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Homogeneous Linear Equations —
Verifying the Big Theorems

As promised, here we rigorously verify the claims made in the previous chapter. In a sense,

there are two parts to this chapter. The first is mainly concerned with proving the claims when

the differential equation in question is second order, and it occupies the first two sections. The

arguments in these sections are fairly elementary, though, perhaps, a bit lengthy. The rest of the

chapter deals with differential equations of arbitrary order, and uses more advanced ideas from

linear algebra.

If you’ve had an introductory course in linear algebra, just skip ahead to section 15.3 starting

on page 323. After all, the set of differential equations of arbitrary order includes the second-order

equations.

If you’ve not had an introductory course in linear algebra, then you may have trouble fol-

lowing some of the discussion in section 15.3. Concentrate, instead, on the development for

second-order equations given in sections 15.1 and 15.2. You may even want to try to extend the

arguments given in those sections to deal with higher-order differential equations. It is “do-able”,

but will probably take a good deal more space and work than we will spend in section 15.3 using

the more advanced notions from linear algebra.

And if you don’t care about ‘why’ the results in the previous chapter are true, and are blindly

willing to accept the claims made there, then you can skip this chapter entirely.

15.1 First-Order Equations

While our main interest is with higher-order homogeneous differential equations, it is worth

spending a little time looking at the general solutions to the corresponding first-order equations.

After all, via reduction of order, we can reduce the solving of second-order linear equations to

that of solving first-order linear equations. Naturally, we will confirm that our general suspicions

hold at least for first-order equations. More importantly, though, we will discover a property of

these solutions that, perhaps surprisingly, will play a major role is discussing linear independence

for sets of solutions to higher-order differential equations.

With N = 1 the generic equation describing any N th-order homogeneous linear differential

equation reduces to

A
dy

dx
+ By = 0
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312 Homogeneous Linear Equations — Verifying the Big Theorems

where A and B are functions of x on some open interval of interest I (using A and B instead

of a0 and a1 will prevent confusion later). We will assume A and B are continuous functions

on I , and that A is never zero on that interval. Since the order is one, we suspect that the

general solution (on I ) is given by

y(x) = c1 y1(x)

where y1 is any one particular solution and c1 is an arbitrary constant. This, in turn, corresponds

to a fundamental set of solutions — a linearly independent set of particular solutions whose linear

combinations generate all other solutions — being just the singleton set {y1} .

Though this is a linear differential equation, it is also a relatively simple separable first-order

differential equation, and easily solved as such. Algebraically solving for the derivative, we get

dy

dx
= −

B

A
y .

Obviously, the only constant solution is the trivial solution, y = 0 . To find the other solutions,

we will need to compute the indefinite integral of B/A . That indefinite integral implicitly contains

an arbitrary constant. To make that arbitrary constant explicit, choose any x0 in I and define

the function β by

β(x) =

∫ x

x0

B(s)

A(s)
ds .

Then

−

∫
B(x)

A(x)
dx = −β(x) + c0

where c0 is an arbitrary constant. Observe that the conditions assumed about the functions A and

B ensure that B/A is continuous on the interval I (see why we insist on A never being zero?).

Consequently, β(x) , being a definite integral of a continuous function, is also a continuous

function on I .

Now, to finish solving this differential equation:

dy

dx
= −

B

A
y

→֒
1

y

dy

dx
= −

B

A

→֒
∫

1

y

dy

dx
dx = −

∫
B(x)

A(x)
dx

→֒ ln |y| = −β(x) + c0

→֒ y(x) = ±e−β(x)+c0

→֒ y(x) = ±ec0e−β(x) .

So the general solution is

y(x) = ce−β(x)

where c is an arbitrary constant (this accounts for the constant solution as well).

There are two observations to make here:
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1. If y1 is any nontrivial solution to the differential equation, then the above formula tells

us that there must be a nonzero constant κ such that

y1(x) = κeβ(x) .

Consequently, the above general solution then can be written as

y(x) =
c

κ
κeβ(x) = c1 y1(x)

where c1 = c/κ is an arbitrary constant. This pretty well confirms our suspicions regarding

the general solutions to first-order homogeneous differential equations.

2. Since β is a continuous function on I , β(x) is a finite real number for each x in the

interval I . This, in turn, means that

eβ(x) > 0 for each x in I .

Thus,

y(x) = ceβ(x)

can never be zero on this interval unless c = 0 , in which case y(x) = 0 for every x in

the interval.

For future reference, let us summarize our findings:

Lemma 15.1

Assume A and B are continuous functions on an open interval I with A never being zero on

this interval. Then nontrivial solutions to

Ay′ + By = 0

on I exist, and the general solution is given by

y(x) = c1 y1(x)

where c1 is an arbitrary constant and y1 is any particular nontrivial solution. Moreover,

1. y1(x) = κe−β(x) for some nonzero constant κ and a function β satisfying

dβ

dx
=

B

A
.

2. Any single solution is either nonzero everywhere on the interval I or is zero everywhere

on the interval I .
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15.2 The Second-Order Case
The Equation and Basic Assumptions

Now, let us discuss the possible solutions to a second-order homogeneous linear differential

equation

ay′′ + by′ + cy = 0 . (15.1)

We will assume the coefficients a , b and c are continuous functions over some open interval

of interest I with a never being zero on that interval. Our goal is to verify, as completely as

possible, the big theorem on second-order homogeneous equations (theorem 14.1 on page 302),

which stated that a general solution exists and can be written as

y(x) = c1 y1(x) + c2 y2(x)

where {y1, y2} is any linearly independent pair of particular solutions, and c1 and c2 are arbitrary

constants. Along the way, we will also verify the second-order version of the big theorem on

Wronskians, theorem 14.3 on page 305.

Basic Existence and Uniqueness

One step towards verifying theorem 14.1 is to prove the following theorem.

Theorem 15.2 (existence and uniqueness of solutions)

Let I be an open interval, and assume a , b and c are continuous functions on I with a never

being zero on this interval. Then, for any point x0 in I and any pair of values A and B , there

is exactly one solution y (over I ) to the initial-value problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B .

