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Springs: Part II (Forced Vibrations)

Let us look, again, at those mass/spring systems discussed in chapter 17. Remember, in such a

system we have a spring with one end attached to an immobile wall and the other end attached to

some object that can move back and forth under the influences of the spring and whatever friction

may be in the system. Now that we have methods for dealing with nonhomogeneous differential

equations (in particular, the method of educated guess), we can expand our investigations to

mass/spring systems that are under the influence of outside forces such as gravity or of someone

pushing and pulling the object. Of course, the limitations of the method of guess will limit

the forces we can consider. Still, these forces happen to be particularly relevant to mass/spring

systems, and our analysis will lead to some very interesting results — results that can be extremely

useful not just when considering springs, but also when considering other systems in which things

vibrate or oscillate.

22.1 The Mass/Spring System

In chapter 17, we derived

m
d2 y

dt2
+ γ

dy

dt
+ κy = F .

to model the mass/spring system. In this differential equation:

1. y = y(t) is the position (in meters) at time t (in seconds) of the object attached to the

spring. As before, the Y –axis is positioned so that

(a) y = 0 is the location of the object when the spring is at its natural length. (This is

the “equilibrium point” of the object, at least when F = 0 .)

(b) y > 0 when the spring is stretched.

(c) y < 0 when the spring is compressed.

In chapter 17 we visualized the spring as laying horizontally as in figure 22.1a, but that

was just to keep us from thinking about the effect of gravity on this mass/spring system.

Now, we can allow the spring (and Y –axis) to be either horizontal or vertical or even at

some other angle. All that is important is that the motion of the object only be along the

Y –axis. (Do note, however, that if the spring is hanging vertically, as in figure 22.1c,

then the Y –axis is actually pointing downward.)
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Figure 22.1: Three equivalent mass/spring systems with slightly different orientations.

2. m is the mass (in kilograms) of the object attached to the spring.

3. κ is the spring constant, a positive quantity describing the “stiffness” of the spring (with

“stiffer” springs having larger values for κ ).

4. γ is the damping constant, a nonnegative quantity describing how much friction is in

the system resisting the motion (with γ = 0 corresponding to an ideal system with no

friction whatsoever).

5. F is the sum of all forces acting on the spring other than those due to the spring responding

to being compressed and stretched, and the frictional forces in the system resisting motion.

Since we are expanding on the results from chapter 17, let us recall some of the major results

derived there regarding the general solution yh to the corresponding homogeneous equation

m
d2 yh

dt2
+ γ

dyh

dt
+ κy = 0 . (22.1)

If there is no friction in the system then we say the system is undamped, and the solution to

equation (22.1) is

yh(t) = c1 cos(ω0t) + c2 sin(ω0t)

or, equivalently,

yh(t) = A cos(ω0t − φ)

where

ω0 =
√

κ

m

is the natural angular frequency of the system, and the other constants are related by

A =
√

(c1)2 + (c2)2 , cos(φ) = c1

A
and sin(φ) = c2

A
.

When convenient, we can rewrite the above formulas for yh in terms of the system’s natural

frequency ν0 by simply replacing each ω0 with 2πν0 .
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If there is friction resisting the object’s motion (i.e., 0 < γ ), then we say the system

is damped, and we can further classify the system as being underdamped, critically damped

and overdamped, depending on the precise relation between γ , κ and m . Slightly different

solutions to equation (22.1) arise, depending on whether we are dealing with an under-, critically

or overdamped system. In any of these cases, though, each term of the solution yh(t) has an

exponentially decreasing factor. This factor ensures that

yh(t) → 0 as t → ∞ .

That is what will be particularly relevant in this chapter.

(At this point, you may want to go back and quickly review chapter 17 yourself, verifying

the above and filling in some of the details glossed over. In particular, you may want to glance

back over the brief note on ‘units’ starting on page 360.)

22.2 Constant Force

Let us first consider the case where the external force is constant. For example, the spring might

be hanging vertically and the external force is the force of gravity on the object. Letting F0 be

that constant, the differential equation for y = y(t) is

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 .

