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Nonhomogeneous Equations in General

Now that we are proficient at solving many homogeneous linear differential equations, including

y′′ − 4y = 0 ,

it is time to expand our skills to solving nonhomogeneous linear equations, such as

y′′ − 4y = 5e3x .

20.1 Basic Theory
Recollections about Linearity

∗

Let us go back to our generic, N th-order, linear differential equation,

a0

d N y

dx N
+ a1

d N−1 y

dx N−1
+ · · · + aN−2

d2 y

dx2
+ aN−1

dy

dx
+ aN y = g .

Remember, g and the ak’s denote known functions of x over some interval of interest, I . As

usual, we will assume these functions are continuous and that a0 is never zero on this interval.

As before, it is convenient to let L denote the corresponding differential operator from the

left side of the equation,

L = a0

d N

dx N
+ a1

d N−1

dx N−1
+ · · · + aN−2

d2

dx2
+ aN−1

d

dx
+ aN .

That is, given any sufficiently differentiable function φ(x) on I ,

L[φ] = a0

d N φ

dx N
+ a1

d N−1φ

dx N−1
+ · · · + aN−2

d2φ

dx2
+ aN−1

dφ

dx
+ aN φ .

Using this operator, we can write our generic differential equation as

L[y] = g .

∗ You may want to briefly review the material in chapter 12.
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410 Nonhomogeneous Equations in General

Remember, this equation is said to be homogeneous if g is always zero on our interval, and

nonhomogeneous otherwise. Since we have already discussed the homogeneous case, let us now

assume g(x) is a function that is nonzero over at least a portion of our interval of interest.

Don’t forget, however, that, for each nonhomogeneous equation

L[y(x)] = g(x) ,

we still have the corresponding homogeneous equation

L[y(x)] = 0

where we simply replace g(x) with 0 . This equation will play a significant role in solving the

nonhomogeneous equation.

!◮Example 20.1: Using the linear differential operator

L =
d2

dx2
− 4 ,

we can rewrite the nonhomogeneous equation

y′′ − 4y = 5e3x

and the corresponding homogeneous equation

y′′ − 4y = 0

as

L[y(x)] = 5e3x and L[y(x)] = 0 ,

respectively

General Solutions to Nonhomogeneous Equations

Now assume we have some linear differential operator L (such as in the last example), and let

us recall that, given any pair of sufficiently differentiable functions φ1(x) and φ2(x) along with

any pair of constants c1 and c2 ,

L[c1φ1(x) + c2φ2(x)] = c1L[φ1(x)] + c2L[φ2(x)] .

This is the “linearity” of our operator, and was used to construct general solutions to homoge-

neous equations as linear combinations of different solutions. With nonhomogeneous equations

we must be a little more careful. After all, if yp and yq are two particular solutions to a

nonhomogeneous equation

L[y] = g

(i.e., L[yp(x)] = g(x) and L[yq(x)] = g(x) ),

and c1 and c2 are any two constants that do not add up to 1 , then, since g is a nonzero function,

L[c1 yp(x) + c2 yq(x)] = c1L[yp(x)] + c2L[yq]

= c1g(x) + c2g(x)
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= [c1 + c2]g(x)

6= g(x) .

Thus, a linear combination of solutions to a NONhomogeneous linear differential equation is

usually NOT a solution to that differential equation.

Notice, however, what happens when we consider the difference

yq(x) − yp(x)

between these two particular solutions to our nonhomogeneous equation. Plugging this into L

gives us

L[yq(x) − yp(x)] = L[yq(x)] − L[yp(x)] = g(x) − g(x) = 0 .

So

yq(x) − yp(x) = a solution to the corresponding homogeneous equation .

Let me rephrase this:

If yp and yq are any two solutions to a given nonhomogeneous linear differential

equation, then

yq(x) = yp(x) + a solution to the corresponding homogeneous equation .

On the other hand, if we start with

yq(x) = yp(x) + y0(x)

where yp is any particular solution to the nonhomogeneous equation and y0 is any solution to

the corresponding homogeneous equation

(

i.e., L[yp(x)] = g(x) and L[y0(x)] = 0
)

,

then

L[yq(x)] = L[yp(x) + y0(x)] = L[yp(x)] + L[y0] = g(x) + 0 = g(x) .

Thus:

If yp is a particular solution to a given nonhomogeneous linear differential equation,

and

yq(x) = yp(x) + any solution to the corresponding homogeneous equation ,

then yq is also a solution to the nonhomogeneous differential equation.