PROOF: Rewriting the differential equation in second-derivative form,

y′′ = −
c

a
y −

b

a
y′ ,

we see that our initial-value problem can be rewritten as

y′′ = F(x, y, y′) with y(x0) = A and y′(x0) = B ,

where

F(x, y, z) = −
c(x)

a(x)
y −

b(x)

a(x)
z .

Observe that
∂ F

∂y
= −

c(x)

a(x)
and

∂ F

∂z
= −

b(x)

a(x)
.

Also observe that, because a , b and c are continuous functions with a never being zero on

I , the function F(x, y, z) and the above partial derivatives are all continuous functions on I .

Moreover, the above partial derivatives depend only on x , not on y or z . Because of this,

theorem 11.2 on page 253 applies and tells us that our initial-value problem has exactly one

solution valid on all of I .
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This theorem assures us that any reasonable second-order initial-value problem has exactly

one solution. Let us note two fairly immediate consequences that we will find useful.

Lemma 15.3 (solution to the null initial-value problem)

Let I be an open interval containing a point x0 , and assume a , b and c are continuous

functions on I with a never being zero on this interval. Then the only solution to

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0

is

y(x) = 0 for all x in I .

Lemma 15.4

Let y1 and y2 be two solutions over an open interval I to

ay′′ + by′ + cy = 0

where a , b and c are continuous functions on I with a never being zero on this interval. If,

for some point x0 in I ,

y1(x0) = 0 and y2(x0) = 0

then either one of these functions is zero over the entire interval, or there is a nonzero constant

κ such that

y2(x) = κy1(x) for all x in I .

PROOF (lemma 15.3): Clearly, the constant function y = 0 is a solution to the given initial-

value problem. Theorem 15.2 then tells us that it is the only solution.

PROOF (lemma 15.4): First, note that, if y1
′(x0) = 0 , then y1 would be a solution to

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0 ,

which, as we just saw, means that y1(x) = 0 for every x in I .

Likewise, if y2
′(x0) = 0 , then we must have that y2(x) = 0 for every x in I .

Thus, if neither y1(x) nor y2(x) is zero for every x in I , then

y1
′(x0) 6= 0 and y2

′(x0) 6= 0 ,

and

κ =
y2

′(x0)

y1
′(x0)

is a finite, nonzero number. Now consider the function

y3(x) = y2(x) − κy1(x) for all x in I .

Being a linear combination of solutions to our homogeneous differential equation, y3 is also a

solution to our differential equation. Also,

y3(x0) = y2(x0) − κy1(x0) = 0 − κ · 0 = 0
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and

y3
′(x0) = y2

′(x0) − κ y1
′(x0) = y2

′(x0) −
y2

′(x0)

y1
′(x0)

y1
′(x0) = 0 .

So y = y3 satisfies

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 0 .

Again, as we just saw, this means y3 = 0 on I . And since y2 − κy1 = y3 = 0 on I , we must

have

y2(x) = κy1(x) for all x in I .

What Wronskians Tell Us
Much of the analysis leading to our goal (theorem 14.1) is based on an examination of properties

of Wronskians of pairs of solutions.

Arbitrary Pairs of Functions

Recall that the Wronskian of any pair of functions y1 and y2 is the function

W = W [y1, y2] = y1 y2
′ − y1

′y2 .

As noted in the previous chapter, this formula arises naturally in solving second-order initial-

value problems. To see this more clearly, let’s look closely at the problem of finding constants

c1 and c2 such that

y(x) = c1 y1(x) + c2 y2(x)

satisfies

y(x0) = A and y′(x0) = B

for any constant values A and B , and any given point x0 in our interval of interest. We start

by replacing y in the last pair of equations with its formula c1 y1 + c2 y2 , giving us the system

c1 y1(x0) + c2 y2(x0) = A

c1 y1
′(x0) + c2 y2

′(x0) = B

to be solved for c1 and c2 . But this is easy. Start by multiplying each equation by y2
′(x0) or

y2(x0) , as appropriate:

[

c1 y1(x0) + c2 y2(x0) = A
]

y2
′(x0)

[

c1 y1
′(x0) + c2 y2

′(x0) = B
]

y2(x0)
H⇒

c1 y1(x0)y2
′(x0) + c2 y2(x0)y2

′(x0) = Ay2
′(x0)

c1 y1
′(x0)y2(x0) + c2 y2

′(x0)y2(x0) = By2(x0)

Subtracting the second equation from the first (and looking carefully at the results) yields

c1

[

y1(x0)y2
′(x0) − y1

′(x0)y2(x0)
︸ ︷︷ ︸

W (x0)

]

+ c2

[

y2(x0)y2
′(x0) − y2

′(x0)y2(x0)
︸ ︷︷ ︸

0

]

= Ay2
′(x0) − By2(x0) .

That is,

c1W (x0) = Ay2
′(x0) − By2(x0) . (15.2a)
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Similar computations yield

c2W (x0) = By1(x0)) − Ay1
′(x0) . (15.2b)

Thus, if W (x0) 6= 0 , then there is exactly one possible value for c1 and one possible value for

c2 , namely,

c1 =
Ay2

′(x0) − By2(x0)

W (x0)
and c2 =

By1(x0) − Ay1
′(x0)

W (x0)
.

However, if W (x0) = 0 , then system (15.2) reduces to

0 = Ay2
′(x0) − By2(x0) and 0 = By1(x0) − Ay1

′(x0)

which cannot be solved for c1 and c2 . If the right sides of these last two equations just happen

to be 0 , then the values of c1 and c2 are irrelevant, any values work. And if either right-hand

side is nonzero, then no values for c1 and c2 will work.

The fact that the solvability of the above initial-value problem depends entirely on whether

W (x0) is zero or not is an important fact that we will soon expand upon. So let’s enshrine this

fact in a lemma.

Lemma 15.5 (Wronskians and initial values)

{y1, y2} is a pair of differentiable functions on some interval, and let W be the corresponding

Wronskian. Let x0 be a point in the interval; let A and B be any two fixed values, and consider

the problem of finding a pair of constants {c1, c2} such that

y(x) = c1 y1(x) + c2 y2(x)

satisfies both

y(x0) = A and y′(x0) = B .

Then this problem has exactly one solution (i.e., exactly choice for c1 and exactly one choice

for c2 ) if and only if W (x0) 6= 0 .

