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Homogeneous Linear Equations — The
Big Theorems

Let us continue the discussion we were having at the end of section 12.3 regarding the general

solution to any given homogeneous linear differential equation. By then we had seen that any

linear combination of particular solutions,

y(x) = c1 y1(x) + c2 y2(x) + · · · + cM yM(x) ,

is another solution to that homogeneous differential equation. In fact, we were even beginning

to suspect that this expression could be used as a general solution to the differential equation

provided the yk’s were suitably chosen. In particular, we suspected that the general solution to

any second-order, homogeneous linear differential equation can be written

y(x) = c1 y1(x) + c2 y2(x)

were c1 and c2 are arbitrary constants, and y1 and y2 are any two solutions that are not constant

multiples of each other.

These suspicions should have been reinforced in the last chapter in which general solutions

were obtained via reduction of order. In the examples and exercises, you should have noticed

that the solutions obtained to the given homogeneous differential equations could all be written

as just described.

It is time to confirm these suspicions, and to formally state the corresponding results. These

results will not be of merely academic interest. We will use them for much of the rest of this text.

For practical reasons, we will split our discussion between this and the next chapter. This

chapter will contain the statements of the most important theorems regarding the solutions to

homogeneous linear differential equations, along with a little discussion to convince you that

these theorems have a reasonable chance of being true. More convincing (and lengthier) analysis

will be carried out in the next chapter.

14.1 Preliminaries and a Little Review

We are discussing general homogeneous linear differential equations. If the equation is of second

order, it will be written as

ay′′ + by′ + cy = 0 .
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298 Homogeneous Linear Equations — The Big Theorems

More generally, it will be written as

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where N , the order, is some positive integer. The coefficients — a , b and c in the second

order case, and the ak’s in the more general case — will be assumed to be continuous functions

over some open interval I , and the first coefficient — a or a0 — will be assumed to be nonzero

at every point in that interval.

Recall the “principle of superposition”: If {y1, y2, . . . , yK } is a set of particular solutions

over I to a given homogeneous linear equation, then any linear combination of these solutions,

y(x) = c1 y1(x) + c2 y2(x) + · · · + cK yK (x) for all x in I ,

is also a solution over I to the the given differential equation. Also recall that this set of y’s is

called a fundamental set of solutions (over I ) for the given homogeneous differential equation

if and only if both of the following hold:

1. The set is linearly independent over I (i.e., none of the yk’s is a linear combination of

the others over I ).

2. Every solution over I to the given differential equation can be expressed as a linear

combination of the yk’s .

14.2 Second-Order Homogeneous Equations

Let us limit our attention to the possible solutions to a second-order homogeneous linear differ-

ential equation

ay′′ + by′ + cy = 0 . (14.1)

We will first look at what we can derive just from the reduction of order method (with a few

assumptions), and then see how that can be extended by some basic linear algebra. Because

of some of the assumptions we will make, our discussion here will not be completely rigorous,

but it will lead to some of the more important ideas regarding general solutions to second-order

homogeneous linear differential equations. After that, I will tell you what can be rigorously

proven regarding these general solutions. If you are impatient, you can skip ahead and read that

part (theorem 14.1 on page 302).

The Form of the Reduction of Order Solution

As I hope you observed, the reduction of order method applied to an equation of the form (14.1)

always led (in the previous chapter, at least) to a general solution of the form

y(x) = c1 y1(x) + cR yR(x)

where {y1, yR} is a linearly independent set of solutions on the interval of interest (we are using

the “subscript R ” just to emphasize that this part came from reduction of order).
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!◮Example 14.1: In section 13.2, we illustrated the reduction of order method by solving

x2 y′′ − 3xy′ + 4y = 0

on the interval I = (0,∞) . After first observing that

y1(x) = x2

was one solution to this differential equation, we applied the method of reduction of order to

obtain the general solution

y(x) = x2[A ln |x | + B] = Ax2 ln |x | + Bx2

(where A and B denote arbitrary constants). Observe that this is in the form

y(x) = c1 y1(x) + cR yR(x) .

