

But we need the formula for f (t) , not f (t −3) , to compute F(s) . To find that that formula,

let X = t − 3 (hence, t = X + 3 ) in the formula for f (t − 3) . This gives

f (X) = (X + 3)2 .

Thus,

f (t) = (t + 3)2 = t2 + 6t + 9 ,

and

F(s) = L[ f (t)]|s = L
[

t2 + 6t + 9
]∣
∣
s

= L
[

t2
]∣
∣
s

+ 6L[t]|s + 9L[1]|s = 2

s3
+ 6

s2
+ 9

s
.

Plugging this back into the above formula for L[g(t)]|s gives us

L[g(t)]|s = e−3s F(s) = e−3s

[

2

s3
+ 6

s2
+ 9

s

]

.

28.3 Rectangle Functions and Transforms of More
Complicated Piecewise-Defined Functions

Rectangle Functions

“Rectangle functions” are slight generalizations of step functions. Given any interval (α, β) ,

the rectangle function on (α, β) , denoted rect(α,β) , is the function given by

rect(α,β)(t) =











0 if t < α

1 if α < t < β

0 if β < t

.

The graph of rect(α,β) with −∞ < α < β < ∞ has been sketched in figure 28.4. You can see

why it is called a rectangle function — it’s graph looks rather “rectangular”, at least when α and

β are finite. If α = −∞ or β = ∞ , the corresponding rectangle functions simplify to

rect(−∞,β)(t) =

{

1 if t < β

0 if β < t

and

rect(α,∞)(t) =

{

0 if t < α

1 if α < t
.

And if both a = −∞ and b = ∞ , then we have

rect(−∞,∞)(t) = 1 for all t .
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α β T

1

Figure 28.4: Graph of the rectangle function rect(α,β)(t) with −∞ < α < β < ∞ .

All of these rectangle functions can be written as simple linear combinations of 1 and step

functions at α and/or β , with, again, the step functions acting as ‘switches’ — switching the

rectangle function ‘on’ (from 0 to 1 at α ), and switching it ‘off’ (from 1 back to 0 at β ). In

particular, we clearly have

rect(−∞,∞)(t) = 1 and rect(α,∞)(t) = stepα(t) .

Somewhat more importantly (for us), we should observe that, for −∞ < α < β < ∞ ,

1 − stepβ(t) =

{

1 − 0 if t < β

1 − 1 if β < t

}

=

{

1 if t < β

0 if β < t

}

= rect(−∞,β)(t) ,

and

stepα(t) − stepβ(t) =











0 − 0 if t < α

1 − 0 if α < t < β

1 − 1 if β < t











=











0 if t < a

1 if α < t < β

0 if β < t











= rect(α,β)(t) .

In summary, for −∞ < α < β < ∞ ,

rect(α,β)(t) = stepα(t) − stepβ(t) , (28.4a)

rect(−∞,β)(t) = 1 − stepβ(t) (28.4b)

and

rect(α,∞)(t) = stepα(t) . (28.4c)

These formulas allow us to quickly compute the Laplace transforms of rectangle functions

using the known transforms of 1 and the step functions.

!◮Example 28.5:

L
[

rect(3,4)(t)
]∣
∣
s

= L
[

rect(3,4)(t)
]∣
∣
s

= L
[

step3(t) − step4(t)
]∣
∣
s

= L
[

step3(t)
]∣
∣
s

− L
[

step4(t)
]∣
∣
s

= 1

s
e−3s − 1

s
e−4s .
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Transforming More General Piecewise-Defined Functions

To help us deal with more general piecewise-defined functions, let us make the simple observa-

tions that

g(t) rect(a,b)(t) =











g(t) · 0 if t < a

g(t) · 1 if a < t < b

g(t) · 0 if b < t











=











0 if t < a

g(t) if a < t < b

0 if b < t

,

and

g(t) rect(−∞,b)(t) =

{

g(t) · 1 if t < b

g(t) · 0 if b < t

}

=

{

g(t) if t < b

0 if b < t
.

So functions of the form

f (t) =











0 if t < a

g(t) if a < t < b

0 if b < t

and h(t) =

{

g(t) if t < b

0 if b < t

can be rewritten, respectively, as

f (t) = g(t) rect(a,b)(t) and h(t) = g(t) rect(−∞,b)(t) .

More generally, it should now be clear that anything of the form

f (t) =

















g0(t) if t < α1

g1(t) if α1 < t < α2

g2(t) if α2 < t < α3

...

(28.5a)

can be rewritten as

f (t) = g0(t) rect(−∞,α1)(t) + g1(t) rect(α1,α2)(t) + g2(t) rect(α2,α3)(t) + · · · . (28.5b)

The second form (with the rectangle functions) is a bit more concise than the “conditional set

of formulas” used in form (28.5a), and is generally preferred by typesetters. Of course, there

is a more important advantage of form (28.5b): Assuming f is piecewise continuous and of

exponential order, its Laplace transform can now be taken by expressing the rectangle functions

in formula (28.5b) as the linear combinations of 1 and step functions given in equation set (28.4),

and then using linearity and what we learned in the previous section about taking transforms of

functions multiplied by step functions.

!◮Example 28.6: Consider finding F(s) = L[ f (t)]|s when

f (t) =

{

t2 if t < 3

0 if 3 < t
.

From the above, we see that

f (t) = t2 rect(−∞,3)(t)

= t2
[

1 − step3(t)
]

= t2 − t2 step3(t) .
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So

F(s) = L[ f (t)]|s = L
[

t2 − t2 step3(t)
]∣
∣
s

= L
[

t2
]∣
∣
s

− L
[

t2 step3(t)
]∣
∣
s

.

The Laplace transform of t2 is in the tables, while the transform of t2 step3(t) just happened

to have been computed in example 28.4 a few pages ago. Using these transforms, the above

formula for F becomes

F(s) = 2

s3
− e−3s

[

2

s3
+ 6

s2
+ 9

s

]

.

!◮Example 28.7: Consider finding F(s) = L[ f (t)]|s when

f (t) =











0 if t < 2

e3t if 2 < t < 4

0 if 4 < t

.