The role played by the Wronskian in determining whether a system such as

c1 y1(x0) + c2 y2(x0) = 4

c1 y1
′(x0) + c2 y2

′(x0) = 7

can be solved for c1 and c2 should suggest that the Wronskian can play a role in determining

whether the function pair {y1, y2} is linearly dependent over a given interval I . To see this

better, observe what happens to W when {y1, y2} is linearly dependent over some interval.

Then, over this interval, either y1 = 0 or y2 = κy1 for some constant κ . If y1 = 0 on the

interval, then

W = y1 y2
′ − y1

′y2 = 0 · y2
′ − 0 · y2 = 0 ,

and if y2 = κy1 , then

W = y1 y2
′ − y1

′y2

= y1[κy1]
′ − y1

′κy1

= y1[κ y1
′] − y1

′κy1

= κy1 y1
′ − κy1 y1

′(x) = 0 .
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So

{y1, y2} is linearly dependent over an interval I H⇒ W = 0 everywhere on I .

Conversely then,

W 6= 0 somewhere on an interval I

H⇒ {y1, y2} is linearly independent over I .
(15.3)

On the other hand, suppose W = 0 over some interval I ; that is,

y1 y2
′ − y1

′y2 = 0 on I .

Observe that this is equivalent to y2 being a solution on I to

Ay′ + By = 0 where A = y1 and B = −y1
′ . (15.4)

Also observe that

Ay1
′ + By1 = y1 y1

′ − y1
′y1 = 0 .

So y1 and y2 are both solutions to first-order differential equation (15.4). This is the same type

of equation considered in lemma 15.1. Applying that lemma, we see that, if A is never zero on

I (i.e., y1 is never zero on I ), then

y2(x) = c1 y1(x)

for some constant c1 . Hence, {y1, y2} are linearly dependent on I (provided y1 is never zero

on I ).

Clearly, we could have switched the roles of y1 and y2 in the last paragraph. That gives us

W = 0 on an interval where either y1 is never 0 or y2 is never 0

H⇒ {y1, y2} is linearly dependent over that interval.
(15.5)

In the above computations, no reference was made to y1 and y2 being solutions to a differential

equation. Those observations hold in general for any pair of differentiable functions.

Just for easy reference, let us summarize the above results in a lemma.

Lemma 15.6

Assuming W is the Wronskian for two functions y1 and y2 over some interval I0 :

1. If W 6= 0 somewhere on I0 , then {y1, y2} is linearly independent over I0 .

2. If W = 0 on I0 and either y1 is never 0 or y2 is never 0 on I0 , then {y1, y2} is

linearly dependent over I0 .

(To see what can happen if W = 0 on an interval and y2 or y2 vanishes at a point on that

interval, see exercise 15.1 on page 334.)
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Pairs of Solutions

If y1 and y2 are solutions to a second-order differential equation, then even more can be derived

if we look at the derivative of W ,

W ′ =
[

y1 y2
′ − y1

′y2

]′
=

[

y1
′y2

′ + y1 y2
′′
]

−
[

y1
′′y2 + y1

′y2
′
]

The y1
′y2

′ terms cancel out leaving

W ′ = y1 y2
′′ − y1

′′y2 .

Now, suppose y1 and y2 each satisfies

ay′′ + by′ + cy = 0

where, as usual, a , b and c are continuous functions on some interval I , with a never being

zero on I . Solving for the second derivative yields

y′′ = −
b

a
y′ −

c

a
y

for both y = y1 and y = y2 . Combining this with the last formula for W ′ , and then recalling

the original formula for W , we get

W ′ = y1 y2
′′ − y1

′′y2

= y1

[

−
b

a
y2

′ −
c

a
y2

]

−

[

−
b

a
y1

′ −
c

a
y1

]

y2

= −
b

a

[

y1 y2
′ − y1

′y2
︸ ︷︷ ︸

W

]

−
c

a
[y1 y2 − y1 y2
︸ ︷︷ ︸

0

] = −
b

a
W .

Thus, on the entire interval of interest, W satisfies the first-order differential equation

W ′ = −
b

a
W ,

which we will rewrite as

aW ′ + bW = 0

so that lemma 15.1 can again be invoked. Take a look back at that lemma. One thing it says

about solutions to this first-order equation is that

any single solution is either nonzero everywhere on the interval I or is zero every-

where on the interval I .

So, there are exactly two possibilities for W = y1 y2
′ − y1

′y2 :

1. Either W 6= 0 everywhere on the interval I .

2. Or W = 0 everywhere on the interval I .

The one possibility not available for W is that it be zero at some points and nonzero at others.

Thus, to determine whether W (x) is zero or nonzero everywhere in the interval, it suffices to

check the value of W at any one convenient point. If it is zero there, it is zero everywhere. If it

is nonzero there, it is nonzero everywhere.
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Combining these observations with some of the lemmas verified earlier yields our test for

linear independence, we have:

Theorem 15.7 (second-order test for linear independence)

Assume y1 and y2 are two solutions on an interval I to

ay′′ + by′ + cy = 0

where the coefficients a , b and c are continuous functions over I , and a is never zero on

I . Let W be the Wronskian for {y1, y2} and let x0 be any conveniently chosen point in I .

Then:

1. If W (x0) 6= 0 , then W (x) 6= 0 for every x in I , and {y1, y2} is a linearly independent

pair of solutions on I .

2. If W (x0) = 0 , then W (x) = 0 for every x in I , and {y1, y2} is not a linearly

independent pair of solutions on I .

PROOF: First suppose W (x0) 6= 0 . As recently noted, this means W (x) 6= 0 for every x in

I , and lemma 15.6 then tells us that {y1, y2} is a linearly independent pair of solutions on I

and every subinterval. This verifies the first claim in this theorem.

Now assume W (x0) = 0 . From our discussions above, we know this means W (x) = 0 for

every x in I . If y1 is never zero on I , then lemma 15.6 tells us that {y1, y2} is not linearly

independent on I or on any subinterval of I . If, however, y1 is zero at a point x1 of I , then

we have

0 = W (x1) = y1(x1)y2
′(x1) − y1

′(x1)y2(x1)

= 0 · y2
′(x1) − y1

′(x1)y2(x1) = −y1
′(x1)y2(x1)

Thus, either

y1
′(x1) = 0 or y2(x1) = 0 .

