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Arbitrary Homogeneous Linear
Equations with Constant Coefficients

In chapter 16, we saw how to solve any equation of the form

ay′′ + by′ + cy = 0

when a , b and c are real constants. Unsurprisingly, the same basic ideas apply when dealing

with any equation of the form

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

when N is some positive integer and the ak’s are all real constants. Assuming y = er x still

leads to the corresponding “characteristic equation”

a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN = 0 ,

and a general solution to the differential equation can then be obtained using the solutions to

the characteristic equation, much as we did in chapter 16. Computationally, the only significant

difficulty is in the algebra needed to find the roots of the characteristic polynomial.

So let us look at that algebra, first.

18.1 Some Algebra

A basic fact of algebra is that any second-degree polynomial

p(r) = ar 2 + br + c

can be factored to

p(r) = a(r − r1)(r − r2)

where r1 and r2 are the roots of the polynomial (i.e., the solutions to p(r) = 0 ). These roots

may be complex, in which case r1 and r2 are complex conjugates of each other (assuming a ,

b and c are real numbers). It is also possible that r1 = r2 , in which case the factored form of

the polynomial is more concisely written as

p(r) = a(r − r1)
2 .
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376 Arbitrary Homogeneous Linear Equations with Constant Coefficients

The idea of “factoring”, of course, extends to polynomials of higher degree. And to use

this idea with these polynomials, it will help to introduce the “completely factored form” for an

arbitrary N th-degree polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN .

We will say that we’ve (re)written this polynomial into its completely factored form if and only

if we’ve factored it to an expression of the form

p(r) = a0(r − r1)
m1(r − r2)

m2 · · · (r − rK )mK (18.1)

where

{ r1, r2, . . . , rK }

is the set of all different (possibly complex) roots of the polynomial (i.e., values of r satisfying

p(r) = 0 ), and

{ m1, m2, . . . , mK }

is some corresponding set of positive integers.

Let’s make a few simple observations regarding the above, and then look at a few exam-

ples:

1. It will be important for our discussion that

{ r1, r2, . . . , rK }

is the set of all different roots of the polynomial. If j 6= k , then r j 6= rk .

2. Each mk is the largest integer such that (r − rk)
mk is a factor of the original polynomial.

Consequently, for each rk , there is only one possible value for mk . We call mk the

multiplicity of rk .

3. As shorthand, we often say that rk is a simple root if its multiplicity is 1 , a double root

if its multiplicity is 2 , a triple root if its multiplicity is 3 , and so on.

4. If you multiply out all the factors in the completely factored form in line (18.1), you get

a polynomial of degree

m1 + m2 + · · · + mK .

Since this polynomial is supposed to be p(r) , an N th-degree polynomial, we must have

m1 + m2 + · · · + mK = N .

!◮Example 18.1: By straightforward multiplication, you can verify that

2(r − 4)3(r + 5) = 2r 4 − 14r 3 − 24r 2 + 352r − 640 .

This means

p(r) = 2r 4 − 14r 3 − 24r 2 + 352r − 640

can be written in completely factored form

p(r) = 2(r − 4)3(r − [−5]) .

This polynomial has two distinct real roots, 4 and −5 . The root 4 has multiplicity 3 , and

−5 is a simple root.
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!◮Example 18.2: Straightforward multiplication also verifies that

(r − 3)5 = r 5 − 15r 4 + 90r 3 − 270r 2 + 405r − 243 .

Thus,

r 5 − 15r 4 + 90r 3 − 270r 2 + 405r − 243

has completely factored form

(r − 3)5 .

Here, 3 is the only distinct root, and this root has multiplicity 5 .

!◮Example 18.3: As the last example, for now, you can show that

(

r − [3 + 4i]
)2(

r − [3 − 4i]
)2 = r 4 − 12r 3 + 86r 2 − 300r + 625 .

Hence,
(

r − [3 + 4i]
)2(

r − [3 − 4i]
)2

is the completely factored form for

r 4 − 12r 3 + 86r 2 − 300r + 625 .

This time we have two complex roots, 3 + 4i and 3 − 4i , with each being a double root.

Can every polynomial be written in completely factored form? The next theorem says “yes”.