If you think about it, you will realize that we’ve just derived the form for a general solution

to any nonhomogeneous linear differential equation. We only need one particular solution to that

nonhomogeneous differential equation and the general formula describing all solutions to the

corresponding homogeneous linear differential equation. To be precise, the two results derived

above, combined, yield the following theorem.
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Theorem 20.1 (general solutions to nonhomogeneous equations)

A general solution to a given nonhomogeneous linear differential equation is given by

y(x) = yp(x) + yh(x)

where yp is any particular solution to the nonhomogeneous equation, and yh is a general solution

to the corresponding homogeneous differential equation.1

!◮Example 20.2: Consider the nonhomogeneous differential equation

y′′ − 4y = 5e3x . (20.1)

Observe that
[

e3x
]′′

− 4
[

e3x
]

= 32e3x − 4e3x = 5e3x .

So one particular solution to our nonhomogeneous equation is

yp(x) = e3x .

The corresponding homogeneous equation is

y′′ − 4y = 0 ,

a linear equation with constant coefficients. Its characteristic equation,

r 2 − 4 = 0 ,

has solutions r = 2 and r = −2 . So this homogeneous equation has

{

y1(x) , y2(x)
}

=
{

e2x , e−2x
}

as a fundamental set of solutions, and

yh(x) = c1e2x + c2e−2x

as a general solution.

Thus, (according to our work above as summarized in theorem 20.1), the general solution

to the nonhomogeneous differential equation (20.1) is

y(x) = yp(x) + yh(x)

= e3x + c1e2x + c2e−2x .

(Note that there are only two arbitrary constants, and that they are only in the formula for yh .

There is no arbitrary constant corresponding to yp !)

This last example illustrates what happens when we limit ourselves to second-order equa-

tions. More generally, if we recall how we construct general solutions to the corresponding

homogeneous equations, then we get the following corollary of theorem 20.1:

1 Many texts refer to the general solution of the corresponding homogeneous differential equation as “the comple-

mentary solution” and denote it by yc instead of yh . We are using yh to help remind us that this is the general

solution to the corresponding homogeneous differential equation.
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Corollary 20.2 (general solutions to nonhomogeneous second-order equations)

A general solution to a second-order, nonhomogeneous linear differential equation

ay′′ + by′ + cy = g

is given by

y(x) = yp(x) + c1 y1(x) + c2 y2(x) (20.2)

where yp is any particular solution to the nonhomogeneous equation, and {y1, y2} is any fun-

damental set of solutions for the corresponding homogeneous equation

ay′′ + by′ + cy = 0 .

Do note that there are only two arbitrary constants c1 and c2 in formula (20.2), and that

they are multiplying only particular solutions to the corresponding homogeneous equation. The

particular solution to the nonhomogeneous equation, yp , is NOT multiplied by an arbitrary

constant!

Of course, if we don’t limit ourselves to second-order equations, but still recall how to

construct general solutions to homogeneous equations from a fundamental set of solutions to

that homogeneous equation, then we get the N th-order analog of the last corollary:

Corollary 20.3 (general solutions to nonhomogeneous N th-order equations)

A general solution to an N th-order, nonhomogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = g

is given by

y(x) = yp(x) + c1 y1(x) + c2 y2(x) + · · · + cN yN (x) (20.3)

where yp is any particular solution to the nonhomogeneous equation, and {y1, y2, . . . , yN } is

any fundamental set of solutions for the corresponding homogeneous equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 .

20.2 Superposition for Nonhomogeneous Equations

Before discussing methods for finding particular solutions, we should use linearity of a linear

differential operator L to make one more observation: If y1 , y2 , g1 and g2 are two functions

satisfying

L[y1(x)] = g1(x) and L[y2(x)] = g2(x) ,

then, for any two constants a1 and a2 ,

L[a1 y1(x) + a2 y2(x)] = a1 L[y1(x)] + a2 L[y2(x)] = a1g1(x) + a2g2(x) .

Obviously, similar computations will yield similar results involving any number of “ (y j , g j )

pairs”, giving us a principle of superposition for nonhomogeneous equations:2

2 You might want to compare this principle of superposition to the principle of superposition for homogeneous

equations was described in theorem 12.2 on page 266.
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Theorem 20.4 (principle of superposition for nonhomogeneous equations)

Let L be a linear differential operator and K a positive integer. Assume {y1, y2, . . . , yK } and

{g1, g2, . . . , gK } are two sets of K functions related over some interval of interest by

L[y1] = g1 , L[y2] = g2 , . . . and L[yK ] = gK .