From the above, we see that

f (t) = e3t rect(2,4)(t)

= e3t
[

step2(t) − step4(t)
]

= e3t step2(t) − e3t step4(t) .

Thus,

L[ f (t)]|s = L
[

e3t step2(t)
]∣
∣
s

− L
[

e3t step4(t)
]∣
∣
s

. (28.6)

Both of the transforms on the right side of our last equation are easily computed via the

translation identity developed in this chapter. For the first, we have

L
[

e3t step2(t)
]∣
∣
s

= L
[

g(t − 2) step2(t)
]∣
∣
s

= e−2sG(s)

where

g(t − 2) = e3t .

Letting X = t − 2 (so t = X + 2 ), the last expression becomes

g(X) = e3(X+2) = e3X+6 = e6e3X .

So

g(t) = e6e3t

and

G(s) = L[g(t)]|s = L
[

e6e3t
]∣
∣
s

= e6
L

[

e3t
]∣
∣
s

= e6 1

s − 3
.

This, along with the first equation in this paragraph, gives us

L
[

e3t step2(t)
]∣
∣
s

= e−2sG(s) = e−2se6 1

s − 3
= e−2(s−3)

s − 3
.

The transform of e3t step4(t) can be computed in the same manner, yielding

L
[

e3t step4(t)
]∣
∣
s

= e−4(s−3)

s − 3
.
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(The details of this computation are left to you.)

Finally, combining the formulas just obtained for the transforms of e3t step2(t) and

e3t step4(t) with equation (28.6), we have

L[ f (t)]|s = L
[

e3t step2(t)
]∣
∣
s

− L
[

e3t step4(t)
]∣
∣
s

= e−2(s−3)

s − 3
− e−4(s−3)

s − 3
.

!◮Example 28.8: Let’s find the Laplace transform F(s) of

f (t) =











2 if t < 1

e3t if 1 < t < 3

t2 if 3 < t

.

To apply the Laplace transform, we first convert the above to an equivalent expression involving

step functions:

f (t) = 2 rect(−∞,1)(t) + e3t rect(1,3)(t) + t2 rect(3,∞)(t)

= 2
[

1 − step1(t)
]

+ e3t
[

step1(t) − step3(t)
]

+ t2 step3(t)

= 2 − 2 step1(t) + e3t step1(t) − e3t step3(t) + t2 step3(t) .

Using the tables and methods already discussed earlier in this chapter (as in examples 28.7

and 28.4), we discover that

L[2]|s = 2

s
, L

[

2 step1(t)
]∣
∣
s

= 2e−s

s
,

L
[

e3t step1(t)
]∣
∣
s

= e−(s−3)

s − 3
, L

[

e3t step3(t)
]∣
∣
s

= e−3(s−3)

s − 3

and

L
[

t2 step3(t)
]∣
∣
s

= e−3s

[

2

s3
+ 6

s2
+ 9

s

]

.

Combining the above and using the linearity of the Laplace transform, we obtain

F(s) = L[ f (t)]|s
= L

[

2 − 2 step1(t) + e3t step1(t) − e3t step3(t) + t2 step3(t)
]∣
∣
s

= 2

s
− 2e−s

s
+ e−(s−3)

s − 3
− e−3(s−3)

s − 3
+ e−3s

[

2

s3
+ 6

s2
+ 9

s

]

.
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28.4 Convolution with Piecewise-Defined Functions

Take another look at example 28.1 on page 557. As noted in the footnote, we could have by-passed

much of the Laplace transform computation by simply observing that

y(t) = sin(t) ∗ step3(t)

and computing that convolution. But in the footnote, it was claimed that computing such con-

volutions can be “a little tricky”. Well, to be honest, it’s not all that tricky. It’s more an issue of

careful bookkeeping.

When computing a convolution h ∗ f in which f is piecewise defined, you need to realize

that the resulting convolution will also be piecewise defined, with (as you will see in the examples)

the formula for h ∗ f changing at the same points where the formula for f changes. Hence, you

should compute h ∗ f separately over the different intervals bounded by these points. Moreover,

in computing the corresponding integrals, you will also need to account for the piecewise-

defined nature of f , and break up the integral appropriately. To simplify all this, it is strongly

recommended that you compute the convolution h ∗ f using the integral formula

h ∗ f (t) =
∫ t

0

h(t − x) f (x) dx

(and not with the integrand h(x) f (t − x) ).

One or two examples should clarify matters.

!◮Example 28.9: Let’s compute sin(t) ∗ step3(t) . Since step3 is piecewise defined, we will,

as suggested, use the integral formula

sin(t) ∗ step3(t) =
∫ t

0

sin(t − x) step3(x) dx

First, we compute the integral assuming t < 3 . This one is easy:

sin(t) ∗ step3(t) =
∫ t

0

sin(t − x) step3(x)
︸ ︷︷ ︸

= 0
since x<t<3

dx =
∫ t

0

sin(t − x) · 0 dx = 0 .

So,

sin(t) ∗ step3(t) = 0 if t < 3 . (28.7)

On the other hand, if 3 < t , then the interval of integration includes x = 3 , the point

at which the value of step3(x) radically changes from 0 to 1. Thus, we must break up our

integral at the point x = 3 in computing h ∗ f :

sin(t) ∗ step3(t) =
∫ t

0

sin(t − x) step3(x) dx

=
∫ 3

0

sin(t − x) step3(x)
︸ ︷︷ ︸

= 0
since x<3

dx +
∫ t

3

sin(t − x) step3(x)
︸ ︷︷ ︸

= 1
since 3<x

dx

=
∫ 3

0

sin(t − x) · 0 dx +
∫ t

3

sin(t − x) · 1 dx
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= 0 + cos(t − t) − cos(t − 3)

= 1 − cos(t − 3) .

Thus,

sin(t) ∗ step3(t) = 1 − cos(t − 3) if 3 < t . (28.8)

Combining our two results (formulas (28.7) and (28.7)), we have the complete set of

conditional formulas for our convolution,

sin(t) ∗ step3(t) =

{

0 if t < 3

1 − cos(t − 3) if 3 < t
.