In this case,

y1(x) = x2 and yR(x) = x2 ln |x | ,

and c1 and cR are simply the arbitrary constants A and B , renamed. Observe also that,

here, y1 and yR are clearly not constant multiples of each other. So

{ y1, yR } =
{

x2, x2 ln |x |
}

is a linearly independent pair of functions on the interval of interest. And since every other

solution to our differential equation can be written as a linear combination of this pair, this set

is a fundamental set of solutions for our differential equation.

Let’s look a little more closely at the solution to equation (14.1),

ay′′ + by′ + cy = 0 ,

generally obtained via reduction of order. Assuming we have one known nontrivial particular

solution y1 , we set

y = y1u ,

plug this into the differential equation, and obtain (after simplification) an equation of the form

Au′′ + Bu′ = 0 , (14.2)

which can be treated as the first-order differential equation

Av′ + Bv = 0

using the substitution v = u′ . Assuming A and B are reasonable functions on our interval of

interest, you can easily verify that the general solution to this first-order equation is of the form

v(x) = cRv0(x)

where cR is an arbitrary constant, and v0 is any particular (nontrivial) solution to this first-order

equation. (More about this differential equation, along with some important properties of its

solutions, is derived in the next chapter.)
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Since u′ = v , we can then recover the general formula for u from the general formula for

v by integration:

u(x) =

∫

v(x) dx =

∫

cRv0(x) dx = cR

∫

v0(x) dx

= cR [u0(x) + c0] = c1 + cRu0(x)

where u0 is any single antiderivative of v0 , c0 is the (arbitrary) constant of integration and

c1 = cRc0 . This, with our initial substitution, yields the general solution

y(x) = y1(x)u(x) = y1(x) [c1 + cRu0(x)]

which, after letting

yR(x) = y1(x)u0(x) ,

simplifies to

y(x) = c1 y1(x) + cR yR(x) .

Thus, we have written a general solution to our second-order homogeneous differential

equation as a linear combination of just two particular solutions. The question now is whether

the set {y1, yR} is linearly independent or not. But if not, then yR = u0 y1 is a constant multiple

of y1 , which means u0 is a constant and, consequently,

v0 = u0
′ = 0 ,

contrary to the known fact that v0 is a nontrivial solution to equation (14.2). So u0 is not

a constant, yR = u0 y1 is not a constant multiple of y1 , and the pair {y1, yR} is linearly

independent. And since all other solutions can be written as linear combinations of these two

solutions, {y1, yR} is a fundamental set of solutions for out differential equation.

What we have just shown is that, assuming

1. a nontrivial solution y1 to the second-order differential equation exists, and

2. the functions A and B are ‘reasonable’ over the interval of interest

then the reduction of order method yields a general solution to differential equation (14.1) of the

form

y(x) = c1 y1(x) + cR yR(x)

where {y1, yR} is a linearly independent set of solutions.1

Applying a Little Linear Algebra

But what if we start out with any linearly independent pair of solutions {y1, y2} to differential

equation (14.1)? Using y1 , we can still derive the general solution

y(x) = c1 y1(x) + cR yR(x)

1 In fact, theorem 11.2 on page 253 can be used to show that a y1 exists. The real difficulty is in verifying that A

and B are ‘reasonable’, especially if y1 is zero at some point in the interval.
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where yR is that second solution obtained through the reduction of order method. And since

this is a general solution and y2 is a particular solution, there must be constants κ1 and κR such

that

y2(x) = κ1 y1(x) + κR yR(x) .

Moreover, because {y1, y2} is (by assumption) linearly independent, y2 cannot be a constant

multiple of y1 . Thus κR 6= 0 in the above equation, and that equation can be solved for yR ,

obtaining

yR(x) = −
κ1

κR

y1(x) +
1

κR

y2(x) .

Consequently,

y(x) = c1 y1(x) + cR yR(x)

= c1 y1(x) + cR

[

−
κ1

κR

y1(x) +
1

κR

y2(x)

]

= C1 y1(x) + C2 y2(x)

where

C1 = c1 −
cRκ1

κR

and C2 =
cR

κR

.