Now, if y1
′(x1) = 0 , then y = y1 satisfies

ay′′ + by′ + cy = 0 with y(x1) = 0 and y′(x1) = 0 .

From lemma 15.3, we then know y1 = 0 on all of I , and, thus, {y1, y2} is not linearly

independent on any subinterval of I .

On the other hand, if y2(x1) = 0 , then y1 and y2 satisfy the conditions in lemma 15.4, and

that lemma tells us that either one of these two solutions is the zero solution, or that there is a

constant κ such that

y2(x) = κy1(x) for all x in I .

Either way, {y1, y2} is not linearly independent on any subinterval of I , finishing the proof of

the second claim.
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The Big Theorem on Second-Order Homogeneous Linear
Differential Equations

Finally, we have all the tools needed to confirm the validity of the big theorem on general solutions

to second-order homogeneous linear differential equations (theorem 14.1 on page 302). Rather

than insist that you go back an look at it, I’ll reproduce it here.

Theorem 15.8 (same as theorem 14.1)

Let I be some open interval, and suppose we have a second-order homogeneous linear

differential equation

ay′′ + by′ + cy = 0

where, on I , the functions a , b and c are continuous, and a is never zero. Then the following

statements all hold:

1. Fundamental sets of solutions for this differential equation (over I ) exist.

2. Every fundamental solution set consists of a pair of solutions.

3. If {y1, y2} is any linearly independent pair of particular solutions over I , then:

(a) {y1, y2} is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants.

(c) Given any point x0 in I and any two fixed values A and B , there is exactly one

ordered pair of constants {c1, c2} such that

y(x) = c1 y1(x) + c2 y2(x)

also satisfies the initial conditions

y(x0) = A and y′(x0) = B .

PROOF: Let us start with the third claim, and assume {y1, y2} is any linearly independent

pair of particular solutions over I to the above differential equation.

From theorem 15.7 on page 320 we know the Wronskian W [y1, y2] is nonzero at every

point in I . Lemma 15.5 on page 317 then assures us that, given any point x0 in I , and any

two fixed values A and B , there is exactly one value for c1 and one value for c2 such that

y(x) = c1 y1(x) + c2 y2(x)

satisfies

y(x0) = A and y′(x0) = B .

This takes care of part (c).

Now let y0 be any solution to the differential equation in the theorem. Pick any point x0 in

I and let A = y(x0) and B = y′(x0) . Then y0 is automatically one solution to the initial-value

problem

ay′′ + by′ + cy = 0 with y(x0) = A and y′(x0) = B .
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Since W [y1, y2] is nonzero at every point in I , it is nonzero at x0 , and lemma 15.5 on page

317 again applies and tells us that there are constants c1 and c2 such that

c1 y1(x) + c2 y2(x)

satisfies the above initial conditions. By the principle of superposition, this linear combination

also satisfies the differential equation. Thus, both y0 and the above linear combination satisfy

the initial-value problem derived above from y0 . But from theorem 15.2 on page 314 we know

that there is only one solution. Hence these two solutions must be the same,

y0(x) = c1 y1(x) + c2 y2(x) for all x in I ,

confirming that every solution to the differential equation can be written as a linear combination

of y1 and y2 . This (with the principle of superposition) confirms that a general solution to the

differential equation is given by

y(x) = c1 y1(x) + c2 y2(x)

where c1 and c2 are arbitrary constants. It also confirms that {y1, y2} is a fundamental set of

solutions for the differential equation on I . This finishes verifying the third claim.

Given that we now know every linearly independent pair of solutions is a fundamental

solution set, all that remains in verifying the second claim is to show that any set of solutions

containing either less than or more than two solutions cannot be a fundamental set. First assume

we have a set of just one solution {y1} . To be linearly independent, y1 cannot be the zero

solution. So there is a point x0 in I at which y1(x0) 6= 0 . Now let y2 be a solution to the

initial-value problem

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 1 .

Computing the Wronskian W = W [y1, y2] at x0 we get

W (x0) = y1(x0)y2
′(x0) − y1

′(x0)y2(x0) = y1(x0) · 1 − y1
′(x0) · 0 = y1(x0) ,

which is nonzero. Hence, by theorem 15.7 on page 320, we know {y1, y2} is linearly independent

on I . Thus, y2 is a solution to the differential equation that cannot be written as a linear

combination of y1 alone, and thus, {y1} is not a fundamental solution set for the differential

equation.

On the other hand, suppose we have a set of three or more solutions {y1, y2, y3, . . .} .

Clearly, if {y1, y2} is not linearly independent, then neither is {y1, y2, y3, . . .} , while if the

pair is linearly independent, then, as just shown above, y3 is a linear combination of y1 and

y2 . Either way, {y1, y2, y3, . . .} is not linearly independent, and, hence, is not a fundamental

solution set.

Finally, consider the first claim — that fundamental solution sets exist. Because we’ve

already verified the third claim, it will suffice to confirm the existence of a linearly independent

pair of solutions. To do this, pick any point x0 in I . Let y1 be the solution to

ay′′ + by′ + cy = 0 with y(x0) = 1 and y′(x0) = 0 ,

and let y2 be the solution to

ay′′ + by′ + cy = 0 with y(x0) = 0 and y′(x0) = 1 .
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We know these solutions exist because of theorem 15.2 on page 314. Moreover, letting W =

W [y1, y2] ,

W (x0) = y1(x0)y2
′(x0) − y1

′(x0)y2(x0) = 1 · 1 − 0 · 0 = 1 6= 0 .

Thus, from theorem 15.7, we know {y1, y2} is a linearly independent pair of solutions.

15.3 Arbitrary Homogeneous Linear Equations

In this section, we will verify the claims made in section 14.3 concerning the solutions and the

fundamental sets of solutions for homogeneous linear differential equations of any order (i.e.,

theorem 14.2 on page 304 and in theorem 14.3 on page 305). As already noted, our discussion

will make use of the theory normally developed in an elementary course on linear algebra. In

particular, you should be acquainted with “matrix/vector equations”, determinants, and the basic

theory of vector spaces.

