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Euler Equations

We now know how to completely solve any equation of the form

ay′′ + by′ + cy = 0

or even

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

in which the coefficients are all constants (provided we can completely factor the corresponding

characteristic polynomial).

Let us now consider some equations of the form

ay′′ + by′ + cy = 0

or even

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

when the coefficients are not all constants. In particular, let us consider the “Euler equations”,

described more completely in the next section, in which the coefficients happen to be particularly

simple polynomials.1

As with the constant-coefficient equations, we will discuss the second-order Euler equations

(and their solutions) first, and then note how those ideas extend to corresponding higher order

Euler equations.

19.1 Second-Order Euler Equations
Basics

A second-order differential equation is called an Euler equation if it can be written as

αx2 y′′ + βxy′ + γ y = 0

where α , β and γ are constants (in fact, we will assume they are real-valued constants). For

example,

x2 y′′ − 6xy′ + 10y = 0 ,

1 These differential equations are also called Cauchy-Euler equations

395



396 Euler Equations

x2 y′′ − 9xy′ + 25y = 0 ,

and

x2 y′′ − 3xy′ + 20y = 0

are the Euler equations we’ll solve to illustrate the methods we’ll develop below. In these

equations, the coefficients are not constants but are constants times the variable raised to the

power equaling the order of the corresponding derivative. Notice, too, that the first coefficient,

αx2 , vanishes at x = 0 . This means we should not attempt to solve these equations over

intervals containing 0 . For convenience, we will use (0,∞) as the interval of interest. You

can easily verify that the same formulas derived using this interval also work using the interval

(−∞, 0) after replacing the x in these formulas with either −x or |x | .

Euler equations are important for two or three good reasons:

1. They are easily solved.

2. They occasionally arise in applications, though not nearly as often as equations with

constant coefficients.

3. They are especially simple cases of a broad class of differential equations for which

infinite series solutions can be obtained using the “method of Frobenius”.2

The basic approach to solving Euler equations is similar to the approach used to solve

constant-coefficient equations: assume a particular form for the solution with one constant “to

be determined”, plug that form into the differential equation, simplify and solve the resulting

equation for the constant, and then construct the general solution using the constants found and

the basic theory already developed.

The appropriate form for the solution to an Euler equation is not the exponential assumed

for a constant-coefficient equation. Instead, it is

y(x) = xr

where r is a constant to be determined. This choice for y(x) can be motivated by either first

considering the solutions to the corresponding first-order Euler equations

αx
dy

dx
+ βy = 0 ,

or by just thinking about what happens when you compute

xm dm

dxm

[

xr
]

.

We will outline the details of the method in a moment. Do not, however, bother memorizing

anything except for the first assumption about the form of the solution and general outline of

the method. The precise formulas that arise are not as easily memorized as the corresponding

formulas for differential equations with constant coefficients. Moreover, you won’t be using

them enough in your work outside this class to justify memorizing these formulas.

2 The method of Frobenious will be developed in much later chapters.
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The Steps in Solving Second-Order Euler Equations

Here are the basic steps for finding a general solution to any second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0 for x > 0 .

Remember α , β and γ are real-valued constants. To illustrate the basic method, we will solve

x2 y′′ − 6xy′ + 10y = 0 for x > 0 .

1. Assume a solution of the form

y = y(x) = xr

where r is a constant to be determined.

2. Plug the assumed formula for y into the differential equation and simplify. Let’s do the

example first:

Replacing y with xr gives

0 = x2 y′′ − 6xy′ + 10y

= x2
[

xr
]′′ − 6x

[

xr
]′ + 10

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 6x
[

r xr−1
]

+ 10
[

xr
]

= (r 2 − r)xr − 6r xr + 10xr

=
[

r 2 − r − 6r + 10
]

xr

=
[

r 2 − 7r + 10
]

xr .

Since we are solving on an interval where x 6= 0 , we can divide out the xr ,

leaving us with the algebraic equation

r 2 − 7r + 10 = 0 .

In general, replacing y with xr gives

0 = αx2 y′′ + βxy′ + γ y

= αx2
[

xr
]′′ + βx

[

xr
]′ + γ

[

xr
]

= αx2
[

r(r − 1)xr−2
]

+ βx
[

r xr−1
]

+ γ
[

xr
]

= α(r 2 − r)xr + βr xr + γ xr

=
[

αr 2 − αr + βr + γ
]

xr

=
[

αr 2 + (β − α)r + γ
]

xr .