So any linear combination of y1 and yR can also be expressed as a linear combination of y1

and y2 . This means

y(x) = C1 y1(x) + C2 y2(x)

can also be used as a general solution, and, hence, {y1, y2} is also a fundamental set of solutions

for our differential equation.

So what? Well, if you are lucky enough to easily find a linearly independent pair of solutions

to a given second-order homogeneous equation, then you can use that pair as your fundamental

set of solutions — there is no need to grind through the reduction of order computations.2

The Big Theorem on Second-Order Homogeneous Linear
Differential Equations

Let me repeat what we’ve just derived:

The general solution of a second-order homogeneous linear differential equation is

given by

y(x) = c1 y1(x) + c2 y2(x)

where {c1, c2} is a pair of arbitrary constants and {y1, y2} is any linearly indepen-

dent pair of particular solutions to that differential equation.

In deriving this statement, we made some assumptions about the existence of solutions, and the

‘reasonableness’ of the first-order differential equation arising in the reduction of order method.

In the next chapter, we will rigorously rederive this statement without making these assumptions.

We will also examine a few related issues regarding the linear independence of solution sets and

the solvability of initial-value problems. What we will discover is that the following theorem can

be proven. This can be considered the “Big Theorem on Second-Order Homogeneous Linear

2 If you’ve had a course in linear algebra, you may recognize that a “fundamental set of solutions” is a “basis set”

for the “vector space of all solutions to the given homogeneous differential equation ”. This is worth noting, if you

understand what is being noted.
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Differential Equations”. It will be used repeatedly, often without comment, in the chapters that

follow.

Theorem 14.1 (general solutions to second-order homogenous linear differential equations)

Let I be some open interval, and suppose we have a second-order homogeneous linear differ-

ential equation

ay′′ + by′ + cy = 0

where, on I , the functions a , b and c are continuous, and a is never zero. Then the following

statements all hold:

1. Fundamental sets of solutions for this differential equation (over I ) exist.

2. Every fundamental solution set consists of a pair of solutions.

3. If {y1, y2} is any linearly independent pair of particular solutions over I , then:

(a) {y1, y2} is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants.

(c) Given any point x0 in I and any two fixed values A and B , there is exactly one

ordered pair of constants {c1, c2} such that

y(x) = c1 y1(x) + c2 y2(x)

also satisfies the initial conditions

y(x0) = A and y′(x0) = B .

The statement about “initial conditions” in the above theorem assures us that second-order

sets of initial conditions are appropriate for second-order linear differential equations. It also

assures us that a fundamental solution set for a second-order linear homogeneous differential

equation can not become “degenerate” at any point in the interval I . In other words, there is

no need to worry about whether an initial-value problem (with x0 in I ) can be solved. It has

a solution, and only one solution. (To see why we might be worried about “degeneracy”, see

exercise 14.2 on page 308.)

To illustrate how this theorem is used, let us solve a differential equation that you may recall

solving in chapter 11 (see page 247). Comparing the approach used there with that used here

should lead you to greatly appreciate the theory we’ve just developed.

!◮Example 14.2: Consider (again) the homogeneous second-order linear differential equation

y′′ + y = 0 .

In example 12.2 on page 266 we discovered (“by inspection”) that

y1(x) = cos(x) and y2(x) = sin(x)
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are two solutions to this differential equation, and in example 12.4 on page 268 we observed

that the set of these two solutions is linearly independent pair. The above theorem now assures

us that, indeed, this pair,

{ cos(x) , sin(x) } ,

is a fundamental set of solutions for the above second-order homogeneous linear differential

equation, and that

y(x) = c1 cos(x) + c2 sin(x)

is a general solution.

!◮Example 14.3: Now, consider the initial-value problem

y′′ + y = 0 with y(0) = 3 and y′(0) = 5 .

We just found that

y(x) = c1 sin(x) + c2 cos(x)

is a general solution to the differential equation. Taking derivatives, we have

y′(x) = [c1 sin(x) + c2 cos(x)]′ = c1 cos(x) − c2 sin(x) .