From our development of the method of guess, we know the general solution is

y(t) = yh(t) + yp(t)

where yh is as described in the previous section, and the particular solution, yp , is some constant,

yp(t) = y0 for all t .

Plugging this constant solution into the differential equation, we get

m · 0 + γ · 0 + κy0 = F0 .

Hence,

y0 = F0

κ
. (22.2)

If the system is undamped, then

y(t) = yh(t) + y0 = c1 cos(ω0t) + c2 sin(ω0t) + y0 ,

which tells us that the object is oscillating about y = y0 . On the other hand, if the system is

damped, then

lim
t→∞

y(t) = lim
t→∞

[yh(t) + y0] = 0 + y0 .

In this case, y = y0 is where the object finally ends up. Either way, the effect of this constant

force is to change the object’s equilibrium point from y = 0 to y = y0 . Accordingly, if L is

the natural length of the spring, then we call L + y0 the equilibrium length of the spring in this

mass/spring system under the constant force F0 .

It’s worth noting that, in practice, y0 is a quantity that can often be measured. If we also

know the force, then relation (22.2) can be used to determine the spring constant κ .
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!◮Example 22.1: Suppose we have a spring whose natural length is 1 meter. We attach

a 2 kilogram mass to its end and hang it vertically (as in figure 22.1c), letting the force of

gravity (near the Earth’s surface) act on the mass. After the mass stops bobbing up and down,

we measure the spring and find that its length is now 1.4 meters, 0.4 meters longer than its

natural length. This gives us y0 (as defined above), and since we are near the Earth’s surface,

F0 = force of gravity on the mass = mg = 2 × 9.8

(

kg·meter

sec2

)

.

Solving equation (22.2) for the spring constant and plugging in the above values, we get

κ = F0

y0

= 2 × 9.8

.4
= 49

(

kg

sec2

)

.

22.3 Resonance and Sinusoidal Forces

The mass/spring systems being considered here are but a small subset of all the things that

naturally vibrate or oscillate at or around fixed frequencies — consider the swinging of a pendulum

after being pushed, the vibrations of a guitar string or a steel beam after being plucked or struck —

even an ordinary drinking glass may vibrate when lightly struck. And if these vibrating/oscillating

systems are somehow forced to move using a force that, itself, varies periodically, then we may

see resonance. This is the tendency of the system’s vibrations or oscillations to become very

large when the frequency of the force is at certain frequencies. Sometimes, these oscillations can

be so large that the system breaks. Because of resonance, bridges have collapsed, singers have

shattered glass, and small but vital parts of motors have broken off at inconvenient moments.

(On the other hand, if you are in a swing, you use resonance in pumping the swing to swing as

high as possible, and if you are a musician, your instrument may well use resonance to amplify

the mellow tones you want amplified. So resonance is not always destructive.)

We can investigate to phenomenon of resonance in our mass/spring system by looking at the

solutions to

m
d2 y

dt2
+ γ

dy

dt
+ κy = F(t)

when F(t) is a sinusoidal, that is,

F = F(t) = a cos(ηt) + b sin(ηt)

where a , b and η are constants with η > 0 . Naturally, we call η the forcing angular frequency,

and the corresponding frequency, µ = η/2π , the forcing frequency. To simplify our imagery, let

us use an appropriate trigonometric identity (see page 362), and rewrite this function as a shifted

cosine function,

F(t) = F0 cos(ηt − φ)

where

F0 =
√

a2 + b2 , cos(φ) = a

F0

and sin(φ) = b

F0

.
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(Such a force can be generated by an unbalanced flywheel on the object spinning with angular

velocity η about an axis perpendicular to the Y –axis. Another way to generate such a force1 is

described in exercise 22.4 on page 453.)

The value of φ is relatively unimportant to our investigations, so let’s set φ = 0 and just

consider the system modeled by

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt) . (22.3)

You can easily verify, at your leisure, that completely analogous results are obtained using φ 6= 0 .

The only change is that each particular solution yp will have a corresponding nonzero shift.

In all that follows, keep in mind that F0 and η are positive constants. You might even want

to observe that letting η → 0 leads to the constant force case just considered in the previous

section.