Glance back at the above example and observe that, immediately after the computation

of sin(t) ∗ step3(t) for each different case ( t < 3 and 3 < t ), the resulting formula for the

convolution was rewritten along with the values assumed for t (formulas (28.7) and (28.7),

respectively). Do the same in your own computations! Always rewrite any derived formula for

your convolution along with the values assumed for t . And write this someplace safe where you

can easily find it. This is part of the bookkeeping, and helps ensure that you do not lose parts of

your work when you compose the full set of conditional formulas for the convolution.

One more example should be quite enough.

!◮Example 28.10: Let’s compute e−3t ∗ f (t) where

f (t) =











t if t < 2

2 if 2 < t < 4

0 if 4 < t

.

For this convolution, we can do a little “pre-computing” to simplify later steps:

e−3t ∗ f (t) =
∫ t

0

e−3(t−x) f (x) dx

=
∫ t

0

e−3t+3x f (x) dx = e−3t

∫ t

0

e3x f (x) dx .

Now, if t < 2 ,

e−3t ∗ f (t) = e−3t

∫ t

0

e3x f (x)
︸︷︷︸

= x
since x < t < 2

dx = e−3t

∫ t

0

e3x x dx .

This integral is easily computed using integration by parts, yielding

e−3t ∗ f (t) = e−3t

[

t

3
e3t − 1

9
e3t + 1

9

]

= 1

9

[

3t − 1 + e−3t
]

.

Thus,

e−3t ∗ f (t) = 1

9

[

3t − 1 + e−3t
]

. (28.9)
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On the other hand, when 2 < t < 4 ,

e−3t ∗ f (t) = e−3t

∫ t

0

e3x f (x) dx

= e−3t

[ ∫ 2

0

e3x f (x)
︸︷︷︸

= x
since x < 2

dx +
∫ t

2

e3x f (x)
︸︷︷︸

= 2
since 2 < x < t < 4

dx

]

= e−3t

[ ∫ 2

0

e3x x dx +
∫ t

2

e3x · 2 dx

]

= · · ·

= e−3t

[

1

9

(

5e6 + 1
)

+ 2

3

(

e3t − e6
)
]

= · · ·

= 2

3
+ 1

9

[

1 − e6
]

e−3t .

Thus,

e−3t ∗ f (t) = 2

3
+ 1

9

[

1 − e6
]

e−3t for 2 < t < 4 . (28.10)

Finally, when 6 < t ,

e−3t ∗ f (t) = e−3t

∫ t

0

e3x f (x) dx

= e−3t

[ ∫ 2

0

e3x f (x)
︸︷︷︸

= x
since x < 2

dx +
∫ 4

2

e3x f (x)
︸︷︷︸

= 2
since 2 < x < 4

dx +
∫ t

4

e3x f (x)
︸︷︷︸

= 0
since 4 < x

dx

]

= e−3t

[ ∫ 2

0

e3x x dx +
∫ 4

2

e3x · 2 dx +
∫ t

4

e3x · 0 dx

]

= · · ·

= e−3t

[

1

9

(

5e6 + 1
)

+ 2

3

(

e12 − e6
)

+ 0

]

= · · ·

= 1

9

[

6e12 + 1 − e6
]

e−3t .

Thus,

e−3t ∗ f (t) = 1

9

[

6e12 + 1 − e6
]

e−3t for 4 < t . (28.11)

Putting it all together, equations (28.9), (28.10) and (28.11) give us

e−3t ∗ f (t) =















1

9

[

3t − 1 + e−3t
]

if t < 2

2

3
+ 1

9

[

1 − e6
]

e−3t if 2 < t < 4

1

9

[

6e12 + 1 − e6
]

e−3t if 4 < t

.
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(a) (b)
TT 11

11

22 33 44

Figure 28.5: Two periodic functions: (a) a basic saw function, and (b) a basic square wave

function.

28.5 Periodic Functions
Basics

Often, a function of interest f is periodic with period p for some positive value p . This means

that the graph of the function remains unchanged when shifted to the left or right by p . This is

equivalent to saying

f (t + p) = f (t) for all t . (28.12)

You are well-acquainted with several periodic functions — the trigonometric functions, for

example. In particular, the basic sine and cosine functions

sin(t) and cos(t)

are periodic with period p = 2π . But other periodic functions, such as the “saw” function

sketched in figure 28.5a and the “square-wave” function sketched in figure 28.5b can arise in

applications.

Strictly speaking, a truly periodic function is defined on the entire real line, (−∞,∞) .

For our purposes, though, it will suffice to have f “periodic on (0,∞) ” with period p . This

simply means that f is that part of a periodic function along the positive T –axis. What f (t) is

for t < 0 is irrelevant. Accordingly, for functions periodic on (0,∞) , we modify requirement

(28.12) to

f (t + p) = f (t) for all t > 0 . (28.13)

In what follows, however, it will usually be irrelevant as to whether a given function is truly

periodic or merely periodic on (0,∞) , In either case, we will refer to the function as “periodic”,

and specify whether it is defined on all of (−∞,∞) or just (0,−∞) only if necessary.

A convenient way to describe a periodic function f with period p is by

f (t) =

{

f0(t) if 0 < t < p

f (t + p) in general
.

The f0(t) is the formula for f over the base period interval (0, p) . The second line is simply

telling us that the function is periodic and that equation (28.12) or (28.13) holds and can be used

to compute the function at points outside of the base period interval. (The value of f (t) at

t = 0 and integral multiples of p are determined — or ignored — following the conventions

for piecewise-defined functions discussed in section 28.1.)
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!◮Example 28.11: Let saw(t) denote the basic saw function sketched in figure 28.5a. It

clearly has period p = 1 , has jump discontinuities at integer values of t , and is given on

(0,∞) by

saw(t) =

{

t if 0 < t < 1

saw(t + 1) in general
.

In this case, the formula for computing saw(τ ) when 0 < τ < 1 is

saw0(τ ) = τ .

So, for example, saw
(

3/4

)

= 3/4 .

On the other hand, to compute saw(τ ) when τ > 1 (and not an integer), we must use

saw(t + 1) = saw(t)

repeatedly until we finally reach in a value t in the base period interval (0, 1) . For example,

saw
(

8

3

)

= saw
(

5

3
+ 1

)

= saw
(

5

3

)

= saw
(

2

3
+ 1

)

= saw
(

2

3

)

= 2

3
.