Theorem 18.1 (Complete factorization theorem)

Every polynomial can be written in completely factored form.

Note that we are not requiring the coefficients of the polynomial be real. This theorem is

valid for every polynomial with real or complex coefficients. Unfortunately, you will have to

accept this theorem on faith. Its proof requires developing more theory than is appropriate in

this text.1

Unfortunately, also, this theorem does not tell us how to find the completely factored form.

Of course, if the polynomial is of degree 2 ,

ar 2 + br + c ,

then we can find the roots via the quadratic formula,

r = r± = −b ±
√

b2 − 4ac

2a
.

Analogs of this formula do exist for polynomials of degrees 3 and 4 , but these analogs are

rather complicated, and not often used unless the user is driven by great need. For polynomials

of degrees greater than 4 , it has been shown that no such analogs exist.

This means that finding the completely factored form may require some of those “tricks for

factoring” you learned long ago in your old algebra classes. We’ll review a few of those tricks

later in examples involving differential equations.

1 Those who are interested may want to look up the “Fundamental Theorem of Algebra” in a text on complex

variables. The complete factorization theorem given here is a corollary of that theorem.
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18.2 Solving the Differential Equation
The Characteristic Equation

Suppose we have some N th-order differential equation of the form

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0 (18.2)

where the ak’s are all constants (and a0 6= 0 ). Since

(

er x
)′ = rer x

(

er x
)′′ =

(

rer x
)′ = r · rer x = r 2er x

(

er x
)′′′ =

(

r 2er x
)′ = r 2 · rer x = r 3er x

...

for any constant r , it is easy to see that plugging y = er x into the differential equation yields

a0r N er x + a1r N−1er x + · · · + aN−2r 2er x + aN−1rer x + aN er x = 0 ,

which, after dividing out er x , gives us the corresponding characteristic equation

a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN = 0 . (18.3)

As before, we refer to the polynomial on the left,

p(r) = a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN ,

as the characteristic polynomial for the differential equation. Also, as in a previous chapter, it

should be observed that the characteristic equation can be obtained from the original differential

equation by simply replacing the derivatives of y with the corresponding powers of r .

According to the complete factorization theorem, the above characteristic equation can be

rewritten in completely factored form,

a0(r − r1)
m1(r − r2)

m2 · · · (r − rK )mK = 0 (18.4)

where the rk’s are all the different roots of the characteristic polynomial, and the mk’s are the

multiplicities of the corresponding roots. It turns out that, for each root rk with multiplicity

mk , we can identify a corresponding linearly independent set of mk particular solutions to the

original differential equation. It will be obvious (once you see them) that no solution generated

from one root can be written as a linear combination of solutions generated from the other roots.

Hence, the set of all these particular solutions generated from all the rk’s will be a linearly

independent set containing (according to our complete factorization theorem)

m1 + m2 + · · · + mK = N

solutions. From the big theorem on solutions to homogeneous equations (theorem 14.2 on page

304), we then know that this big set is a fundamental set of solutions for the differential equation,

and that the general solution is given by an arbitrary linear combination of these particular

solutions.

Exactly which particular solutions are generated from each individual root depends on the

multiplicity and whether the root is real valued or not.
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Particular Solutions Corresponding to One Root

In the following, we will assume rk is a root of multiplicity mk to our characteristic polynomial.

That is,

(r − rk)
mk

is one factor in equation (18.4). However, since the choice of k will be irrelevant in this

discussion, we will, for simplicity, drop the subscripts.

The Basic Result

Assume r is a root of multiplicity m to our characteristic polynomial. Then, as before,

er x

is one particular solution to the differential equation, and if m = 1 , it is the only solution

corresponding to this root we need to find.

So now assume m > 1 . In the previous chapter, we found that

x er x

is a second solution to the differential equation when r is a repeated root and N = 2 . This

was obtained via reduction of order. For the more general case being considered here, it can be

shown that x er x is still a solution. In fact, it can be shown that the m particular solutions to

the differential equation corresponding to root r can be generated one after the other by simply

multiplying the previously found solution by x . That is, we have the following theorem:

Theorem 18.2

Let r be a root of multiplicity m to the characteristic polynomial for

a0 y(N ) + a1 y(N−1) + · · · + aN−2 y′′ + aN−1 y′ + aN y = 0

where the ak’s are all constants. Then

{

er x , x er x , x2er x , . . . , xm−1er x
}

is a linearly independent set of m solutions to the differential equation.