Dividing out the xr leaves us with the second-degree polynomial equation

αr 2 + (β − α)r + γ = 0 .
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This equation, known as the indicial equation corresponding to the given Euler equation3,

is analogous to the characteristic equation for a second-order, homogeneous linear dif-

ferential equation with constant coefficients. (Don’t memorize this equation — it is easy

enough to simply rederive it each time. Besides, analogous equations for higher-order

Euler equations are significantly different.)4

3. Solve the polynomial equation for r .

In our example, we obtained the indicial equation

r 2 − 7r + 10 = 0 ,

which factors to

(r − 2)(r − 5) = 0 .

So r = 2 and r = 5 are the possible values of r .

4. Remember that, for each value of r obtained, xr is a solution to the original Euler

equation. If there are two distinct real values r1 and r2 for r , then

{

xr1 , xr2
}

is clearly a fundamental set of solutions to the differential equation, and

y(x) = c1xr1 + c2xr2

is a general solution. If there is only one value for r , then

y1(x) = xr

is one solution to the differential equation and the general solution can be obtained via

reduction of order. (The cases where there is only one value of r and where the two

values of r are complex will be examined more closely in a little bit.)

In our example, we obtained two values for r , 2 and 5 . So

{

x2 , x5
}

is a fundamental set of solutions to the differential equation, and

y(x) = c1x2 + c2x5

is a general solution.

3 Often, though, it’s just called “the equation for r ”.
4 However, there is a shortcut for finding the indicial equations which may be useful if you are solving large numbers

of Euler equations of different orders. See exercise 19.5 at the end of this chapter.
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19.2 The Special Cases
A Single Value for r

Let’s do an example and then discuss what happens in general.

!◮Example 19.1: Consider

x2 y′′ − 9xy′ + 25y = 0 for x > 0 .

Letting y = xr , we get

0 = x2 y′′ − 9xy′ + 25y

= x2
[

xr
]′′ − 9x

[

xr
]′ + 10

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 9x
[

r xr−1
]

+ 25
[

xr
]

= (r 2 − r)xr − 9r xr + 25xr

=
[

r 2 − r − 9r + 25
]

xr

=
[

r 2 − 10r + 25
]

xr .

Dividing out the xr , this becomes

r 2 − 10r + 25 = 0 ,

which factors to

(r − 5)2 = 0 .

So r = 5 , and the corresponding solution to the differential equation is

y1(x) = x5 .

Since we only have one solution, we cannot just write out the general solution as we did

in the previous example. But we can still use the reduction of order method. So let

y(x) = x5u(x) .

Computing the derivatives,

y′(x) =
[

x5u
]′ = 5x4u + x5u′

and

y′′(x) =
[

5x4u + x5u′]′ = 20x3u + 10x4u′ + x5u′′ ,

and plugging into the differential equation yields

0 = x2 y′′ − 9xy′ + 25y

= x2
[

20x3u + 10x4u′ + x5u′′] − 9x
[

5x4u + x5u′] + 25
[

x5u
]

= 20x5u + 10x6u′ + x7u′′ − 45x5u − 9x6u′ + 25x5u
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= x7u′′ +
[

10x6 − 9x6
]

u′ +
[

20x5 − 45x5 + 25x5
]

u

= x7u′′ + x6u′ .

Letting v = u′ , this becomes

x7v′ + x6v = 0 ,

a simple separable first-order equation. Solving it:

x7 dv

dx
+ x6v = 0

→֒ 1

v

dv

dx
= − x6

x7
= − 1

x

→֒
∫

1

v

dv

dx
dx = −

∫

1

x
dx

→֒ ln |v| = − ln |x | + c0

→֒ v = ±e− ln|x |+c0 = c2

x
.

Thus,

u(x) =
∫

u′(x) dx =
∫

v(x) dx =
∫

c2

x
dx = c2 ln |x | + c1 ,

and the general solution to the differential equation is

y(x) = x5u(x) = x5[c2 ln |x | + c1] = c1x5 + c2x5 ln |x | .