Often, the formula for the function over the base period interval is, itself, piecewise defined.

!◮Example 28.12: Let sqwave(t) denote the square-wave function in figure 28.5b. This

function has period p = 2 , and, over its base period interval (0, 2) , is given by

sqwave(t) =

{

1 if 0 < t < 1

0 if 1 < t < 2
.

So,

sqwave(t) =











1 if 0 < t < 1

0 if 1 < t < 2

sqwave(t − 2) in general

.

Before discussing Laplace transforms of periodic functions, let’s make a couple of observa-

tions concerning a function f which is periodic with period p over (0,∞) . We won’t prove

them. Instead, you should think about why these statements are “obviously true”.

1. If f is piecewise continuous over (0, p) , then f is piecewise continuous over (0,∞) .

2. If f is piecewise continuous over (0, p) , then f is of exponential order s0 = 0 .

Transforms of Periodic Functions

Suppose we want to find the Laplace transform

F(s) = L[ f (t)]|s =
∫ ∞

0

f (t)e−st dt
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when f is piecewise continuous and periodic with period p . Because f (t) satisfies

f (t) = f (t + p) for t > 0 ,

we should expect to (possibly) simplify our computations by partitioning the integral of the

transform into integrals over subintervals of length p ,

F(s) =
∫ ∞

0

f (t)e−st dt

=
∫ p

0

f (t)e−st dt +
∫ 2 p

p

f (t)e−st dt +
∫ 3p

2 p

f (t)e−st dt

+
∫ 4p

3p

f (t)e−st dt +
∫ 5p

4p

f (t)e−st dt + · · · .

For brevity, let’s rewrite this as

F(s) =
∞

∑

k=0

∫ (k+1)p

kp

f (t)e−st dt . (28.14)

Now consider using the substitution τ = t − kp in the kth term of this summation. Then

t = τ + kp ,

e−st = e−s(τ+kp) = e−kpse−sτ ,

and, by the periodicity of f ,

f (τ + p) = f (τ )

f (τ + 2p) = f ([τ + p] + p) = f (τ + p) = f (τ )

f (τ + 3p) = f ([τ + 2p] + p) = f (τ + 2p) = f (τ )

...

f (τ + kp) = · · · = f (τ ) .

So,
∫ (k+1)p

t=kp

f (t)e−st dt =
∫ (k+1)p−kp

τ=kp−kp

f (τ + kp)e−s(τ+kp) dt

=
∫ p

0

f (τ )e−kpse−sτ dt = e−kps

∫ p

0

f (τ )e−sτ dt .

Note that the last integral does not depend on k . Consequently, combining the last result with

equation (28.14), we have

F(s) =
∞

∑

k=0

e−kps

∫ p

0

f (τ )e−sτ dt =

[ ∞
∑

k=0

e−kps

]
∫ p

0

f (τ )e−sτ dτ .

Here we have an incredible stroke of luck, at least if you recall what a geometric series is

and how to compute its sum. Assuming you do recall this, we have

∞
∑

k=0

e−kps =
∞

∑

k=0

[

e−ps
]k = 1

1 − e−ps
. (28.15)



574 Piecewise-Defined and Periodic Functions

We also have this if you do not recall about geometric series, but will you certainly want to go to

the addendum on page 576 to see how we get this equation.

Whether or not you recall about geometric series, equation (28.15) combined with the last

formula for F (along with the observations made earlier regarding piecewise continuity and

periodic functions) gives us the following theorem.

Theorem 28.2

Let f be a piecewise continuous and periodic function with period p . Then its Laplace transform

F is given by

F(s) = F0(s)

1 − e−ps
for s > 0

where

F0(s) =
∫ p

0

f (t)e−st dt .

There are at least two alternative ways of describing F0 in the above theorem. First of all,

if f is given by

f (t) =

{

f0(t) if 0 < t < p

f (t + p) in general
,

then, of course,

F0(s) =
∫ p

0

f0(t)e
−st dt .

Also, using the fact that

∫ p

0

f0(t)e
−st dt =

∫ ∞

0

f0(t) rect(0,p)(t) e−st dt ,

we see that

F0(s) = L
[

f0(t) rect(0,p)(t)
]∣
∣
s

or, equivalently, that

F0(s) = L
[

f (t) rect(0,p)(t)
]∣
∣
s

.

Whether any of alternative descriptions of F0(s) is useful may depend on what transforms you

have already computed.

!◮Example 28.13: Let’s find the Laplace transform of the saw function from example 28.11

and sketched in figure 28.5a,

saw(t) =

{

t if 0 < t < 1

saw(t + 1) in general
.

Here, p = 1 , and the last theorem tells us that

L[saw(t)]|s = F0(s)

1 − e−1·s = F0(s)

1 − e−s
for s > 0
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where (using each of the formulas discussed for F0 )

F0(s) =
∫ 1

0

saw(t)e−st dt (28.16a)

=
∫ 1

0

te−st dt (28.16b)

= L
[

t rect(0,1)(t)
]∣
∣
s

. (28.16c)

Had the author been sufficiently clever, L
[

t rect(0,1)(t)
]

would have already been computed

in a previous example, and we could write out the final result using formula (28.16c). But he

wasn’t, so let’s just compute F0(s) using formula (28.16b) and integration by parts:

F0(s) =
∫ 1

0

te−st dt

= − t

s
e−st

∣
∣
∣

1

t=0
−

∫ 1

0

(

−1

s

)

e−st dt

= −1

s
e−s·1 + 0 − 1

s2

[

e−s·1 − e−s·0] = 1

s2

[

1 − e−s − se−s
]

.

Hence,

L[saw(t)]|s = F0(s)

1 − e−s

= 1

s2
· 1 − e−s − se−s

1 − e−s

= 1

s2

[

1 − se−s

1 − e−s

]

= 1

s2
− 1

s
· e−s

1 − e−s
.