The Differential Equation and Basic Assumptions

Throughout this section, we are dealing with a fairly arbitrary N th-order homogeneous linear

differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 . (15.6a)

Whether or not it is explicitly stated, we will always assume the ak’s are continuous functions

on some open interval I , and that a0 is never zero in this open interval. In addition, we may

have an N th-order set of initial conditions at some point x0 in I ,

y(x0) = A1 , y′(x0) = A2 , y′′(x0) = A2 , . . . and y(N−1)(x0) = AN .

(15.6b)

For brevity, we may refer to the above differential equation as “our differential equation” and

to the initial-value problem consisting of this differential equation and the above initial conditions

as either “our initial-value problem” or initial-value problem (15.6). So try to remember them.

To further simplify our verbage, let us also agree that, for the rest of this section, whenever “a

function” is referred to, then this is “a function defined on the interval I which is differentiable

enough to compute however many derivatives we need”. And if this function is further specified

as ‘’a solution”, then it is “a solution to the above differential equation over the interval I ”.

Basic Existence and Uniqueness

Our first lemma simply states that our initial-value problems have unique solutions.

Lemma 15.9 (existence and uniqueness of solutions)

For each choice of constants A1 , A2 , . . . and AN , initial-value problem (15.6) has exactly one

solution, and this solution is valid over the interval I .
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PROOF: This lemma follows from theorem 11.4 on page 255. To see this, first algebraically

solve differential equation (15.6a) for y(N ) . The result is

y(N ) = −
aN

a0

y −
aN−1

a0

y′ − · · · −
a1

a0

y(N−1) .

Letting p1 , p2 , . . . and pN be the functions

p1(x) = −
aN (x)

a0(x)
, p2(x) = −

aN−1(x)

a0(x)
, · · · and pN (x) = −

a1(x)

a0(x)
,

and letting

F(x, τ1, τ2, τ3, . . . , τN ) = p1(x)τ1 + p2(x)τ2 + · · · + pN (x)τN ,

we can further rewrite our differential equation as

y(N ) = F
(

x, y, y′, . . . , y(n−1)
)

.

Observe that, because the ak’s are all continuous functions on I and a0 is never zero on I ,

each pk is a continuous function on I . Clearly then, the above F(x, τ1, τ2, τ3, . . . , τN ) and

the partial derivatives

∂ F

∂τ1

= p1(x) ,
∂ F

∂τ2

= p2(x) , . . . and
∂ F

∂τN

= pN (x)

are all continuous functions on the region of all (x, τ1, τ2, τ3, . . . , τN ) with x in the open interval

I . Moreover, these partial derivatives depend only on x .

Checking back, we see that theorem 11.4 immediately applies and assures us that our initial-

value problem has exactly one solution, and that this solution is valid over the interval I .

A “Matrix/Vector” Formula for Linear Combinations

In much of the following, we will be dealing with linear combinations of some set of functions

{ y1(x) , y2(x) , . . . , yM(x) } ,

along with corresponding linear combinations of the derivatives of these functions. Observe that











c1 y1 + c2 y2 + · · · + cM yM

c1 y1
′ + c2 y2

′ + · · · + cM yM
′

c1 y1
′′ + c2 y2

′′ + · · · + cM yM
′′

...

c1 y1
(N−1) + c2 y2

(N−1) + · · · + cM yM
(N−1)











=











y1 y2 · · · yM

y1
′ y2

′ · · · yM
′

y1
′′ y2

′′ · · · yM
′′

...
...

. . .
...

y1
(N−1) y2

(N−1) · · · yM
(N−1)



















c1

c2

...

cM









.
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That is,










c1 y1(x) + c2 y2(x) + · · · + cM yM(x)

c1 y1
′(x) + c2 y2

′(x) + · · · + cM yM
′(x)

c1 y1
′′(x) + c2 y2

′′(x) + · · · + cM yM
′′(x)

...

c1 y1
(N−1)(x) + c2 y2

(N−1)(x) + · · · + cM yM
(N−1)(x)











= [Y(x)]c

where

Y(x) =











y1(x) y2(x) · · · yM(x)

y1
′(x) y2

′(x) · · · yM
′(x)

y1
′′(x) y2

′′(x) · · · yM
′′(x)

...
...

. . .
...

y1
(N−1)(x) y2

(N−1)(x) · · · yM
(N−1)(x)











and c =









c1

c2

...

cM









. (15.7)

The N × M matrix Y(x) defined in line (15.7) will be useful in many of our deriva-

tions. For lack of imagination, we will either call it the N × M matrix formed from set

{y1(x), y2(x), . . . , yM(x)} , or, more simply the matrix Y(x) described in line (15.7).

Initial-Value Problems

Let

{ y1(x) , y2(x) , . . . , yM(x) }

be a set of M solutions to our N th-order differential equation, equation (15.6a), and suppose we

wish to find a linear combination

y(x) = c1 y1(x) + c2 y2(x) + · · · + cM yM(x)

satisfying some N th-order set of initial conditions

y(x0) = A1 , y′(x0) = A2 , y′′(x0) = A3 , · · · and y(N−1)(x0) = AN .

Replacing y(x0) with its formula in terms of the yk’s , this set of initial conditions becomes

c1 y1(x0) + c2 y2(x0) + · · · + cM yM(x0) = A1 ,

c1 y1
′(x0) + c2 y2

′(x0) + · · · + cM yM
′(x0) = A2 ,

c1 y1
′′(x0) + c2 y2

′′(x0) + · · · + cM yM
′′(x0) = A3 ,

...

and

c1 y1
(N−1)(x0) + c2 y2

(N−1)(x0) + · · · + cM yM
(N−1)(x0) = AN .

This is an algebraic system of N equations with the M unknowns c1 , c2 , . . . and cM (keep in

mind that x0 and the Ak’s are ‘given’). Our problem is to find those ck’s for any given choice

of Ak’s .
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Letting Y(x) and c be the N ×M and M ×1 matrices from line (15.7), we can rephrase

our problem as finding the solution c to

[Y(x0)]c = A for any given A =









A1

A2

...

AN









.