It is convenient to consider the undamped and damped systems separately. We’ll start with

an ideal mass/spring system in which there is no friction to dampen the motion.

Sinusoidal Force in Undamped Systems

If the system is undamped, equation (22.3) reduces to

m
d2 y

dt2
+ κy = F0 cos(ηt) ,

and the general solution to the corresponding homogeneous equation is

yh(t) = c1 cos(ω0t) + c2 sin(ω0t) with ω0 =
√

κ

m
.

To save a little effort later, let’s observe that the equation for the natural angular frequency ω0

can be rewritten as κ = m(ω0)
2 . This and a little algebra allows us to rewrite above differential

equation as
d2 y

dt2
+ (ω0)

2 y = F0

m
cos(ηt) . (22.4)

The general solution to this is

y(t) = yh(t) + yp(t) = c1 cos(ω0t) + c2 sin(ω0t) + yp(t)

where yp is of the form

yp(t) =







A cos(ηt) + B sin(ηt) if η 6= ω0

At cos(ω0t) + Bt sin(ω0t) if η = ω0

.

We now have two cases to consider: the case where η = ω0 , and the case where η 6= ω0 . Let’s

start with the most interesting of these two cases.

1 using a chicken
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T2π
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Figure 22.2: Graph of a particular solution exhibiting the “runaway” resonance in an

undamped mass/spring system having natural angular frequency ω0 .

The Case Where η = ω0

If the forcing angular frequency η is the same as the natural angular frequency ω0 of our

mass/spring system, then

yp(t) = At cos(ω0t) + Bt sin(ω0t) .

Right off, you can see that this is describing oscillations of larger and larger amplitude as time

goes on. To get a more precise picture of the motion, plug the above formula for y = yp into

differential equation (22.4). You can easily verify that the result is

[

2Bω0 − At (ω0)
2
]

cos(ω0t) +
[

−2Aω0 − (Btω0)
2
]

sin(ω0t)

+ (ω0)
2 [At cos(ω0t) + Bt sin(ω0t)] = F0

m
cos(ω0t) ,

which simplifies to

2Bω0 cos(ω0t) − 2Aω0 sin(ω0t) = F0

m
cos(ω0t) .

Comparing the cosine terms and the sine terms on either side of this equation then gives us the

pair

2Bω0 = F0

m
and − 2Aω0 = 0 .

Thus,

B = F0

2mω0

and A = 0 ,

the particular solution is

yp(t) = F0

2mω0

t sin(ω0t) , (22.5)

and the general solution is

y(t) = yh(t) + yp(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

2mω0
t sin(ω0t) .

The graph of yp is sketched in figure 22.2. Clearly we have true, “run-away” resonance

here. As time increases, the size of the oscillations are becoming steadily larger, dwarfing those
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in the yh term. With each oscillation, the object moves further and further from its equilibrium

point, stretching and compressing the spring more and more (try visualizing that motion!). Wait

long enough, and, according to our model, the magnitude of the oscillations will exceed any size

desired . . . unless the spring breaks.

The Case Where η 6= ω0

Plugging

yp(t) = A cos(ηt) + B sin(ηt)

into equation (22.4) yields

−η2 [A cos(ηt) + B sin(ηt)] + (ω0)
2 [A cos(ηt) + B sin(ηt)] = F0

m
cos(ηt) ,

which simplifies to

[

(ω0)
2 − η2

]

A cos(ηt) +
[

(ω0)
2 − η2

]

B sin(ηt) = F0

m
cos(ηt) .

Comparing the cosine terms and the sine terms on either side of this equation then gives us the

pair
[

(ω0)
2 − η2

]

A = F0

m
and

[

(ω0)
2 − η2

]

B = 0 .

Thus,

A = F0

m
[

(ω0)2 − η2
] and B = 0 ,

the particular solution is

yp(t) = F0

m
[

(ω0)2 − η2
] cos(ηt) , (22.6)

and the general solution is

y(t) = yh(t) + yp(t)

= c1 cos(ω0t) + c2 sin(ω0t) + F0

m
[

(ω0)2 − η2
] cos(ηt) .