This is our transform. If you wish, you can apply a little algebra and ‘simplify’ it to

L[saw(t)]|s = 1

s2
− 1

s
· 1

es − 1
,

though you may prefer to keep the formula with 1 − e−ps in the denominator to remind you

that this transform came from a periodic function with period p .

Just for fun, let’s go even further using the fact that

e−s

1 − e−s
= e−s

1 − e−s
· 2es/2

2es/2
= 1

2
· 2e−s/2

es/2 − e−s/2
= 1

2
· e−s/2

sinh(s/2)
.

Thus, the above formula for the Laplace transform of the saw function can also be written as

L[saw(t)]|s = 1

s2
− 1

2s
· e−s/2

sinh(s/2)
.

This is significant only in that it demonstrates why hyperbolic trigonometric functions are

sometimes found in tables of transforms.
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Addendum: Verifying Equation (28.15)

Equation (28.15) gives a formula for adding up

∞
∑

k=0

e−kps

assuming p and s are positive values. To derive that formula, we start with the N th partial sum

of the series,

SN =
N

∑

k=0

e−kps = e−0 ps

︸ ︷︷ ︸

=1

+ e−1ps + e−2 ps + e−3ps + · · · + e−N ps .

Multiplying this by e−ps , we get

e−ps SN = e−ps
[

1 + e−1ps + e−2 ps + e−3ps + · · · + e−N ps
]

= e−1ps + e−2 ps + e−3ps + · · · + e−N ps + e−(N+1)ps .

The similarity between SN and e−ps SN naturally leads us to compute their difference,

[

1 − e−ps
]

SN = SN − e−ps SN

=
{

1 + e−1ps + e−2 ps + e−3ps + · · · + e−N ps
}

−
{

e−1ps + e−2 ps + e−3ps + · · · + e−N ps + e−(N+1)ps
}

= 1 − e−(N+1)ps .

Dividing through by 1 − e−ps then yields

SN = 1 − e−(N+1)ps

1 − e−ps
.

The above formula for SN holds for any choice of p and s , but if p > 0 and s > 0 , as

assumed here, then

lim
N→∞

e−(N+1)ps = 0 ,

and thus,

∞
∑

k=0

e−kps = lim
N→∞

N
∑

k=0

e−kps = lim
N→∞

SN

= lim
N→∞

1 − e−(N+1)ps

1 − e−ps
= 1 − 0

1 − e−ps
= 1

1 − e−ps
,

confirming equation (28.15).
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Table 28.1: Commonly Used Identities (Version 2)

In the following, F(s) = L[ f (t)]|s .

h(t) H(s) = L[h(t)]|s Restrictions

f (t)

∫ ∞

0

f (t)e−st dt

eαt f (t) F(s − α) α is real

f (t − α) stepα(t) F(s) e−αs α > 0

d f

dt
s F(s) − f (0)

d2 f

dt2
s2 F(s) − s f (0) − f ′(0)

dn f

dtn

sn F(s) − sn−1 f (0) − sn−2 f ′(0)

− sn−3 f ′′(0) − · · · − f (n−1)(0)
n = 1, 2, 3, . . .

t f (t) −
d F

ds

tn f (t) (−1)n dn F

dsn
n = 1, 2, 3, . . .

∫ t

0

f (τ ) dτ
F(s)

s

f (t)

t

∫ ∞

s

F(σ ) dσ

f ∗ g(t) F(s)G(s)

f is periodic with period p

∫ p

0 f (t)e−st dt

1 − e−ps

28.6 An Expanded Table of Identities

For reference, let us write out a new table of Laplace transform identities containing the identities

listed in our first table of Laplace transform identities, table 25.1 on page 514, along with some

of the more important identities derived after making that table. Our new table is table 28.1.
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y(t) Y

m

0

f

Figure 28.6: A mass/spring system with mass m and an outside force f acting on the mass.

28.7 Duhamel’s Principle and Resonance
The Problem

Now is a good time to re-examine some of those “forced” mass/spring systems originally dis-

cussed in chapters 17 and 22, and diagramed in figure 28.6. Recall that this system is modeled

by

m
d2 y

dt2
+ γ

dy

dt
+ κy = f

where y = y(t) is the position of the mass at time t (with y = 0 being the “equilibrium”

position of the mass when f = 0 ), m is the mass of the object attached to the spring, κ is

the spring constant, γ is the damping constant, and f = f (t) is the sum of all forces acting

on the spring other than the damping friction and the spring’s reaction to being stretched and

compressed ( f was called Fother in chapter 17 and F in chapter 22). Remember, also, that m

and κ are positive constants.

Our main interest will be in the phenomenon of resonance in an undamped system. Accord-

ingly, we will assume γ = 0 , and restrict our attention to solving

m
d2 y

dt2
+ κy = f . (28.17)

Ultimately, we will further restrict our attention to cases in which f is periodic. But let’s wait

on that, and derive some basic formulas without assuming this periodicity.

Solutions Using Arbitrary f
The General Solution

As you know quite well by now, the general solution to our differential equation, equation (28.17),

is

y(t) = yp(t) + yh(t)

where yh is the general solution to the corresponding homogeneous differential equation, and

yp is any particular solution to the given nonhomogeneous differential equation.

The formula for yh is already known. In chapter 17, we found that

yh(t) = c1 cos(ω0t) + c2 sin(ω0t) where ω0 =
√

κ

m
.
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Recall that ω0 is the natural angular frequency of the mass/spring system, and is related to the

system’s natural frequency ν0 and natural period p0 via

ν0 = ω0

2π
and p0 = 1

ν0

= 2π

ω0

.

For future use, note that yh is a periodic function with period p0 ; hence

yh(t + p0) − yh(t) = 0 for all t .

That leaves finding a particular solution yp . Let’s take this to be the solution to the initial-

value problem

m
d2 y

dt2
+ κy = f with y(0) = 0 and y′(0) = 0 .

This is easily found by either applying the Laplace transform and using the convolution identity

in taking the inverse transform, or by appealing directly to Duhamel’s principle. Either way, we

get

yp(t) = h ∗ f (t) =
∫ t

0

h(t − x) f (x) dx

where

h(τ ) = L
−1

[

1

ms2 + κ

]∣
∣
∣
∣
τ

= 1

m
L

−1

[

1

s2 + κ/m

]∣
∣
∣
∣
τ

.