But this is a classic problem from linear algebra, and from linear algebra we know there is one

and only solution c for each A if and only if both of the following hold:

1. M = N (i.e., Y(x0) is actually a square N ×N matrix).

2. The N ×N matrix Y(t0) is invertible.

If these conditions are satisfied, then c can be determined from each A by

c = [Y(x0)]
−1A .

(In practice, a “row reduction” method may be a more efficient way to solve for c .)

This tells us that we will probably be most interested in sets of exactly N solutions whose

corresponding matrix Y(x) is invertible when x = x0 . Fortunately, as you probably recall,

there is a relatively simple test for determining if any square matrix M is invertible based on the

determinant det(M) of that matrix; namely,

M is invertible ⇐⇒ det(M) 6= 0 .

To simplify discussion, we will give a name and notation for the determinant of the ma-

trix formed from any set of N functions {y1, y2, . . . , yN } . We will call this determinant the

Wronskian and denote it by W (x) ,

W (x) = det(Y(x)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(x) y2(x) · · · yN (x)

y1
′(x) y2

′(x) · · · yN
′(x)

y1
′′(x) y2

′′(x) · · · yN
′′(x)

...
...

. . .
...

y1
(N−1)(x) y2

(N−1)(x) · · · yN
(N−1)(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Unsurprisingly, this is the same definition as given for a Wronskian in section 14.4.

While we are at it, let us recall a few other related facts from linear algebra regarding the

solving of

[Y(x0)]c = A

when Y(x0) is an N ×M matrix which is not an invertible:

1. If M < N , then there is an A for which there is no solution c .

2. If M > N and 0 is the zero N ×1 matrix (i.e., the N ×1 matrix whose entries are all

zeros), then there is a nonzero M ×1 matrix c such that [Y(x0)]c = 0 .

3. If M = N but Y(x0) is not invertible, then both of the following are true:

(a) There is an A for which there is no solution c .
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(b) There is a c other than c = 0 such that [Y(x0)]c = 0 .

Applying all the above to our initial-value problem immediately yields the next lemma.

Lemma 15.10 (solving initial-value problems with linear combinations)

Consider initial-value problem

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

with

y(x0) = A1 , y′(x0) = A2 , y′′(x0) = A3 , · · · and y(N−1)(x0) = AN .

Let {y1, y2, . . . , yM} be any set of M solutions to the above differential equation, and, if M =

N , let W (x) be the Wronskian for this set. Then all of the following hold:

1. If M < N , then there are constants A1 , A2 , . . . and AN such that no linear combination

of the given yk’s satisfies the above initial-value problem.

2. If M > N , then there are constants c1 , c2 , . . . and cM , not all zero, such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cM yM(x)

satisfies the N th-order set of zero initial conditions,

y(x0) = 0 , y′(x0) = 0 , y′′(x0) = 0 , · · · and y(N−1)(x0) = 0 .

In fact, any multiple of this y satisfies this set of zero initial conditions.

3. If M = N and W (x0) = 0 , then both of the following hold:

(a) There are constants A1 , A2 , . . . and AN such that no linear combination of the

given yk’s satisfies the above initial-value problem.

(b) There are constants c1 , c2 , . . . and cM , not all zero, such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cM yM(x)

satisfies the N th-order set of zero initial conditions,

y(x0) = 0 , y′(x0) = 0 , y′′(x0) = 0 , · · · and y(N−1)(x0) = 0 .

4. If M = N and W (x0) 6= 0 , then, for each choice of constants A1 , A2 , . . . and AN ,

there is exactly one solution y to the above initial-value problem of the form of a linear

combination of the yk’s ,

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x) .
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Expressing All Solutions as Linear Combinations

Now assume we have a set of N solutions

{ y1(x) , y2(x) , . . . , yN (x) }

to our N th-order differential equation (equation (15.6a) on page 323). Let’s see what lemma

15.10 tells us about expressing any given solution y to our differential equation as

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

for some choice of constants c1 , c2 , . . . and cN .

First, pick any x0 in I , and suppose

W (x0) 6= 0 .

Let y0 be any particular solution to our differential equation; set

A1 = y0(x0) , A2 = y0
′(x0) , . . . and AN = y0

(N−1)(x0) ,

and consider our initial-value problem (problem (15.6) on page 323) with these choices for the

Ak’s . Clearly, y(x) = y0(x) is one solution. In addition, our last lemma tells us that there are

constants c1 , c2 , . . . and cN such that

c1 y1(x) + c2 y2(x) + · · · + cN yN (x) ,

is also a solution to this initial-value problem. So we seem to have two solutions to the above

initial-value problem: y0(x) and the above linear combination of yk’s . But from lemma 15.9 (on

the existence and uniqueness of solutions), we know there is only one solution to this initial-value

problem. Hence, our two solutions must be the same,

y0(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x) .

This confirms that

W (x0) 6= 0 H⇒
Every solution to our differential equation

is a linear combination of the yk’s .
(15.8)

On the other hand, if

W (x0) = 0 ,

then lemma 15.10 says that there are Ak’s such that no linear combination of these yk’s is a

solution to our initial-value problem. Still, lemma 15.9 assures us that there is a solution — all

lemma 15.10 adds is that this solution is not a linear combination of the yk’s . Hence,

W (x0) = 0 H⇒
Not all solutions to our differential equation

are linear combination of the yk’s .
(15.9)

With a little thought, you will realize that, together, implications (15.8) and (15.9), along

with lemma 15.9, give us:

Lemma 15.11

Assume

{ y1(x) , y2(x) , . . . , yN (x) }
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is a set of solutions to our N th-order differential equation (equation (15.6a) on page 323), and

let W (x) be the corresponding Wronskian. Pick any point x0 in I . Then every solution to our

differential equation is given by a linear combination of the above yk(x)’s if and only if

W (x0) 6= 0 .

Moreover, if W (x0) 6= 0 and y(x) is any solution to our differential equation, then there is

exactly one choice for c1 , c2 , . . . and cN such that

y(x) = c1 y1(t) + c2 y2(t) + · · · + cN yN (t) for all x in I .

There is a useful corrollary to our last lemms. To derive it, let x0 and x1 be any two points

in I , and observe that, by the last lemma, we know

W (x0) 6= 0 ⇐⇒
Every solution is a linear

combination of the yk’s .
⇐⇒ W (x1) 6= 0 .