Using this in our set of initial conditions, we get

3 = y(0) = c1 sin(0) + c2 cos(0) = c1 · 0 + c2 · 1

and

5 = y′(0) = c1 cos(0) − c2 sin(0) = c1 · 1 − c2 · 0 .

Hence,

c1 = 5 and c2 = 3 ,

and the solution to our initial-value problem is

y(x) = c1 sin(x) + c2 cos(x)

= 5 sin(x) + 3 cos(x) .

Finding fundamental sets of solutions for most homogeneous linear differential equations

will not be as easy as it was for the differential equation in the last two examples. Fortunately,

fairly straightforward methods are available for finding fundamental sets for some important

classes of differential equations. Some of these methods are partially described in the exercises,

and will be more completely developed in later chapters.

14.3 Homogeneous Linear Equations of Arbitrary
Order

The big theorem on second-order homogeneous equations, theorem 14.1, can be extended to an

analogous theorem covering homogeneous linear equations of all orders. That theorem is:
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Theorem 14.2 (general solutions to homogenous linear differential equations)

Let I be some open interval, and suppose we have an N th-order homogeneous linear differential

equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where, on I , the ak’s are all continuous functions with a0 never being zero. Then the following

statements all hold:

1. Fundamental sets of solutions for this differential equation (over I ) exist.

2. Every fundamental solution set consists of exactly N solutions.

3. If {y1, y2, . . . , yN } is any linearly independent set of N particular solutions over I ,

then:

(a) {y1, y2, . . . , yN } is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

where c1 , c2 , . . . and cN are arbitrary constants.

(c) Given any point x0 in I and any N fixed values A1 , A2 , . . . and AN , there is

exactly one ordered set of constants {c1, c2, . . . , cN } such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

also satisfies the initial conditions

y(x0) = A1 , y′(x0) = A2 ,

y′′(x0) = A2 , · · · and y(N−1)(x0) = AN .

A proof of this theorem is given in the next chapter.

14.4 Linear Independence and Wronskians

Let {y1, y2, . . . , yN } be a set of N (sufficiently differentiable) functions on an interval I . The

corresponding Wronskian, denoted by either W or W [y1, y2, . . . , , yN ] , is the function on I

generated by the following determinant of a matrix of derivatives of the yk’s :

W = W [y1, y2, . . . , , yN ] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 y3 · · · yN

y1
′ y2

′ y3
′ · · · yN

′

y1
′′ y2

′′ y3
′′ · · · yN

′′

...
...

...
...

...

y1
(N−1) y2

(N−1) y3
(N−1) · · · yN

(N−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In particular, if N = 2 ,

W = W [y1, y2] =

∣

∣

∣

∣

∣

y1 y2

y1
′ y2

′

∣

∣

∣

∣

∣

= y1 y2
′ − y1

′y2 .
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!◮Example 14.4: Let’s find W [y1, y2] on the real line when

y1(x) = x2 and y2(x) = x3 .

In this case,

y1
′(x) = 2x and y2

′(x) = 3x2 ,

and

W [y1, y2] =

∣

∣

∣

∣

∣

y1(x) y2(x)

y1
′(x) y2

′(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x2 x3

2x 3x2

∣

∣

∣

∣

∣

= x23x2 − 2xx3 = x4

Wronskians naturally arise when dealing with initial-value problems. For example, suppose

we have a pair of functions y1 and y2 , and we want to find constants c1 and c2 such that

y(x) = c1 y1(x) + c2 y2(x)

satisfies

y(x0) = 2 and y′(x0) = 5

for some given point x0 in our interval of interest. In solving for c1 and c2 , you can easily

show that

c1W (x0) = 2y2
′(x0) − 5y2(x0) and c2W (x0) = 5y1(x0) − 2y1

′(x0) .

Thus, if W (x0) 6= 0 , then there is exactly one possible value for c1 and one possible value for

c2 , namely,

c1 =
2y2

′(x0) − 5y2(x0)

W (x0)
and c2 =

5y1(x0) − 2y1
′(x0)

W (x0)
.