Since ω0 =
√

κ/m ,

h(τ ) = 1

m
L

−1

[

1

s2 + (ω0)2

]∣
∣
∣
∣
τ

= 1

ω0m
sin(ω0τ ) .

Thus, the above integral formula for yp can be written as

yp(t) = 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx . (28.18)

The Difference Formula and First Theorem

For our studies, we will want to see how any solution y varies “over a cycle” (i.e., as t increases

by p0 ). This variance in y over a cycle is given by the difference y(t + p0) − y(t) , and will

be especially meaningful when the forcing function is periodic with period p0 .

For now, let’s consider the difference y(t + p0)− y(t) assuming y = yp + yh is any solution

to our differential equation. Of course, the yh term is irrelevant because of its periodicity,

y(t + p0) − y(t) =
[

yp(t + p0) + yh(t + p0)
]

−
[

yp(t) + yh(t)
]

= yp(t + p0) − yp(t) + yh(t + p0) − yh(t)
︸ ︷︷ ︸

0

.

Now, using formula (28.18) for yp , we see that

yp(t + p0) = 1

ω0m

∫ t+p0

0

sin(ω0[(t + p0) − x]) f (x) dx

= 1

ω0m

∫ t+p0

0

sin(ω0[t − x] + ω0 p0
︸ ︷︷ ︸

2π

) f (x) dx
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= 1

ω0m

∫ t+p0

0

sin(ω0[t − x]) f (x) dx

= 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx + 1

ω0m

∫ t+p0

t

sin(ω0[t − x]) f (x) dx .

But the first integral in the last line is simply the integral formula for yp(t) given in equation

(28.18). So the above reduces to

y(t + p0) = y(t) + 1

ω0m

∫ t+p0

t

sin(ω0[t − x]) f (x) dx . (28.19)

To further “reduce” our difference formula, let us use a well-known trigonometric identity:

∫ t+p0

t

sin(ω0[t − x]) f (x) dx

=
∫ t+p0

t

sin(ω0t − ω0x) f (x) dx

=
∫ t+p0

t

[sin(ω0t) cos(ω0x) − cos(ω0t) sin(ω0x)] f (x) dx

= sin(ω0t)

∫ t+p0

t

cos(ω0x) f (x) dx − cos(ω0t)

∫ t+p0

t

sin(ω0x) f (x) dx .

Combining this result with the last equation for y(t + p0) and recalling the previous results

derived in this section then yields:

Theorem 28.3

Let m and κ be positive constants, and let f be any piecewise continuous function of exponential

order. Then, the general solution to

m
d2 y

dt2
+ κy = f

is

y(t) = yp(t) + c1 cos(ω0t) + c2 sin(ω0t)

where

ω0 =
√

κ

m
and yp(t) = 1

ω0m

∫ t

0

sin(ω0[t − x]) f (x) dx .

Moreover,

y(t + p0) − y(t) = 1

ω0m
[IS(t) sin(ω0t) + IC(t) cos(ωt)] for t ≥ 0

where

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx and IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx .
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T0

p0p0

p0 a a + p0

Figure 28.7: Illustration for lemma 28.4.

Resonance from Periodic Forcing Functions
A Useful Fact

Take a look at figure 28.7. It shows the graph of some periodic function g with period p0 ,

and with two regions of width p0 “greyed in” in two shades of grey. The darker grey region is

between the graph and the T –axis with 0 < t < p0 . The lighter grey region is between the

graph and the T –axis with a < t < a + p0 for some real number a . Note the similarity in

the shapes of the regions. In particular, note how the pieces of the lighter grey region can be

rearranged to perfectly match the darker grey region. Consequently, the areas in each of these

two regions, both above and below the T –axis, are the same. Add to this the relationship between

“integrals” and “area”, and you get the useful fact stated in the next lemma.

Lemma 28.4

Let g be a periodic, piecewise continuous function with period p0 . Then, for any t ,

∫ t+p0

t

g(x) dx =
∫ p0

0

g(x) dx .

If you wish, you can rigorously prove this lemma using some basic theory from elementary

calculus.

?◮Exercise 28.1: Prove lemma 28.4. A good start would be to show that

d

dt

∫ t+p0

t

g(x) dx = 0 .

Resonance

Now consider the formulas for IS(t) and IC(t) from theorem 28.3,

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx and IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx .

If f is also periodic with period p0 , then the products in these integrals are also periodic, each

with period p0 . Lemma 28.4 then tells us that

IS(t) =
∫ t+p0

t

cos(ω0x) f (x) dx =
∫ p0

0

cos(ω0x) f (x) dx
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and

IC (t) = −
∫ t+p0

t

sin(ω0x) f (x) dx = −
∫ p0

0

sin(ω0x) f (x) dx .

Thus, if f is periodic with period p0 , the difference formula in theorem 28.3 reduces to

y(t + p0) − y(t) = 1

ω0m
[IS sin(ω0t) + IC cos(ωt)]

where IS and IC are the constants

IS =
∫ p0

0

cos(ω0x) f (x) dx and IC = −
∫ p0

0

sin(ω0x) f (x) dx .

Using a little more trigonometry (see the derivation of formula (17.8b) on page 363), we can

reduce this to the even more convenient form given in the the next theorem.

Theorem 28.5 (resonance in undamped systems)

Let m and p be positive constants, and f a periodic piecewise continuous function. Assume

further that f has period p0 , the natural period of the mass/spring system modeled by

m
d2 y

dt2
+ κy = f .

That is,

period of f = p0 = 2π

ω0

with ω0 =
√

κ

m
.

Also let

IS =
∫ p0

0

cos(ω0x) f (x) dx and IC = −
∫ p0

0

sin(ω0x) f (x) dx .

Then, for any solution y to the above differential equation, and any t > 0 ,

y(t + p0) − y(t) = A cos(ω0t − φ) (28.20)

where

A = 1

ω0m

√

(IS)
2 + (IC)2

and with φ being the constant satisfying 0 ≤ φ < 2π ,

cos(φ) = IC
√

(IS)2 + (IC )2
and sin(φ) = IS

√

(IS)2 + (IC )2
.