While just using reduction of order is recommended, you can show that, if your indicial

equation only has one solution r , then

y1(x) = xr and y2(x) = xr ln |x |

will always be solutions to the differential equation (but why memorize something you won’t use

that much). Since they are clearly not constant multiples of each other, they form a fundamental

set for the differential equation. Thus, in this case,

y(x) = c1xr + c2xr ln |x |

will always be a general solution to the given Euler equation.

Verifying this claim is left to the interested reader (see exercise 19.3 on page 407).

Complex Values for r

Again, we start with an example.

!◮Example 19.2: Consider

x2 y′′ − 3xy′ + 20y = 0 for x > 0 .
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Using y = xr , we get

0 = x2 y′′ − 3xy′ + 20y

= x2
[

xr
]′′ − 3x

[

xr
]′ + 20

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 3x
[

r xr−1
]

+ 20
[

xr
]

= xr
[

r 2 − r − 3r + 20
]

,

which simplifies to

r 2 − 4r + 20 = 0 .

The solution to this is

r = −(−4) ±
√

(−4)2 − 4(20)

2
= 4 ±

√
−64

2
= 2 ± i4 .

Thus, we have two distinct values for r , 2 + i4 and 2 − i4 . Presumably, then, we could

construct a general solution from

x2+i4 and x2−i4 ,

provided we had some idea as to just what “ x to a complex power” meant.

So let’s figure out what “ x to a complex power” means.

For exactly the same reasons as when we were solving constant coefficient equations, the

complex solutions to the indicial equation will occur as complex conjugate pairs

r+ = λ + iω and r− = λ − iω ,

which, formally at least, yield

y+(x) = xr+ = xλ + iω and y−(x) = xr− = xλ − iω

as solutions to the original Euler equation. Now, assuming the standard algebraic rules remain

valid for complex powers5,

xλ ± iω = xλx±iω ,

and, for x > 0 ,

x±iω = eln|x |±iω = e±iω ln|x | = cos(ω ln |x |) ± i sin(ω ln |x |) .

So our two solutions can be written as

y+(x) = xλ
[

cos(ω ln |x |) + i sin(ω ln |x |)
]

and

y−(x) = xλ
[

cos(ω ln |x |) − i sin(ω ln |x |)
]

.

To get solutions in terms of only real-valued functions, essentially do what was done when

we had complex-valued roots to characteristic equations for constant-coefficient equations: Use

the fundamental set

{ y1, y2 }
5 They do.
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where

y1(x) = 1

2
y+(x) + 1

2
y−(x) = · · · = xλ cos(ω ln |x |)

and

y2(x) = 1

2i
y+(x) − 1

2i
y−(x) = · · · = xλ sin(ω ln |x |) .

Note that these are just the real and the imaginary parts of the formulas for y± = xλ±iω .

If you really wish, you can memorize what we just derived, namely:

If you get

r = λ ± iω

when assuming y = xr is a solution to an Euler equation, then

y1(x) = xλ cos(ω ln |x |) and y2(x) = xλ sin(ω ln |x |)

form a corresponding linearly independent pair of real-valued solutions to the dif-

ferential equation, and

y(x) = c1xλ cos(ω ln |x |) + c2xλ sin(ω ln |x |)

is a general solution in terms of just real-valued functions.

Memorizing these formulas is not recommended. It’s easy enough (and safer) to simply

re-derive the formulas for xλ±iω as needed, and then just take the real and imaginary parts as

our the two real-valued solutions.

!◮Example 19.3: Let us finish solving

x2 y′′ − 3xy′ + 20y = 0 for x > 0 .

From above, we got the complex-power solutions

y±(x) = x2 ± i4 .

Rewriting this using the corresponding complex exponential, we get

y±(x) = x2x±i4 = x2eln|x |±i4

= x2e±i4 ln|x | = x2
[

cos(4 ln |x |) ± i sin(4 ln |x |)
]

.

Taking the real and imaginary parts of this then yields the corresponding linearly independent

pair of real-valued solutions to the differential equation,

y1(x) = x2 cos(4 ln |x |) and y2(x) = x2 sin(4 ln |x |) .