However, if W (x0) = 0 , then the system reduces to

0 = 2y2
′(x0) − 5y2(x0) and 0 = 5y1(x0)) − 2y1

′(x0)

which cannot be solved for c1 and c2 .3

More generally, the vanishing of a Wronskian of a set of functions signals that the given set

is not a good choice in constructing solutions to initial-value problems. The value of this fact is

enhanced by the following remarkable theorem:

Theorem 14.3 (Wronskians and fundamental solution sets)

Let W be the Wronskian of any set {y1, y2, . . . , yN } of N particular solutions to an N th-order

homogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

on some interval open I . Assume further that the ak’s are continuous functions with a0 never

being zero on I . Then:

3 Of course, the choice of 2 and 5 as the initial values was not important; any other values could have been used

(we were just trying to reduce the number of symbols to keep track off). What is important is whether W (x0) is

zero or not.
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1. If W (x0) = 0 for any single point x0 in I , then W (x) = 0 for every point x in I , and

the set {y1, y2, . . . , yN } is not linearly independent (and, hence, is not a fundamental

solution set) on I .

2. If W (x0) 6= 0 for any single point x0 in I , then W (x) 6= 0 for every point x in I ,

and {y1, y2, . . . , yN } is a fundamental solution set solutions for the given differential

equation on I .

This theorem (proven in the next chapter) gives a relatively easy to use test for determining

when a set of solutions to a linear homogeneous differential equation is a fundamental set of

solutions. This test is especially useful when the order of the differential equation 3 or higher.

!◮Example 14.5: Consider the functions

y1(x) = 1 , y2(x) = cos(2x) and y3(x) = sin2(x) .

You can easily verify that all are solutions (over the entire real line) to the homogeneous

third-order linear differential equation

y′′′ + 4y′ = 0 .

So, is
{

1, cos(2x) , sin2(x)
}

a fundamental set of solutions for this differential equation? To check we compute the first-

order derivatives

y1
′(x) = 0 , y2

′(x) = −2 sin(2x) , y3
′(x) = 2 sin(x) cos(x) ,

the second-order derivatives

y1
′′(x) = 0 , y2

′′(x) = −4 cos(2x) and y3
′′(x) = 2 cos2(x)−2 sin2(x) ,

and form the corresponding Wronskian,

W (x) = W [1, cos(2x) , sin2(x)] =

∣

∣

∣

∣

∣

∣

∣

1 cos(2x) sin2(x)

0 −2 sin(2x) 2 sin(x) cos(x)

0 −4 cos(2x) 2 cos2(x) − 2 sin2(x)

∣

∣

∣

∣

∣

∣

∣

.

Rather than compute out this determinant for ‘all’ values of x (which could be very tedious),

let us simply pick a convenient value for x , say x = 0 , and compute the Wronskian at that

point:

W (0) =

∣

∣

∣

∣

∣

∣

∣

1 cos(2 · 0) sin2(0)

0 −2 sin(2 · 0) 2 sin(0) cos(0)

0 −4 cos(2 · 0) 2 cos2(0) − 2 sin2(0)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 1 0

0 0 0

0 −4 2

∣

∣

∣

∣

∣

∣

∣

= 0 .

Theorem 14.3 assures us that, since this Wronskian vanishes at that one point, it must vanish

everywhere. More importantly for us, this theorem also tells us that {1, cos(2x) , sin2(x)} is

not a fundamental set of solutions for our differential equation.



Additional Exercises 307

!◮Example 14.6: Now consider the functions

y1(x) = 1 , y2(x) = cos(2x) and y3(x) = sin(2x) .

Again, you can easily verify that all are solutions (over the entire real line) to the homogeneous

third-order linear differential equation

y′′′ + 4y′ = 0 .

So, is

{ 1, cos(2x) , sin(2x)}

a fundamental set of solutions for our differential equation, above? To check we compute the

appropriate derivatives and form the corresponding Wronskian,

W (x) = W [1, cos(2x) , sin(2x)]

=

∣

∣

∣

∣

∣

∣

∣

y1 y2 y3

y1
′ y2

′ y3
′

y1
′′ y2

′′ y3
′′

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 cos(2x) sin(2x)

0 −2 sin(2x) 2 cos(2x)

0 −4 cos(2x) −2 sin(2x)

∣

∣

∣

∣

∣

∣

∣

.