The proof of this theorem will be discussed later, in section 18.4. (And it probably should

be noted that xmer x ends up not being a solution to the differential equation.)

Particular Solutions Corresponding to a Real Root

If r is a real root of multiplicity m to our characteristic polynomial, then theorem 18.2, above,

tells us that
{

er x , x er x , x2er x , . . . , xm−1er x
}

is the linearly independent set of m solutions to the differential equation corresponding to that

root. No more need be said.

!◮Example 18.4: Consider the homogeneous differential equation

y(5) − 15y(4) + 90y′′′ − 270y′′ + 405y′ − 243y = 0 .
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Its characteristic equation is

r 5 − 15r 4 + 90r 3 − 270r 2 + 405r − 243 = 0 .

The left side of this equation is the polynomial from example 18.2. Checking back at that

example, we discover that this characteristic equation can be factored to

(r − 3)5 = 0 .

So 3 is the only root, and it has multiplicity 5 . Theorem 18.2 then tells us that the linearly

independent set of 5 corresponding particular solutions to the differential equation is

{

e3x , xe3x , x2e3x , x3e3x , x4e3x
}

Since 5 is also the order of the differential equation, we know (via theorem 14.2 on page 304)

that the above set is a fundamental set of solutions to our homogeneous differential equation,

and, thus,

y(x) = c1e3x + c2xe3x + c3x2e3x + c4x3e3x + c5x4e3x

is a general solution for our differential equation.

Particular Solutions Corresponding to a Complex Root

In chapter 16 we observed that complex roots to a second-degree polynomial always occur as

a conjugate pair when the coefficients of the polynomial are real. With a little bit of work (see

section 18.5), we can extend that observation to:

Theorem 18.3

Consider a polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−1r + aN

in which a0 , a1 , . . . , and aN are all real numbers. Let λ and ω be two real numbers, and let

m be some positive integer. Then

r0 = λ + iω is a root of multiplicity m for polynomial p(r)

if and only if

r0
∗ = λ − iω is a root of multiplicity m for polynomial p(r) .

Now assume λ + iω is a complex root of multiplicity m to our characteristic polynomial.

Theorems 18.2 and 18.3, together, tell us that

{

e(λ+iω)x , x e(λ+iω)x , x2e(λ+iω)x , . . . , xm−1e(λ+iω)x
}

and
{

e(λ−iω)x , x e(λ−iω)x , x2e(λ−iω)x , . . . , xm−1e(λ−iω)x
}

are linearly independent sets of m solutions to the differential equation corresponding to roots

λ + iω and λ − iω .
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For many problems, though, these are not particularly desirable sets of solutions because

they introduce complex values into computations we expect to yield real values. But recall how

we dealt with complex-exponential solutions for second-order equations, constructing alterna-

tive pairs of solutions via linear combinations. Let us try the same idea here, constructing an

alternative pair of solutions {yk,1, yk,2} from each pair

{

xke(λ+iω)x , xke(λ−iω)x
}

by the linear combinations

yk,1(x) = 1

2
xke(λ+iω)x + 1

2
xke(λ−iω)x

and

yk,2(x) = 1

2i
xke(λ+iω)x − 1

2i
xke(λ−iω)x .

Since

e(λ±iω)x = eλx [cos(ωx) ∓ i sin(ωx)] ,

you can easily verify that

yk,1 = xkeλx cos(ωx) and yk,2 = xkeλx sin(ωx) .

It is also “easily” verified that the set of these functions, with k = 0, 1, 2, . . . , m − 1 , is linearly

independent.

Thus, instead of using

{

e(λ+iω)x , x e(λ+iω)x , x2e(λ+iω)x , . . . , xm−1e(λ+iω)x
}

and
{

e(λ−iω)x , x e(λ−iω)x , x2e(λ−iω)x , . . . , xm−1e(λ−iω)x
}

as the two linearly independent sets corresponding to roots λ + iω and λ − iω , we can use the

sets of real-valued functions

{

eλx cos(ωx) , x eλx cos(ωx) , x2eλx cos(ωx) , . . . , xm−1eλx cos(ωx)
}

and
{

eλx sin(ωx) , x eλx sin(ωx) , x2eλx sin(ωx) , . . . , xm−1eλx sin(ωx)
}

.