Thus,

y(x) = c1x2 cos(4 ln |x |) + c2x2 sin(4 ln |x |)

is a general solution in terms of just real-valued functions.
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19.3 Euler Equations of Any Order

The definitions and ideas just described for second-order Euler equations are easily extended to

analogous differential equations of any order. The natural extension of the concept of a second-

order Euler differential equation is that of an nth-order Euler equation, which is any differential

equation that can be written as

α0x N y(N ) + α1x N−1 y(N−1) + · · · + αN−2x2 y′′ + αN−1xy′ + αN y = 0

where the αk’s are all constants (and α0 6= 0 ). We will further assume they are all real constants.

The basic ideas used to find the general solution a nth-order Euler equation over (0,∞) are

pretty much the same as used to solve the second-order Euler equations:

1. Assume a solution of the form

y = y(x) = xr

where r is a constant to be determined.

2. Plug the assumed formula for y into the differential equation and simplify. The result

will be an N th degree polynomial equation

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 .

We’ll call this the indicial equation for the given Euler equation, and the polynomial on

the left will be called the indicial polynomial. It is easily shown that the Ak’s are all real

(assuming the αk’s are real) and that A0 = α0 . However, the relation between the other

Ak’s and αk’s will depend on the order of the original differential equation.

3. Solve the indicial equation. The same tricks used to help solve the characteristic equations

in chapter 18 can be used here. And, as with those characteristic equations, we will obtain

a list of all the different roots of the indicial polynomial,

r1 , r2 , r3 , . . . and rK ,

along with their corresponding multiplicities,

m1 , m2 , m3 , . . . and mK .

As noted in chapter 18,

m1 + m2 + m3 + · · · + mK = N .

What you do next with each rk depends on whether rk is real or complex, and on the

multiplicity mk of rk .

4. If r = rk is real, then there will be a corresponding linearly independent set of m = mk

solutions to the differential equation. One of these, of course, will be y = xr . If this

root’s multiplicity m is greater than 1 , then a second corresponding solution to the Euler

equation is obtained by multiplying the first, xr , by ln |x | , just as in the second-order

case. This — multiplying the last solution found by ln |x | — turns out to be the pattern
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for generating the other solutions when m = mk > 2 . That is, the set of solutions to the

differential equation corresponding to r = rk is

{

xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1
}

with m = mk . (We’ll verify this rigorously in the next section.)

5. If a root is complex, say, r = λ + iω , and has multiplicity m , then we know that this

root’s complex conjugate r∗ = λ − iω is another root of multiplicity m . By the same

arguments given for real roots, we have that the functions

xλ+iω , xλ+iω ln |x | , xλ+iω(ln |x |)2 , . . . and xλ+iω(ln |x |)m−1

along with

xλ−iω , xλ−iω ln |x | , xλ−iω(ln |x |)2 , . . . and xλ−iω(ln |x |)m−1

make up a linearly independent set of 2m solutions to the Euler equation. To obtain the

corresponding set of real-valued solutions, we again use the fact that, for x > 0 ,

xλ±iω = xλx±iω = xλe±iω ln|x | = xλ
[

cos(ω ln |x |) ± i sin(ω ln |x |)
]

(19.1)

to obtain the alternative set of 2m solutions

{

xλ cos(ω ln |x |) , xλ sin(ω ln |x |) ,

xλ cos(ω ln |x |) ln |x | , xλ sin(ω ln |x |) ln |x | ,

xλ cos(ω ln |x |) (ln |x |)2 , xλ sin(ω ln |x |) (ln |x |)2 ,

. . . , xλ cos(ω ln |x |) (ln |x |)m−1 , xλ sin(ω ln |x |) (ln |x |)m−1
}

for the Euler equation.

6. Now form the set of solutions to the Euler equation consisting of the mk solutions

described above for each real root rk , and the 2mk real-valued solutions described

above for each conjugate pair of roots rk and rk
∗ . Since (as we saw in chapter 18) the

sum of the multiplicities equals N , and since the rk’s are distinct, it will follow that this

set will be a fundamental set of solutions for our Euler equation. Thus, finally, a general

solution to the given Euler equation can be written out as an arbitrary linear combination

of the functions in this set.

We will do two examples (skipping some of the tedious algebra).

!◮Example 19.4: Consider the third-order Euler equation

x3 y′′′ − 6x2 y′′ + 19xy′ − 27y = 0 for x > 0 .