Then, for any set of K constants {a1, a2, . . . , aK } , a particular solution to

L[y(x)] = a1g1(x) + a2g2(x) + · · · + aK gK (x)

is given by

yp(x) = a1 y1(x) + a2 y2(x) + · · · + aK yK (x) .

This principle gives us a means for constructing solutions to certain nonhomogeneous equa-

tions as linear combinations of solutions to simpler nonhomogeneous equations, provided, of

course, we have the solutions to those simpler equations.

!◮Example 20.3: From our last example, we know that

y1(x) = e3x satisfies y1
′′ − 4y1 = 5e3x .

The principle of superposition (with K = 1 ) then assures us that, for any constant a1 ,

yp(x) = a1 y1(x) = a1e3x satisfies y1
′′ − 4y1 = a1

[

5e3x
]

.

For example, a particular solution to

y′′ − 4y = e3x ,

which we will rewrite as

y′′ − 4y =
1

5

[

5e3x
]

is given by

yp(x) =
1

5
y1(x) =

1

5
e3x .

And for the general solution, we simply add the general solution to the corresponding

homogeneous equation found in the previous example:

y(x) = yp(x) + yh(x) =
1

5
e3x + c1e2x + c2e−2x .

The basic use of superposition requires that we already know the appropriate “ yk’s ”. At

times, we may not already know them, but, with luck, we can make good “guesses” as to appro-

priate yk’s and then, after computing the corresponding gk’s , use the principle of superposition.

!◮Example 20.4: Consider solving

y′′ − 4y = 2x2 − 8x + 3 . (20.4)

Let us “guess” that a particular solution can be given by a linear combination of

y1(x) = x2 , y2(x) = x and y3(x) = 1 .
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Plugging these into the lefthand side of equation (20.4), we get

g1(x) = y1
′′ − 4y1 =

d2

dx2

[

x2
]

− 4
[

x2
]

= 2 − 4x2 ,

g2(x) = y2
′′ − 4y2 =

d2

dx2
[x] − 4[x] = −4x ,

and

g3(x) = y3
′′ − 4y3 =

d2

dx2
[1] − 4[1] = −4 .

Now set

yp(x) = a1 y1(x) + a2 y2(x) + a3 y3(x) .

By the principle of superposition,

yp
′′ − 4yp = a1g1(x) + a2g2(x) + a3g3(x)

= a1

[

2 − 4x2
]

+ a2[−4x] + a3[−4]

= −4a1x2 − 4a2x + [2a1 − 4a3] .

This means yp is a solution to our differential equation,

y′′ − 4y = 2x2 − 8x + 3 ,

if and only if

−4a1 = 2 , − 4a2 = −8 and 2a1 − 4a3 = 3 .

Solving for the ak’s yields

a1 = −
1

2
, a2 = 2 and a1 = −1 .

Thus, a particular solution to our differential equation is given by

yp(x) = c1 y1(x) + c2 y2(x) + c3 y3(x) = −
1

2
x2 + 2x − 1 ,

and a general solution is

y(x) = yp(x) + yh(x) = −
1

2
x2 + 2x − 1 + c1e2x + c2e−2x .

By the way, we’ll further discuss the “art of making good guesses” in the next chapter, and

develop a somewhat more systematic method that uses superposition is a slightly more subtle

way. Unfortunately, as we will see, “guessing” is only suitable for relatively simple problems.
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20.3 Reduction of Order

In practice, finding a particular solution to a nonhomogeneous linear differential equation can be a

challenge. One method, the basic reduction of order method for second-order, nonhomogeneous

linear differential equations, was briefly discussed in section 13.3. If you haven’t already looked

at that section, or don’t remember the basic ideas discussed there, you can go back and skim that

section. Or not. Truth is, better methods will be developed in the next few sections.

Additional Exercises

20.1. What should g(x) be so that y(x) = e3x is a solution to

a. y′′ + y = g(x) ?

b. x2 y′′ − 4y = g(x) ?

c. y(3) − 4y′ + 5y = g(x) ?

20.2. What should g(x) be so that y(x) = x3 is a solution to

a. y′′ + 4y′ + 4y = g(x) ?

b. x2 y′′ + 4xy′ + 4y = g(x) ?

c. y(4) + xy(3) + 4y′′ −
3

x
y′ = g(x) ?