(22.7)

Here, the oscillations in the yp term are not increasing with time. However, if the forcing

angular frequency η is close to the natural angular frequency ω0 of the system (and F0 6= 0 ),

then

(ω0)
2 − η2 ≈ 0

and, so, the amplitude of the oscillations in yp ,

∣

∣

∣

∣

F0

m
[

(ω0)2 − η2
]

∣

∣

∣

∣

.

will be very large. If we can adjust the forcing angular frequency η (but keeping F0 constant),

then we can make the amplitude of the oscillations in yp as large as we could wish. So, again,

our solutions are exhibiting “resonance” (perhaps we should call this “near resonance”).
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Some Comments About What We’ve Just Derived

1. Relevance of the yh term: Because the oscillations in the yp term are not increasing

with time, every term in formula (22.7) can play a relatively significant role in the long-

term motion of the object in an undamped mass/spring system. In addition, the oscillations

in the yh term can “interfere” with the yp term to prevent y(t) from reaching its

maximum value within the first oscillation from when the object is initially still. In fact,

the interaction of the yh terms with the yp term can lead to some very interesting motion.

However, exploring how yh and yp can interact goes a little outside of our current

discussions of “resonance”. Accordingly, we will delay a more complete discussion of

this interaction to section 22.4, after finishing our discussion of resonance.

2. The limit as near resonance approaches true resonance: The resonant frequency of a

system is the forcing frequency at which resonance is most pronounced for that system.

The above analysis tells us that the resonant frequency for an undamped mass/spring

system is the same as the system’s natural frequency. At least, it tells us that when the

forcing function is given by a cosine function. It turns out that, using more advanced

tools, we can show that we get those ever-increasing oscillations whenever the force is

given by a periodic function having the same frequency as the natural frequency of that

undamped mass/spring system.

Something you might expect is that, as η gets closer and closer to the natural angular

frequency ω0 , the corresponding solution y of equation 22.4 satisfying some given

initial values will approach that obtained when η = ω0 . This is, indeed, the case, and

its verification will be left as an exercise (exercise 22.5 on page 454).

3. Limitations in our model: Keep in mind that our model for the mass/spring system was

based on certain assumptions regarding the behavior of springs. In particular, the κ term

in our differential equation came from Hooke’s law,

Fspring(y) = −κy ,

relating the spring’s force to the object’s position. As we noted after deriving Hooke’s law

(page 359), this is a good model for the spring force, provided the spring is not stretched

or compressed too much. So if our formulas for y(t) have |y(t)| becoming too large for

Hooke’s law to remain valid, then these formulas are probably are not that accurate after

|y(t)| becomes that large. Precisely what happens after the oscillations become so large

that our model is no longer valid will depend on the spring and the force.

Sinusoidal Force in Damped Systems

If the system is damped, then we need to consider equation (22.3),

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt) , (22.3 ′)

assuming 0 < γ . As noted a few pages ago, the terms in yh , the solution to the corresponding

homogeneous differential equation, all contain decaying exponential factors. Hence,

yh(t) → 0 as t → ∞ ,
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and we can assume a particular solution of the form

yp(t) = A cos(ηt) + B sin(ηt) .

We can then write the general solution to our nonhomogeneous differential equation as

y(t) = yh(t) + yp(t) = yh(t) + A cos(ηt) + B sin(ηt) ,

and observe that, as t → ∞ ,

y(t) = yh(t) + yp(t) → 0 + yp(t) = A cos(ηt) + B sin(ηt) .

This tells us that any long-term behavior of y depends only on yp , and may explain why, in

these cases, we refer to yh(t) as the transient part of the solution and yp(t) as the steady-state

part of the solution.

The analysis of the particular solution,

yp(t) = A cos(ηt) + B sin(ηt) ,

is relatively straightforward, but a little tedious. We’ll leave the computational details to the

interested reader (exercise 22.6 on page 455), and quickly summarize the high points.