Letting x = 0 , we get

W (0) =

∣

∣

∣

∣

∣

∣

∣

1 cos(2 · 0) sin(2 · 0)

0 −2 sin(2 · 0) 2 cos(2 · 0)

0 −4 cos(2 · 0) −2 sin(2 · 0)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 1 0

0 0 2

0 −4 0

∣

∣

∣

∣

∣

∣

∣

= 8 6= 0 .

Theorem 14.3 assures us that, since this Wronskian is nonzero at one point, it is nonzero ev-

erywhere, and that {1, cos(2x) , sin(2x)} is a fundamental set of solutions for our differential

equation. Hence,

y(x) = c1 · 1 + c2 cos(2x) + c3 sin(2x)

is a general solution to our third-order differential equation.

Additional Exercises

14.1 a. Assume y is a solution to

x2 d2 y

dx2
+ 4x

dy

dx
+ sin(x) y = 0

over the interval (0,∞) . Keep in mind that this automatically requires y , y′ and y′′

to be defined at each point in (0,∞) . Thus, both y and y′ are differentiable on this

interval and, as you learned in calculus, this means that y and y′ must be continuous

on (0,∞) . Now, rewrite the above equation to obtain a formula for y′′ in terms of

y and y′ , and, using this formula, show that y′′ must also be continuous on (0,∞) .

Why can we not be sure that y′′ is continuous at 0 ?
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b. Let I be some interval, and assume y satisfies

a
d2 y

dx2
+ b

dy

dx
+ cy = 0

over I . Assume, further, that a , b and c , as well as both y and y′ are continuous

functions over I , and that a is never zero on I . Show that y′′ also must be continuous

on I . Why do we require that a never vanishes on I ?

c. Let I be some interval, and assume y satisfies

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

over I . Assume, further, that the ak’s , as well as y , y′ , . . . and y(n−1) are contin-

uous functions over I , and that a0 is never zero on I . Show that y(N ) also must be

continuous on I . Why do we require that a0 never vanishes on I ?

14.2. The following exercises all refer to theorem 14.1 on page 302 and the following pair of

functions:

{ y1, y2 } =
{

x2, x3
}

.

a. Using the theorem, verify that
{

x2, x3
}

is a fundamental solution set for

x2 y′′ − 4xy′ + 6y = 0

over the interval (0,∞) .

b. Find the constants c1 and c2 so that

y(x) = c1x2 + c2x3

satisfies the initial conditions

y(1) = 0 and y′(1) = −4 .

c. Attempt to find the constants c1 and c2 so that

y(x) = c1x2 + c2x3

satisfies the initial conditions

y(0) = 0 and y′(0) = −4 .

What ‘goes wrong’. Why does this not violate the claim in theorem 14.1 about initial-

value problems being solvable?

14.3. Particular solutions to the differential equation in each of the following initial-value

problems can found by assuming

y(x) = er x
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where r is a constant to be determined. To determine these constants, plug this formula

for y into the differential equation, observe that the resulting equation miraculously

simplifies to a simple algebraic equation for r , and solve for the possible values of r .

Do that with each equation and use those solutions (with the big theorem on general

solutions to second order, homogeneous linear equations —theorem 14.1 on page 302)

to construct a general solution to the differential equation. Then, finally, solve the given

initial-value problem.

a. y′′ − 4y = 0 with y(0) = 1 and y′(0) = 0

b. y′′ + 2y′ − 3y = 0 with y(0) = 0 and y′(0) = 1

c. y′′ − 10y′ + 9y = 0 with y(0) = 8 and y′(0) = −24

d. y′′ + 5y′ = 0 with y(0) = 1 and y′(0) = 0

14.4. Find solutions of the form

y(x) = er x

where r is a constant (as in the previous exercise) and use the solutions found (along

with the results given in theorem 14.2 on page 304) to construct general solutions to the

following differential equations:

a. y′′′ − 9y′ = 0 b. y(4) − 10y′′ + 9y = 0