To see what all this implies, assume f , y , etc. are as in the theorem, and look at what the

difference formula tells us about y(tn) when τ is any fixed value in [0, p0) , and

tn = τ + np0 for n = 1, 2, 3, . . . .

The value of y(τ ) can be computed using the integral formula for yp in theorem 28.3. To

compute each y(tn) , however, it is easier to use this computed value for y(τ ) along with

difference formula (28.20) and the fact that, for any integer k ,

cos(ω0tk − φ) = cos(ω0[τ + kp0] − φ) = cos(ω0τ − φ + k ω0 p0
︸ ︷︷ ︸

2π

) = cos(ω0τ − φ) .
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Doing so, we get

y(t1) = y(τ + p0) = y(τ ) + A cos(ω0τ − φ) ,

y(t2) = y(τ + 2p0) = y(τ + p0) + A cos(ω0[τ + p0] − φ)

= [y(τ ) + A cos(ω0t − φ)] + A cos(ω0τ − φ)

= y(τ ) + 2A cos(ω0τ − φ) ,

y(t3) = y(τ + 3p0) = y(τ + 2p0) + A cos(ω0[τ + 2p0] − φ)

= [y(τ ) + 2A cos(ω0t − φ)] + A cos(ω0τ − φ)

= y(τ ) + 3A cos(ω0τ − φ) ,

and so on. In general,

y(tn) = y(τ ) + n A cos(ω0τ − φ) . (28.21)

Clearly, if A 6= 0 and ω0τ − φ is neither π/2 or 3π/2 , then

y(tn) → ±∞ as n → ∞ .

This is clearly “runaway resonance”.

Thus, it is the A in difference formula (28.20) that determines if we have “runaway reso-

nance”. If A 6= 0 , the solution contains an oscillating term with a steadily increasing amplitude.

On the other hand, if A = 0 , then the solution y is periodic, and does not “blow up”.

By the way, for graphing purposes it may be convenient to use the periodicity of the cosine

term and rewrite equation (28.21) as

y(tn) = y(τ ) + n A cos(ω0tn − φ) .

Replacing tn with t , and recalling what n and τ represent, we see that this is the same as

saying

y(t) = y(τ ) + n A cos(ω0t − φ) (28.22)

where n is the largest integer such that np0 ≤ t and τ = t − np0 .

!◮Example 28.14: Let us use the theorems in this section to analyze the response of an

undamped mass/spring system with natural period p0 = 1 to a force f given by the basic

saw function sketched in figure 28.8a,

f (t) = saw(t) =

{

t if 0 < t < 1

saw(t − 1) if 1 < t
.

The corresponding natural angular frequency is

ω0 = 2π

p0

= 2π .

The actual values of the mass m and spring constant κ are irrelevant provided they satisfy

2π = ω0 =
√

κ

m
.
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(a) (b)

T
T

1
1

1

2
2

3
3

4
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5

Y

Figure 28.8: (a) A basic saw function, and (b) the corresponding response of an undamped

mass/spring system with natural period 1 over 6 cycles.

Also, since the solution to the corresponding homogeneous differential equation was pretty

much irrelevant in the discussion leading to our last theorem, let’s assume our solution satisfies

y(0) = 0 and y′(0) = 0 ,

so that the solution formula described in theorem 28.3 becomes

y(t) = yp(t) = 1

2πm

∫ t

0

sin(ω0[t − x]) saw(x) dx .

In particular, if 0 ≤ x ≤ t < 1 , then saw(x) = x and we can complete our computations

of y(t) using integration by parts:

y(t) = 1

2πm

∫ t

0

sin(2π[t − x]) x dx

= 1

2πm

[

x

2π
cos(2π[t − x])

∣
∣
∣

t

x=0
−

∫ t

0

1

2π
cos(2π[t − x]) dx

]

= 1

2πm

[

t

2π
cos(2π[t − t]) − 0

2π
cos(2π[t − 0])

+ 1

(2π)2
sin(2π[t − t]) − 1

(2π)2
sin(2π[t − 0])

]

.

This simplifies to

y(t) = 1

8π3m
[2π t − sin(2π t)] when 0 ≤ t < 1 . (28.23)

In a similar manner, we find that

IS =
∫ p0

0

cos(ω0x) f (x) dx =
∫ 1

0

cos(2πx) x dx = · · · = 0

and

IC = −
∫ p0

0

sin(ω0x) f (x) dx = −
∫ 1

0

sin(2πx) x dx = · · · = 1

2π
.

Thus,

A = 1

2πm

√

(IS)
2 + (IC)2 = 1

4π2m
.

Since A 6= 0 , we have resonance. There is an oscillatory term whose amplitude steadily

increases as t increases.
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To actually graph our solution, we still need to find the phase, φ , which (according to

our last theorem) is the value in [0, 2π) such that

cos(φ) = IC
√

(IS)2 + (IC )2
= 1 and sin(φ) = IS

√

(IS)2 + (IC )2
= 0 .

Clearly φ = 0 .

So let t ≥ 0 . Then, employing formula (28.22) (derived just before this example),

y(t) = y(τ ) + n A cos(ω0t − φ)

= 1

8π3m
[2πτ − sin(2πτ)] + n

4π2m
cos(2π t)

where (since p0 = 1 ) n is the largest integer with n ≤ t and τ = t −n . This is the function

graphed in figure 28.8b.

Additional Exercises

28.2. Using the first translation identity or one of the differentiation identities, compute each

of the following:

a. L
[

e4t step6(t)
]∣
∣
s

b. L
[

t step6(t)
]∣
∣
s

28.3. Compute (using the translation along the T –axis identity) and then graph the inverse

transforms of the following functions:

a.
e−4s

s3
b.

e−3s

s + 2
c.

√
πs−3/2e−s

d.
π

s2 + π2
e−2s e.

e−4s

(s − 5)3
f.

(s + 2)e−5s

(s + 2)2 + 16

28.4. Finish solving the differential equation in example 28.1.

28.5. Compute and then graph the inverse transforms of the following functions (express your

answers as conditional sets of formulas):

a.
1 − e−s

s2
b.

e−s + e−3s

s
c.