Plugging in the above formula for yp into our differential equation and solving for A and

B yields

yp(t) = A cos(ηt) + B sin(ηt) (22.8a)

with

A = ηγ F0
[

κ − mη2
]2 + η2γ 2

and B = −
[

κ − mη2
]

F0
[

κ − mη2
]2 + η2γ 2

. (22.8b)

Using a little trigonometry, we can rewrite this as

yp(t) = C cos(ηt − φ) (22.9a)

where the amplitude of these forced vibrations is

C = F0
√

[

κ − mη2
]2 + η2γ 2

(22.9b)

and φ satisfies

cos(φ) = A

C
and sin(φ) = B

C
. (22.9c)

Recalling that the natural angular frequency ω0 of the corresponding undamped system is related

to the spring constant and object’s mass by

(ω0)
2 = κ

m
,

we see that the above formula for the amplitude of the forced oscillations can be rewritten as

C = F0
√

m2
[

(ω0)2 − η2
]2 + η2γ 2

.
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This value does not blow up with time, nor does it become infinite for any forcing angular

frequency η . So we do not have the “run-away” resonance exhibited by an undamped mass/spring

system. Still this amplitude does vary with the forcing frequency. With a little work, you can

show that, for a given damped mass/spring system, the amplitude of the forced vibrations has a

maximum value provided the friction is not too great. To be specific, if

γ < mω0

√
2 ,

then the maximum amplitude occurs when the forcing angular frequency is

η0 =
√

(ω0)2 − 1

2

(

γ

m

)2

.

This is the resonant angular frequency for the corresponding damped mass/spring system. Ob-

serve that it is less than the natural angular frequency of the corresponding undamped system,

and that it decreases further as the friction in the system increases. The corresponding maximum

amplitude, obtained by letting η = η0 in the last formula for C , is

Cmax = 2m F0

γ
√

(2mω0)2 − γ 2
.

On the other hand, if

mω0

√
2 ≤ γ ,

then the amplitude decreases as the forcing angular frequency increases from η = 0 ; hence, no

there is no resonant frequency.

22.4 More on Undamped Motion Under Nonresonant
Sinusoidal Forces

When two or more sinusoidal functions of different frequencies are added together, they can

alternatively amplify and interfere with each other to produce a graph that looks somewhat like

a single sinusoidal function whose amplitude varies in some regular fashion. This is illustrated

in figure 22.3 in which graphs of

cos(ηt) − cos(ω0t)

have been sketched using one value for ω0 and two values for η . The first figure (figure 22.3a)

illustrates what is commonly called the beat phenomenon, in which we appear to have a fairly

high frequency sinusoidal whose amplitude seems to be given by another, more slowly varying

sinusoidal. This slowly varying sinusoidal gives us the individual “beats” in which the high

frequency function intensifies and fades (figure 22.3a shows three beats).

This beat phenomenon is typical of the sum (or difference) of two sinusoidal functions of

almost the same frequency, and can be analyzed somewhat using trigonometric identities. For

the functions graphed in figure 22.3a we can use basic trigonometric identities to show that

cos(ηt) − cos(ω0t) = −2 sin
(

η + ω0

2
t
)

sin
(

η − ω0

2
t
)

.
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replacements

(a) (b)
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Figure 22.3: Graph of cos(ηt) − cos(ω0t) with ω0 = 2 and with (a) η = 0.9 ω0 and (b)

η = 0.1 ω0 . (Drawn using the same horizontal scales for both graphs).

Thus, we have

cos(ηt) − cos(ω0t) = A(t) sin
(

ωhight
)

with ωhigh = η + ω0

2

where

A(t) = ±2 sin(ωlowt) with ωlow =
∣

∣

∣

ω0 − η

2

∣

∣

∣
.

The angular frequency of the high-frequency wiggles in figure 22.3a are approximately ωhigh ,

while ωlow corresponds to the angular frequency of pairs of beats. (Visualizing A(t) as a slowly

varying amplitude only makes sense if A(t) varies much more slowly than sin
(

ωhight
)

. And, if

you think about it, you will realize that, if η ≈ ω0 , then

ωhigh = η + ω0

2
≈ ω0 and ωlow =

∣

∣

∣

ω0 − η

2

∣

∣

∣
≈ 0 .

So this analysis is justified if the forcing frequency is close, but not equal, to the resonant

frequency.)