!◮Example 18.5: Consider the differential equation

y(4) − 12y(3) + 86y′′ − 300y′ + 625y = 0 .

Its characteristic equation is

r 4 − 12r 3 + 86r 2 − 300r + 625 = 0 ,

which, as we saw in example 18.3, can be factored to

(

r − [3 + 4i]
)2(

r − [3 − 4i]
)2 = 0 .

Here, we have a conjugate pair of roots, 3 + 4i and 3 − 4i , each with multiplicity 2 . So the

corresponding particular real-valued solutions to the differential equation are

e3x cos(4x) , xe3x cos(4x) , e3x sin(4x) and xe3x sin(4x) .
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And since our homogeneous, linear differential equation is of order 4 , its general solution is

given by an arbitrary linear combination of these four solutions,

y(x) = c1e3x cos(4x) + c2xe3x cos(4x) + c3e3x sin(4x) + c4xe3x sin(4x) ,

which, to save space, might also be written as

y(x) = [c1 + c2x]e3x cos(4x) + [c3 + c4x]e3x sin(4x) .

18.3 Some More Examples

The most difficult part of solving a high-order, homogeneous linear differential equation with

constant coefficients is the factoring of its characteristic polynomial. Unfortunately, the methods

commonly used to factor second-degree polynomials do not nicely generalize to methods for

factoring polynomials of higher degree. So we have to use whatever algebraic tricks we can

think of. And if all else fails, we can run to the computer and let our favorite math package

attempt the factoring.

Here are a few examples to help you recall some of the useful tricks for factoring polynomials

of order three or above.

!◮Example 18.6: Consider the seventh-order, homogeneous differential equation

y(7) − 625y(3) = 0 .

The characteristic equation is

r 7 − 625r 3 = 0 .

An obvious choice of action would be to first factor out r 3 ,

r 3
(

r 4 − 625
)

= 0 .

Cleverly noting that r 4 = [r 2]2 and 625 = 252 , and then applying well-known algebraic

formulas, we have

r 3
(

r 4 − 625
)

= 0

→֒ r 3
(

[r 2]2 − [25]2
)

= 0

→֒ r 3
(

r 2 − 25
) (

r 2 + 25
)

= 0

→֒ r 3(r − 5)(r + 5)
(

r 2 + 25
)

= 0 .

Now

r 2 + 25 = 0 H⇒ r 2 = −25 H⇒ r 2 = ±
√

−25 = ±5i .
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So our characteristic equation can be written as

r 3(r − 5)(r + 5)(r − 5i)(r + 5i) = 0 .

To be a little more explicit,

(r − 0)3(r − 5)
(

r − [−5]
)

(r − 5i)
(

r − [−5i]
)

= 0 .

Thus, our characteristic polynomial has 5 different roots:

0 , 5 , − 5 , 5i and − 5i .

The root 0 has multiplicity 3 , and the differential equation has corresponding particular

solutions

e0·x , xe0·x and x2e0·x ,

which most of us would rather write as

1 , x and x2 .

The roots 5 and −5 each have multiplicity 1 . So the differential equation has corresponding

particular solutions

e5x and e−5x .

Finally, we have a pair of complex roots 5i and −5i , each with multiplicity 1 . Since these

are of the form λ ± iω with λ = 0 and ω = 5 , the corresponding real-valued particular

solutions to our differential equation are

cos(5x) and sin(5x) .

Taking an arbitrary linear combination of the above seven particular solutions, we get

y(x) = c1 · 1 + c2x + c3x2 + c4e5x + c5e−5x + c6 cos(5x) + c7 sin(5x)

as a general solution to our differential equation.

!◮Example 18.7: Consider

y′′′ − 19y′ + 30y = 0 .

The characteristic equation is

r 3 − 19r + 30 = 0 .

Few people can find a first factoring of this characteristic polynomial,

p(r) = r 3 − 19r + 30 ,

by inspection. But remember,

(r − r1) is a factor of p(r) ⇐⇒ p(r1) = 0 .