2

s3
− 2 + 4s

s3
e−2s

d.
π

(

1 + e−s
)

s2 + π2
e.

(s + 4)e−12 − 8e−3s

s2 − 16
f.

e−2s − 2e−4s + e−6s

s2

28.6. Find and graph the solution to each of the following initial-value problems:

a. y′ = step3(t) with y(0) = 0

b. y′ = step3(t) with y(0) = 4

c. y′′ = step2(t) with y(0) = 0 and y′(0) = 0

d. y′′ = step2(t) with y(0) = 4 and y′(0) = 6

e. y′′ + 9y = step10(t) with y(0) = 0 and y′(0) = 0
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28.7. Compute the Laplace transforms of the following functions using the translation along

the T –axis identity. (Trigonometric identities may also be useful for some of these.)

a. f (t) =

{

0 if t < 6

e4t if 6 < t
b. g(t) =







0 if t < 4

1
√

t − 4
if 4 < t

c. t step6(t) d. te3t step2(t)

e. t2 step6(t) f. sin(2(t − 1)) step1(t)

g. sin(2t) stepπ/2(t) h. sin(2t) stepπ/4(t)

i. sin(2t) stepπ/6(t)

28.8. For each of the following choices of f :

i. Graph the given function over the positive T –axis.

ii. Rewrite the function in terms of appropriate rectangle functions, and then rewrite

that in terms of appropriate step functions.

iii. Then find the Laplace transform F(s) = L[ f (t)]|s .

a. f (t) =

{

e−4t if t < 6

0 if 6 < t
b. f (t) =

{

2t − t2 if t < 2

0 if 2 < t

c. f (t) =

{

2 if t < 3

2e−4(t−3) if 3 < t
d. f (t) =

{

sin(π t) if t < 1

0 if 1 < t

e. f (t) =

{

t2 if t < 3

9 if 3 < t
f. f (t) =











0 if t < 2

3 if 2 < t < 4

0 if 4 < t

g. f (t) =











1 if t < 1

2 if 2 < t < 3

4 if 3 < t

h. f (t) =











0 if t < 1

sin(π t) if 1 < t < 2

0 if 2 < t

i. f (t) =











0 if t ≤ 1

(t − 1)2 if 1 < t < 3

4 if 3 ≤ t

j. f (t) =











t if t ≤ 2

4 − t if 2 < t < 4

0 if 3 ≤ t

28.9. The infinite stair function, stair(t) , can be described in terms of rectangle functions by

stair(t) =
∞

∑

n=0

(n + 1) rect(n,n+1)(t)

= 1 rect(0,1)(t) + 2 rect(1,2)(t) + 3 rect(2,3)(t) + 4 rect(3,4)(t) + · · · .
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Using this:

a. Sketch the graph of stair(t) over the positive T –axis, and rewrite the formula for

stair(t) in terms of step functions.

b. Assuming the linearity of the Laplace transform holds for infinite sums as well as

finite sums, find an infinite sum formula for L[stair(t)]|s .

c. Recall the formula for the sum of a geometric series,

∞
∑

n=0

Xn = 1

1 − X
when |X | < 1 .

Using this, simplify the infinite sum formula for L[stair(t)]|s which you (we hope)

obtained in the previous part of this exercise.

28.10. Find and graph the solution to each of the following initial-value problems:

a. y′ = rect(1,3)(t) with y(0) = 0

b. y′′ = rect(1,3)(t) with y(0) = 0 and y′(0) = 0

c. y′′ + 9y = rect(1,3)(t) with y(0) = 0 and y′(0) = 0

28.11. Compute each of the following convolutions:

a. t2 ∗ step3(t) b. 1 ∗ step4(t)

c. cos(t) ∗ rect(0,π)(t) d. 2e−2t ∗ rect(1,3)(t)

e. e−2t ∗
[

e5t rect(1,3)(t)
]

f. sin(t) ∗
[

sin(t) rect(2π,3π)(t)
]

g. t ∗ f (t) where f (t) =

{ √
t if 0 ≤ t < 4

2 if 4 < t

h. sin(t) ∗ f (t) where f (t) =











1 if t < 2π

cos(t) if 2π < t < 3π

−1 if 3π < t

28.12. Each function listed below is at least periodic on (0,∞) . Sketch graph of each, and

then find its Laplace transform using the methods developed in section 28.5.

a. f (t) =

{

e−2t if 0 < t < 3

f (t − 3) if t > 3

b. f (t) = sqwave(t) (from example 28.12)

c. f (t) =











1 if 0 < t < 1

−1 if 1 < t < 2

f (t − 2) if t > 2

d. f (t) =

{

2t − t2 if t < 2

f (t − 2) if 2 < t
(see exercise 28.8 a)



588 Piecewise-Defined and Periodic Functions

(a) (b)
TT

1
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22 03 4

Figure 28.9: (a) The square wave function for exercise 28.13 a, and (b) the rectified sine

function for exercise 28.13 b.

e. f (t) =











t if 0 < t < 2

4 − t if 2 < t < 4

f (t − 4) if t > 4

(see exercise 28.8 i)

f. f (t) = |sin(t)|

28.13. In each of the following exercises, you are given the natural period p0 and a forcing

function f for an undamped mass/spring system modeled by

m
d2 y

dt2
+ κy = f .

Analyze the corresponding resonance occurring in each system. In particular, let y be

any solution to the modeling differential equation and:

i. Compute the difference y(t + p0) − y(t) .

ii. Compute the formula for y(t) assuming y(0) = 0 and y′(0) = 0 . (Express

your answer using τ and n where n is the largest integer such that np0 ≤ t

and τ = t − np0 .)

iii. Using the formula just computed for part ii along with your favorite computer

math package, sketch the graph of y over several cycles. (For convenience,

assume m is a unit mass.)

a. p0 = 2 and f is basic squarewave sketched in figure 28.9a. That is,

f (t) =











1 if 0 < t < 1

0 if 1 < t < 2

f (t + 2) in general

.

b. p0 = 1 and f (t) = |sin(π t)| , the “rectified sine function” sketched in figure 28.9b.

c. p0 = 1 and f (t) = sin(4π t) .