In other words, the Wronskian cannot be zero at one point in I and nonzero at another.

Corollary 15.12

Let

{ y1(x) , y2(x) , . . . , yN (x) }

be a set of solutions to our N th-order differential equation, and let W (x) be the corresponding

Wronskian. Then

W (x) 6= 0 for one point in I ⇐⇒ W (x) 6= 0 for every point in I .

Equivalently,

W (x) = 0 for one point in I ⇐⇒ W (x) = 0 for every point in I .

Existence of Fundamental Sets

At this point, it should be clear that we will be able to show that any set of N solutions to our

differential equation is a fundamental set of solutions if and only if its Wronskian is nonzero.

Let’s now construct such a set by picking any x0 in I , and considering a sequence of initial-value

problems involving our N th-order homogeneous linear differential equation.

For the first, the initial values are

y(x0) = A1,1 , y′(x0) = A1,2 ,

y′′(x0) = A1,3 , · · · and y(N−1)(x0) = A1,N ,

where A1,1 = 1 and the other A1,k’s are all zero. Lemma 15.9 on page 323 assures us that there

is a solution — call it y1 .

For the second, the initial values are

y(x0) = A2,1 , y′(x0) = A2,2 ,

y′′(x0) = A2,3 , · · · and y(N−1)(x0) = A2,N ,



330 Homogeneous Linear Equations — Verifying the Big Theorems

where A2,2 = 1 and the other A2,k’s are all zero. Let y2 be the single solution that lemma 15.9

tells us exists.

And so on . . . .

In general, for j = 1, 2, 3, . . . , N , we let y j be the single solution to the given differential

equation satisfying

y(x0) = A j,1 , y′(x0) = A j,2 ,

y′′(x0) = A j,3 , · · · and y(N−1)(x0) = A j,N ,

where A j, j = 1 and the other A j,k’s are all zero.

This gives us a set of N solutions

{ y1(x) , y2(x) , . . . , yN (x) }

to our N th-order differential equation. By the initial conditions which they satisfy,

Y(x0) =











y1(x0) y2(x0) · · · yN (x0)

y1
′(x0) y2

′(x0) · · · yN
′(x0)

y1
′′(x0) y2

′′(x0) · · · yN
′′(x0)

...
...

. . .
...

y1
(N−1)(x0) y2

(N−1)(x0) · · · yN
(N−1)(x0)











=











A1,1 A2,1 A3,1 · · · AN ,1

A1,2 A2,2 A3,2 · · · AN ,2

A1,3 A2,3 A3,3 · · · AN ,3

...
...

...
. . .

...

A1,N A2,N A3,N · · · AN ,N











=











1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1











.

Hence,

W (x0) = det(Y(x0) = =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 6= 0 ,

and lemma 15.11 tells us that every other solution to our differential equation can be written as a

linear combination of these yk’s . All that remains to showing {y1, y2, . . . , yN } is a fundamental

set of solutions for our differential equation is to verify that this set is linearly independent on

I , and all that we need to show is that none of the yk’s is a linear combination of the others.

Well, what if y1 is a linear combination of the others,

y1(x) = c2 y2(x) + c3 y3(x) + · · · + cN yN (x) for all x in I ?

Then, plugging in x = x0 and using the above initial values, we would get

1 = y1(x0) = c2 y2(x0) + c3 y3(x0) + · · · + cN yN (x0)

= c2 · 0 + c3 · 0 + · · · + cN · 0 = 0 ,
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which is impossible. So y1 cannot be not a linear combination of the other yk’s .

Could y2 be a linear combination of the others,

y2(x) = c1 y1(x) + c3 y3(x) + · · · + cN yN (x) for all x in I ?

Taking the derivative of this, we get

y2
′(x) = c1 y1

′(x) + c3 y3
′(x) + · · · + cN yN

′(x) for all x in I .

Plugging in x = x0 and then using the above initial values yields

1 = y2
′(x0) = c1 y1

′(x0) + c3 y3
′(x0) + · · · + cN yN

′(x0)

= c1 · 0 + c3 · 0 + · · · + cN · 0 = 0 ,

which, again, is impossible. So y2 is not a linear combination of the other yk’s .

Clearly we can continue in this manner and verify that each yk is not a linear combination

of the others. So {y1, y2, . . . , yN } is a linearly independent set of solutions.

In summary:

Lemma 15.13

Fundamental sets of N solutions exist. In fact, for each x0 in I , there is a fundamental set of

solutions {y1, y2, . . . , yN } satisfying











y1(x0) y2(x0) · · · yN (x0)

y1
′(x0) y2

′(x0) · · · yN
′(x0)

y1
′′(x0) y2

′′(x0) · · · yN
′′(x0)

...
...

. . .
...

y1
(N−1)(x0) y2

(N−1)(x0) · · · yN
(N−1)(x0)











=











1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1











.

A Little More Linear Algebra

For convenience, let S denote the set of all solutions to our N th-order homogeneous linear

differential equation, equation (15.6a) on page 323. Using the principle of superposition, it is

trivial to verify that S is a vector space of functions on I . Now recall that a basis for vector

space S is any linearly independent subset {y1, y2, . . . , yM} of S such that any other y in S

can be written as a linear combination of these yk’s . But that’s completely equivalent to our

definition of {y1, y2, . . . , yM} being a fundamental set of solutions for our differential equation.

So, for us, the phrases

“ {y1, y2, . . . , yM} is a fundamental set of solutions for our differential equation”

and

“ {y1, y2, . . . , yM} is a basis for S ”

are equivalent and interchangable.

Now, take another look at our last lemma, lemma 15.13. It tells us that S has a basis

containing exactly N solutions. From this and the basic theory of vector spaces developed in

most elementary linear algebra courses, it follows that:
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1. S is an N -dimensional vector space.

2. Every basis for S is a set of exactly N solutions to our differential equation.

3. A set {y1, y2, . . . , yN } of exactly N solutions to our differential equation is a basis for

S if and only if the set is linearly independent on I .

4. A set {y1, y2, . . . , yN } of exactly N solutions to our differential equation is a basis for

S if and only if every other y in S can be written as a linear combination of these yk’s .

This brings us to our last lemma.