Plugging in y = xr , we get

x3r(r − 1)(r − 2)xr−3 − 6x2r(r − 1)xr−2 + 19xr xr−1 − 27xr = 0 ,

which, after a bit of algebra, reduces to

r 3 − 9r 2 + 27r − 27 = 0 .



The Relation Between Euler and Constant Coefficient Equations 405

This is the indicial equation for our Euler equation. You can verify that its factored form is

(r − 3)3 = 0 .

So the only root to our indicial polynomial is r = 3 , and it has multiplicity 3 . As discussed

above, the corresponding fundamental set of solutions to the Euler equation is

{

x3 , x3 ln |x | , x3(ln |x |)2
}

,

and the corresponding general solution is

y = c1x3 + c2x3 ln |x | + c3x3(ln |x |)2 ,

!◮Example 19.5: Consider the fourth-order Euler equation

x4 y(4) + 6x3 y′′′ + 25x2 y′′ + 19xy′ + 81y = 0 for x > 0 .

Plugging in y = xr , we get

x4r(r − 1)(r − 2)(r − 3)xr−4 + 6x3r(r − 1)(r − 2)xr−3

+ 25x2r(r − 1)xr−2 + 19xr xr−1 + 81xr = 0 ,

which simplifies to

r 4 + 18r 2 + 81 = 0 .

Solving this yields

r = ±3i with multiplicity 2 ,

and the four corresponding solutions to our Euler equation are

cos(3 ln |x |) , sin(3 ln |x |) , cos(3 ln |x |) ln |x | and sin(3 ln |x |) ln |x | .

The general solution, then, is

y = c1 cos(3 ln |x |) + c2 sin(3 ln |x |) + c4 cos(3 ln |x |) ln |x | + c4 sin(3 ln |x |) ln |x | .

19.4 The Relation Between Euler and Constant
Coefficient Equations

Let us suppose that

A0r N + A1r N−1 + · · · + AN−1r + AN = 0 (19.2)

is the indicial equation for some N th-order Euler equation

α0x N d N y

dx N
+ α1x N−1 d N−1 y

dx N−1
+ · · · + αN−2x2 d2 y

dx2
+ αN y = 0 . (19.3)
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Observe that polynomial equation (19.2) is also the characteristic equation for the N th-order

constant coefficient equation

A0

d N Y

dt N
+ A1

d N−1Y

dt N−1
+ · · · + AN−1

dY

dt
+ AN Y = 0 . (19.4)

This means that, if r is a solution to polynomial equation (19.2), then

xr and er t

are solutions, respectively, to above Euler equation and the above constant coefficient equation.

This suggests that these two differential equations are related to each other, possibly through a

substitution of the form

xr = er t .

Taking the r th root of both sides, this simplifies to

x = et or, equivalently, ln |x | = t .

Exploring this possibility further eventually leads to the following lemma about the solutions to

the above differential equations:

Lemma 19.1

Let y(x) and Y (t) be two functions, with y defined on (0,∞) , and Y (t) defined on (−∞,∞) .

Assume they are related by the substitution x = et (equivalently, ln |x | = t ); that is,

y(x) = Y (t) where x = et and t = ln |x | .

Then y is a solution to Euler equation (19.3) if and only if Y is a solution to constant coefficient

equation (19.4).

The proof of this lemma involves repeated chain rule computations such as

dy

dx
= d

dx
Y (t) = dt

dx

d

dt
Y (t) = d ln |x |

dx

d

dt
Y (t) = 1

x

dY

dt
= e−t dY

dt
. (19.5)

We’ll leave the details to the adventurous (see exercises 19.6, 19.7 and 19.8).

There are two noteworthy consequences of this lemma:

1. It gives us another way to solve Euler equations. To be specific: we can use the substitution

in the lemma to convert the Euler equation into a constant coefficient equation (with t as

the variable); solve that coefficient equation for its general solution (in terms of functions

of t ), and then use the substitution backwards to get the general solution to the Euler

equation (in terms of functions of x ).6

2. We can now confirm the claim made (and used) in the previous section about solutions to

the Euler equation corresponding to a root r of multiplicity m to the indicial equation.