The general phenomenon just described (with or without “beats”) occurs whenever we

have a linear combination of sinusoidal functions. In particular, it becomes relevant whenever

describing the behavior of an undamped mass/spring system with a sinusoidal forcing function

not at resonant frequency. Let’s do one general example:

!◮Example 22.2: Consider an undamped mass/spring system having resonant angular fre-

quency ω0 under the influence of a force given by

F(t) = F0 cos(ηt)

where η 6= ω0 . Assume, further that the object in the system (with mass m ) is initially at

rest. In other words, we want to find the solution to the initial-value problem

d2 y

dt2
+ (ω0)

2 y = F0

m
cos(ηt) with y(0) = 0 and y′(0) = 0 .

From our work a few pages ago (see equation (22.7)), we know

y(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

m
[

(ω0)2 − η2
] cos(ηt) .
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To satisfy the initial conditions, we must then have

0 = y(0) = c1 cos(0) + c2 sin(0) + F0

m
[

(ω0)2 − η2
] cos(0)

and

0 = y′(0) = −c1ω0 sin(0) + c2ω0 cos(0) − F0η

m
[

(ω0)2 − η2
] sin(0) ,

which simplifies to the pair

0 = c1 + F0

m
[

(ω0)2 − η2
] and 0 = c2ω0 .

So

c1 = − F0

m
[

(ω0)2 − η2
] , c2 = 0 ,

and

y(t) = − F0

m
[

(ω0)2 − η2
] cos(ω0t) + F0

m
[

(ω0)2 − η2
] cos(ηt)

= F0

m
[

(ω0)2 − η2
]

[

cos(ηt) − cos(ω0t)
]

.

If η = 0.9 ω0 , the last formula for y reduces to

y(t) = 100

19
· F0

m(ω0)2

[

cos(ηt) − cos(ω0t)
]

,

and the graph of the object’s position at time t is the same as the graph in figure 22.3a with

the amplitude multiplied by

100

19
· F0

m(ω0)2
.

If η = 0.1 ω0 , then

y(t) = 100

99
· F0

m(ω0)2

[

cos(ηt) − cos(ω0t)
]

,

and the graph of the object’s position at time t is the same as the graph in figure 22.3a with

the amplitude multiplied by

100

99
· F0

m(ω0)2

(which, it should be noted, is approximately 1/5 the amplitude when η = 0.9ω0 ).

?◮Exercise 22.1: Consider the mass/spring system just discussed in the last example. Using

the graphs in figure 22.3, try to visualize the motion of the object in this system

a: when the forcing frequency is 0.9 the natural frequency.

b: when the forcing frequency is 0.1 the natural frequency.
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Additional Exercises

22.2. A spring, whose natural length is 0.1 meter, is stretched to an equilibrium length of

0.12 meter when suspended vertically (near the Earth’s surface) with a 0.01 kilogram

mass at the end.

a. Find the spring constant κ for this spring.

b. Find the natural angular frequency ω0 and the natural frequency ν0 for this mass/spring

system, assuming the system is undamped.

22.3. All of the following concern a single spring of natural length 1 meter mounted vertically

with one end attached to the floor (as in figure 22.1b on page 442).

a. Suppose we place a 25 kilogram box of frozen ducks on top of the spring, and, after

moving the box down to its equilibrium point, we find that the length of the spring is

now 0.9 meter.

i. What is the spring constant for this spring?

ii. What is the natural angular frequency of the mass/spring system assuming the system

is undamped?

iii. Approximately how many times per second will this box bob up and down assuming

the system is undamped, and the box is moved from its equilibrium point and

released? (i.e., what is the natural frequency?)

b. Suppose we replace the box of frozen ducks with a single 2 kilogram chicken.

i. Now what is the equilibrium length of the spring?

ii. What is the natural angular frequency of the undamped chicken/spring system?

iii. Assuming the system is undamped, not initially at equilibrium, and the chicken is

not flapping its wings, how many times per second does this bird bob up and down?

c. Next, the chicken is replaced with a box of imported fruit. After the box stops bobbing

up and down, we find that the length of the spring is 0.85 meter. What is the mass of

this box of fruit?

d. Finally, everything is taken off the spring, and a bunch of red, helium filled balloons

are tied onto the end of the spring, stretching it to an new equilibrium length of 1.02

meters. What is the buoyant force of this bunch of balloons?