Lemma 15.14

Let {y1, y2, . . . , yN } be a set of N solutions to our N th-order homogeneous linear differential

equation (equation (15.6a) on page 323). Then, if any one of the following three statements is

true, they all are true:

1. {y1, y2, . . . , yN } is linearly independent on I .

2. {y1, y2, . . . , yN } is a fundamental set of solutions for our differential equation.

3. Every solution to our differential equation can be written as a linear combination of these

yk’s .

4. The Wronskian, W (x) , of {y1, y2, . . . , yN } is nonzero at some point in I

PROOF: From the discussion just before this lemma, and from lemma 15.11 on page 328,

{y1, y2, . . . , yN } is linearly independent on I

⇐⇒ {y1, y2, . . . , yN } is a basis for S

⇐⇒ every other y in S can be written as a linear combination of these yk’s

⇐⇒ W (x0) 6= 0 for some x0 in I .

Summary and Final Results

Remember, our goal in this section is to verify the claims made in section 14.3 regarding the

solutions and the fundamental sets of solutions for homogeneous linear differential equations

of any order. We are almost there. All that remains is to restate the theorems in that section

(theorems 14.2 and 14.3) and to show how they follow from the lemmas just developed.

Theorem 15.15 (same as theorem 14.2)

Let I be some open interval, and suppose we have an N th-order homogeneous linear differential

equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where, on I , the ak’s are all continuous functions with a0 never being zero. Then the following

statements all hold:
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1. Fundamental sets of solutions for this differential equation (over I ) exist.

2. Every fundamental solution set consists of exactly N solutions.

3. If {y1, y2, . . . , yN } is any linearly independent set of N particular solutions over I ,

then:

(a) {y1, y2, . . . , yN } is a fundamental set of solutions.

(b) A general solution to the differential equation is given by

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

where c1 , c2 , . . . and cN are arbitrary constants.

(c) Given any point x0 in I and any N fixed values A1 , A2 , . . . and AN , there is

exactly one ordered set of constants {c1, c2, . . . , cN } such that

y(x) = c1 y1(x) + c2 y2(x) + · · · + cN yN (x)

also satisfies the initial conditions

y(x0) = A1 , y′(x0) = A2 ,

y′′(x0) = A2 , · · · and y(N−1)(x0) = AN .

PROOF: Lemma 15.13 on page 331 assures us of the existence of fundamental sets of solutions.

That lemma also, as already noted, tells us that the set of all solutions to our differential equation

is an N -dimensional vector space, and that, as we just saw, means that every fundamental set of

solutions contains exactly N solutions. This proves parts 1 and 2 of the theorem.

The first two claims in part 3 follow directly from lemma 15.14. And the last claim? Since

we now know the Wronskian of the set is nonzero, the last claim follows immediately from

lemma 15.10 on page 327.

Theorem 15.16 (same as theorem 14.3)

Let W be the Wronskian of any set {y1, y2, . . . , yN } of N particular solutions to an N th-order

homogeneous linear differential equation

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

on some interval open I . Assume further that the ak’s are continuous functions with a0 never

being zero on I . Then:

1. If W (x0) = 0 for any single point x0 in I , then W (x) = 0 for every point x in I , and

the set {y1, y2, . . . , yN } is not linearly independent (and, hence, is not a fundamental

solution set) on I .

2. If W (x0) 6= 0 for any single point x0 in I , then W (x) 6= 0 for every point x in I ,

and {y1, y2, . . . , yN } is a fundamental solution set solutions for the given differential

equation on I .

PROOF: See lemma 15.14 and corollary 15.12.
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Additional Exercises

15.1. Let y1 and y2 be the following functions on the entire real line:

y1(x) =

{

−x2 if x < 0

x2 if 0 ≤ x
and y2(x) =

{

x2 if x < 0

3x2 if 0 ≤ x
.

a. Verify that

i. {y1, y2} is not linearly dependent on the entire real line, but

ii. the Wronskian for {y1, y2} is zero over the entire real line (even at x = 0 ).

b. Why do the results in the previous part not violate either lemma 15.6 on page 318 or

theorem 15.7 on page 320?

c. Is there an interval I on which {y1, y2} is linearly dependent?

15.2. Let {y1, y2} be a linearly independent pair of solutions over an interval I to some

second-order homogeneous linear differential equation

ay′′ + by′ + cy = 0 .

As usual, assume a , b and c are continuous functions on I with a never being zero

that interval. Also, as usual, let

W = W [y1, y2] = y1 y2
′ − y1

′y2 .

Do the following, using the fact that W is never zero on I .

a. Show that, if y1(x0) = 0 for some x0 in I , then y1
′(x0) 6= 0 and y2(x0) 6= 0 .

b. Show that, if y1
′(x0) = 0 for some x0 in I , then y1(x0) 6= 0 and y2

′(x0) 6= 0 .

c. Why can we not have W (x) > 0 for some x in I and W (x) < 0 for other x in

I ? That is, explain (briefly) why we must have either

W (x) > 0 for all x in I

or

W (x) < 0 for all x in I .

d. For the following, assume W (x) > 0 for all x in I .1 Let [α, β] be a subinterval of

I such that

y1(α) = 0 , y1(β) = 0

and

y1(x) > 0 whenever α < x < β

1 Similar results can be derived assuming W (x) < 0 for all x in I .
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i. How do we know that neither y1
′(α) nor y1

′(β) are zero? Which one is positive?

Which one is negative? (It may help to draw a rough sketch of the graph of y1

based on the above information.)

ii. Using the Wronskian, determine if y2(α) is positive or negative. Then determine

if y2(β) is positive or negative.

iii. Now show that there must be a point x0 in the open interval (α, β) at which y2 is

zero.

(What you’ve just shown is that there must be a zero of y2 between any two zeroes

α and β of y1 . You can easily expand this to the following statement:

Between any two zeroes of y1 is a zero of y2 , and, likewise, between any

two zeroes of y2 is a zero of y1 .

This tells us something about the graphs of linearly independent pairs of solutions to

second-order homogeneous differential equations. It turns out to be an important prop-

erty of these solution pairs when considering a type of differential equation problem

involving the values of solutions at pairs of points, instead of at single points.)