After all if r is a solution of multiplicity m to equation (19.2), then we know that

{

er t , ter t , t2er t , . . . , tm−1er t
}

6 It may be argued that this method, requiring the repeated use of the chain rule, is more tedious and error-prone than

the one developed earlier, which only requires algebra and differentiation of xr . That would be a good argument.
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is a set of solutions to constant coefficient equation (19.4). The lemma then assures us

that this set, with t = ln |x | , is the corresponding set of solutions to Euler equation

(19.3). But, using this substitution,

tker t =
(

et
)r

tk = xr (ln |x |)k .

So the set of solutions obtained to the Euler equation is

{

xr , xr ln |x | , xr (ln |x |)2 , . . . , xr (ln |x |)m−1
}

,

just as claimed in the previous section.

Additional Exercises

19.1. Find the general solution to each of the following Euler equations on (0,∞) :

a. x2 y′′ − 5xy′ + 8y = 0 b. x2 y′′ − 2y = 0

c. x2 y′′ − 2xy′ = 0 d. 2x2 y′′ − xy′ + y = 0

e. x2 y′′ − 5xy′ + 9y = 0 f. x2 y′′ + 5xy′ + 4y = 0

g. 4x2 y′′ + y = 0 h. x2 y′′ − xy′ + 10y = 0

i. x2 y′′ + 5xy′ + 29y = 0 j. x2 y′′ + xy′ + y = 0

k. 2x2 y′′ + 5xy′ + y = 0 l. 4x2 y′′ + 37y = 0

m. x2 y′′ + xy′ = 0 n. x2 y′′ + xy′ − 25y = 0

19.2. Solve the following initial-value problems:

a. x2 y′′ − 6xy′ + 10y = 0 with y(1) = −1 and y′(1) = 7

b. 4x2 y′′ + 4xy′ − y = 0 with y(4) = 0 and y′(4) = 2

c. x2 y′′ − 11xy′ + 36y = 0 with y(1) = 1/2 and y′(1) = 2

d. x2 y′′ − 3xy′ + 13y = 0 with y(1) = 9 and y′(1) = 3

19.3. Suppose that the indicial equation for a second-order Euler equation only has one so-

lution r . Using reduction of order (or any other approach you think appropriate) show

that both

y1(x) = xr and y2(x) = xr ln |x |

are solutions to the differential equation on (0,∞) .

19.4. Find the general solution to each of the following third- and fourth-order Euler equations

on (0,∞) :

a. x3 y′′′ + 2x2 y′′ − 4xy′ + 4y = 0
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b. x3 y′′′ + 2x2 y′′ + xy′ − y = 0

c. x3 y′′′ − 5x2 y′′ + 14xy′ − 18y = 0

d. x4 y(4) + 6x3 y′′′ − 3x2 y′′ − 9xy′ + 9y = 0

e. x4 y(4) + 2x3 y′′′ + x2 y′′ − xy′ + y = 0

19.5. While memorizing the indicial equations is not recommended, it must be admitted that

there is a simple, easily derived shortcut to finding these equations.

a. Show that the indicial equation for the second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0

s given by

αr(r − 1) + βr + γ = 0 .

b. Show that the indicial equation for the third-order Euler equation

α0x3 y′′′ + α1x2 y′′ + α2xy′ + α3 y = 0

is given by

α0r(r − 1)(r − 2) + α1r(r − 1) + α2r + α3 = 0 .

c. So what is the general shortcut for finding the indicial equation any Euler equation?

19.6. Confirm that the claim of lemma 19.1 holds when N = 2 by considering the general

second-order Euler equation

αx2 y′′ + βxy′ + γ y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, constant coefficient differential

equation using the substitution x = et . Remember, this is equivalent to t = ln |x | .

(You may want to glance back at the chain rule computations in line (19.5).)

c. Confirm (by inspection!) that the characteristic equation for the constant coefficient

equation just obtained is identical to the indicial equation for the above Euler equation.

19.7. Confirm that the claim of lemma 19.1 holds when N = 3 by considering the general

third-order Euler equation

α0x3 y′′′ + α1x2 y′′ + α2xy′ + α3 y = 0

and doing the following:

a. Find the corresponding indicial equation.

b. Convert the above Euler equation to a second-order, constant coefficient differential

equation using the substitution x = et .

c. Confirm that the characteristic equation for the constant coefficient equation just ob-

tained is identical to the indicial equation for the above Euler equation.

19.8. Confirm that the claim of lemma 19.1 holds when N is any positive integer.