22.4. A live 2 kilogram chicken is securely attached to the top of the the floor-mounted spring

of natural length 1 meter (similar to that described in exercise 22.3, above). Nothing

else is on the spring. Knowing that the spring will break if it is stretched or compressed

by half its natural length, and hoping to use the resonance of the system to stretch or

compress the spring to its breaking point, the chicken starts flapping its wings. The

force generated by the chicken’s flapping wings t seconds after it starts to flap is

F(t) = F0 cos(2πµt)
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where µ is the frequency of the wing flapping (flaps/second) and

F0 = 3

(

kg·meter

sec2

)

.

For the following exercises, also assume the following:

1. This chicken/spring system is undamped and has natural frequency ν0 = 6

(hertz).

2. The model given by differential equation (22.4) on page 445 is valid for this

chicken/spring system right up to the point where the spring breaks.

3. The chicken’s position at time t , y(t) is just given by the particular solution yp

found by the method of educated guess (formula (22.5) on page 446 or formula

(22.6) on page 447, depending on µ ).

a. Suppose the chicken flaps at the natural frequency of the system.

i. What is the formula for the chicken’s position at time t ?

ii. When does does the amplitude of the oscillations become large enough to break the

spring?

b. Suppose that the chicken manages to consistently flap its wing 3 times per second.

i. What is the formula for the chicken’s position at time t ?

ii. Does the chicken break the spring? If so, when.

c. What is the range of values for µ , the flap frequency, that the chicken can flap at,

eventually breaking the spring? (That is, find the minimum and maximum values of

µ so that the corresponding near resonance will stretch or compress the spring enough

to break it.)

22.5. For each η > 0 , let yη be the solution to

d2 yη

dt2
+ (ω0)

2 yη = F0

m
cos(ηt) with yη(0) = 0 and yη

′(0) = 0 .

Note that this describes an undamped mass/spring system in which the mass is initially

at rest.

a. Find yη(t) assuming η 6= ω0 .

b. Find yη(t) assuming η = ω0 .

c. Verify that

lim
η→ω0

yη(t) = yω0
(t) .

d. Using a computer math package (Maple, Mathematica, etc.) sketch the graph of yη

from t = 0 to t = 100 when ω0 = 5 , F0/m = 1 , and

i. η = 0.1 ω0 ii. η = 0.5 ω0 iii. η = 0.75 ω0

iv. η = 0.9 ω0 v. η = 0.99 ω0 vi. η = 0.99 ω0
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vii. η = ω0 viii. η = 1.1 ω0 ix. η = 2 ω0

In particular, observe what happens when η ≈ ω0 , and how these graphs illustrate

the result given in part c of this exercise.

22.6. Consider an damped mass/spring system given by

m
d2 y

dt2
+ γ

dy

dt
+ κy = F0 cos(ηt) .

(This is the same as equation (22.3 ′).)

a. Using the method of guess, derive the particular solution given by equation set (22.8)

on page 449.

b. Then show that the solution in the previous part can be rewritten as described by

equation set (22.9) on page 449.

c. Finally, show that the resonant frequency of the system is

η0 =
√

(ω0)2 − 1

2

(

γ

m

)2

provided γ < mω0

√
2 . What happens if, instead, γ ≥ mω0

√
2 ?

22.7 a. Show that neither a critically damped nor an overdamped mass/spring system can have

a resonant frequency.

b. Does every underdamped mass/spring system have a resonant frequency?

22.8. Assume we have an underdamped mass/spring system with resonant angular frequency

η0 . Show that

η0 =
√

ω2 −
(

γ

2m

)2

where m is the mass of the object in the system, γ is the damping constant, and ω is

the angular quasi-frequency of the damped system. Also, verify that

η0 < ω < ω0

by showing that

(η0)
2 +

(

γ

2m

)2

= ω2 = (ω0)
2 −

(

γ

2m

)2

where ω0 is the natural angular frequency of the corresponding undamped mass/spring

system. (Hint: See exercise 17.8 on page 372.)