This means we can test candidates for r1 by just seeing if p(r1) = 0 . Good candidates here

would be the integer factors of 30 ( ±1 , ±2 , ±3 , ±5 , ±6 , ±10 and ±15 ).
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Trying r1 = 1 , we get

p(1) = 13 − 19 · 1 + 30 = 12 6= 0 .

So r1 6= 1 .

Trying r1 = −1 , we get

p(−1) = (−1)3 − 19 · (−1) + 30 = −1 + 19 + 30 6= 0 .

So r1 6= −1 .

Trying r1 = 2 , we get

p(2) = (2)3 − 19 · (2) + 30 = 8 − 38 + 30 = 0 .

Success! One root is r1 = 2 and one factor of our characteristic polynomial is (r − 2) . To

get our first factoring, we then divide r − 2 into the characteristic polynomial:

r 2 + 2r − 15

r − 2
)

r 3 − 19r + 30

− r 3 + 2r 2

2r 2 − 19r

− 2r 2 + 4r

− 15r + 30

15r − 30

0

Thus,

r 3 − 19r + 30 = (r − 2)(r 2 + 2r − 15) .

By inspection, we see that

r 2 + 2r − 15 = (r + 5)(r − 3) .

So, our characteristic equation

r 3 − 19r + 30 = 0

factors to

(r − 2)(r − [−5])(r − 3) = 0 ,

and, thus,

y(x) = c1e2x + c2e−5x + c3e3x

is a general solution to our differential equation.



On Verifying Theorem 18.2 385

18.4 On Verifying Theorem 18.2

Theorem 18.2 claims to give a linearly independent set of solutions to a linear homogeneous

differential equation with constant coefficients corresponding to a repeated root for the equation’s

characteristic polynomial. Our task of verifying this claim will be greatly simplified if we slightly

expand our discussion of “factoring” linear differential operators from section 12.4. (You may

want to go back and quickly review that section.)

Linear Differential Operators with Constant Coefficients

First, we need to expand our terminology a little: When we refer to L as being an N th-order

linear differential operator with constant coefficients, we just mean that L is an N th-order linear

differential operator

L = a0

d N

dx N
+ a1

d N−1

dx N−1
+ · · · + aN−2

d2

dx2
+ aN−1

d

dx
+ aN

in which all the ak’s are constants. Its characteristic polynomial p(r) is simply the polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN .

It turns out that factoring a linear differential operator with constant coefficients is remarkably

easy if you already have the factorization for its characteristic polynomial.

!◮Example 18.8: Consider the linear differential operator

L = d2

dx2
− 5

d

dx
+ 6 .

It’s characteristic polynomial is

r 2 − 5r + 6 ,

which factors to

(r − 2)(r − 3) .

Now, consider the analogous composition product
(

d

dx
− 2

)(

d

dx
− 3

)

.

Letting φ be any suitably differentiable function, we see that
(

d

dx
− 2

) (

d

dx
− 3

)

[φ] =
(

d

dx
− 2

)[

dφ

dx
− 3φ

]

= d

dx

[

dφ

dx
− 3φ

]

− 2

[

dφ

dx
− 3φ

]

= d2φ

dx2
− 3

dφ

dx
− 2

dφ

dx
+ 6φ

= d2φ

dx2
− 5

dφ

dx
+ 6φ

= L[φ] .
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Thus,

L =
(

d

dx
− 2

)(

d

dx
− 3

)

.

Redoing this last example with the numbers 2 and 3 replaced by constants r1 and r2 leads

to the first result of this section:

Lemma 18.4

Let L be a second-order linear differential operator with constant coefficients,

L = a
d2

dx2
+ b

d

dx
+ c ,

and let

p(r) = a(r − r1)(r − r2)

be a factorization of the characteristic polynomial for L (the roots r1 and r2 need not be

different, nor must they be real). Then the operator L has factorization

L = a

(

d

dx
− r1

)(

d

dx
− r2

)

.

PROOF: First of all, by the definition of p and elementary algebra,

ar 2 + br + c = p(r) = a(r − r1)(r − r2) = ar 2 − a [r1 + r2] r + ar1r2 .