20.3 a. Can y(x) = sin(x) be a solution to

y′′ + y = g(x)

for some nonzero function g ? (Give a reason for your answer.)

b. What should g(x) be so that y(x) = x sin(x) is a solution to

y′′ + y = g(x) ?

20.4. Consider the nonhomogeneous linear differential equation

y′′ + 4y = 24e2x .

a. Verify that one particular solution to this nonhomogeneous differential equation is

yp(x) = 3e2x .

b. What is yh , the general solution to the corresponding homogeneous equation?

c. What is the general solution to the above nonhomogeneous equation?
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d. Find the solution to the above nonhomogeneous equation that also satisfies each of

the following sets of initial conditions:

i. y(0) = 6 and y′(0) = 6 ii. y(0) = −2 and y′(0) = 2

20.5. Consider the nonhomogeneous linear differential equation

y′′ + 2y′ − 8y = 8x2 − 3 .

a. Verify that one particular solution to this equation is

yp(x) = −x2 −
1

2
x .

b. What is yh , the general solution to the corresponding homogeneous equation?

c. What is the general solution to the above nonhomogeneous equation?

d. Find the solution to the above nonhomogeneous equation that also satisfies each of

the following sets of initial conditions:

i. y(0) = 0 and y′(0) = 0 ii. y(0) = 1 and y′(0) = −3

20.6. Consider the nonhomogeneous linear differential equation

y′′ − 9y = 36 .

a. Verify that one particular solution to this equation is

yp(x) = −4 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 8 and y′(0) = 6 .

20.7. Consider the nonhomogeneous linear differential equation

y′′ − 3y′ − 10y = −6e4x .

a. Verify that one particular solution to this equation is

yp(x) = e4x .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 6 and y′(0) = 8 .

20.8. Consider the nonhomogeneous linear differential equation

y′′ − 3y′ − 10y = 7e5x .
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a. Verify that one particular solution to this equation is

yp(x) = xe5x .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 12 and y′(0) = −2 .

20.9. Consider the nonhomogeneous linear differential equation

y′′ + 6y′ + 9y = 169 sin(2x) .

a. Verify that one particular solution to this equation is

yp(x) = 5 sin(2x) − 12 cos(2x) .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = −10 and y′(0) = 9 .

20.10. Consider the nonhomogeneous linear differential equation

x2 y′′ − 4xy′ + 6y = 10x + 12 for x > 0 .

a. Verify that one particular solution to this equation is

yp(x) = 5x + 2 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(1) = 6 and y′(1) = 8 .

20.11. Consider the nonhomogeneous linear differential equation

y(4) + y′′ = 1 .

a. Verify that one particular solution to this equation is

yp(x) =
1

2
x2 .

b. Find the general solution to this nonhomogeneous equation.

c. Find the solution to the above nonhomogeneous equation that also satisfies

y(0) = 4 , y′(0) = 3 , y′′(0) = 0 and y(3)(0) = 2 .
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20.12. In exercises 20.7 and 20.8 you saw that yp(x) = e4x is a particular solution to

y′′ − 3y′ − 10y = −6e4x ,

and that yp(x) = xe5x is a particular solution to

y′′ − 3y′ − 10y = 7e5x .

Using this and superposition, find a particular solution yp and a general solution y to

each of the following:

a. y′′ − 3y′ − 10y = e5x

b. y′′ − 3y′ − 10y = 7e5x − 6e4x

c. y′′ − 3y′ − 10y = 35e5x + 12e4x

20.13 a. What should g(x) be so that y(x) is a solution to

x2 y′′ − 7xy′ + 15y = g(x) for x > 0

i. when y(x) = x2 ? ii. when y(x) = x ? iii. when y(x) = 1 ?

b. Using the results just derived, find a particular solution yp and a general solution y

to each of the following (for x > 0 ):

i. x2 y′′ − 5xy′ + 9y = 4x2 + 2x + 3

ii. x2 y′′ − 5xy′ + 9y = x2

20.14 a. What should g(x) be so that y(x) is a solution to

y′′ − 2y′ + y = g(x)

i. when y(x) = cos(2x) ? ii. when y(x) = sin(2x) ?

b. Using the results just derived, find a particular solution yp and a general solution y

to each of the following:

i. y′′ − 2y′ + y = cos(2x)

ii. y′′ − 2y′ + y = sin(2x)