So,

b = −a [r1 + r2] and c = ar1r2 .

Now, let φ be any sufficiently differentiable function. By the above,

a

(

d

dx
− r1

) (

d

dx
− r2

)

[φ] = a

(

d

dx
− r1

)[

dφ

dx
− r2φ

]

= a

(

d

dx

[

dφ

dx
− r2φ

]

− r1

[

dφ

dx
− r2φ

])

= a

(

d2φ

dx2
− r2

dφ

dx
− r1

dφ

dx
+ r1r2φ

)

= a
d2φ

dx2
− a [r1 + r2]

dφ

dx
+ ar1r2φ

= a
d2φ

dx2
+ b

dφ

dx
+ cφ

= L[φ] .

Clearly, straightforward extensions of these arguments will show that, for any factorization

of the characteristic polynomial of any linear differential operator with constant coefficients,
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there is a corresponding factorization of that operator. To simplify writing the factors of the

operator when rk is a multiple root of the characteristic polynomial, let us agree that

(

d

dx
− r1

)0

= 1 ,

(

d

dx
− r1

)1

=
(

d

dx
− r1

)

,

(

d

dx
− r1

)2

=
(

d

dx
− r1

)(

d

dx
− r1

)

,

(

d

dx
− r1

)3

=
(

d

dx
− r1

)(

d

dx
− r1

)(

d

dx
− r1

)

,

...

Using this notation along with the obvious extension of the above proof yields the next theorem.

Theorem 18.5 (factorization of constant coefficient operators)

Let L be a linear differential operator with constant coefficients, and let

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )mK

be the completely factored form for the characteristic polynomial for L . Then

L = a

(

d

dx
− r1

)m1
(

d

dx
− r2

)m2

· · ·
(

d

dx
− rK

)mK

.

Let us make two observations regarding the polynomial p , one of the roots r j of this

polynomial, and the operator L from the last theorem:

1. Because the order in which we write the factors of a polynomial is irrelevant, we have

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )mK = ap j (r)(r − r j)
m j

where p j (r) is the product of all the (r −rk)’s with rk 6= r j . Hence, L can be factored

by

L = aL j

(

d

dx
− r j

)m j

where L j is the composition product of all the
(

d/dx − rk

)

’s with rk 6= r j .

2. If y is a solution to
(

d

dx
− r j

)m j

[y] = 0 ,

then

L[y] = aL j

(

d

dx
− r j

)m j

[y] = aL j

[(

d

dx
− r j

)m j

[y]
]

= aL j [0] = 0 .
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Together, these observations give us the actual result we will use.

Corollary 18.6

Let L be a linear differential operator with constant coefficients; let

p(r) = a(r − r1)
m1(r − r2)

m2 · · · (r − rK )mK

be the completely factored form for the characteristic polynomial for L , and let r j be any one

of the roots of p . Suppose, further, that y is a solution to

(

d

dx
− r j

)m j

[y] = 0 .

Then y is also solution to

L[y] = 0 .

Proof of Theorem 18.2

Theorem 18.2 claims that, if r is a root of multiplicity m for the characteristic polynomial of

some linear homogeneous differential equation with constant coefficients, then

{

er x , x er x , x2er x , . . . , xm−1er x
}

is a linearly independent set of solutions to that differential equation. First we will verify that

each of these xker x ’s is a solution to the differential equation. Then we will confirm the linear

independence of this set.

Verifying the Solutions

If you look back at corollary 18.6, you will see that we need only show that

(

d

dx
− r

)m

[xker x ] = 0 (18.5)

whenever k is a nonnegative integer less than m . To expedite our main computations, we’ll do

two preliminary computations. And, since at least one may be useful in a later chapter, we’ll

describe the results in an easily referenced lemma.

Lemma 18.7

Let r , α and β be constants with α being a positive integer and β being real valued. Then

(

d

dx
− r

)α
[

er x
]

= 0 and

(

d

dx
− r

)α
[

xβer x
]

= β

(

d

dx
− r

)α−1
[

xβ−1er x
]

.

PROOF: For the first:

(

d

dx
− r

)α
[

er x
]

=
(

d

dx
− r

)α−1 (

d

dx
− r

)

[

er x
]
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=
(

d

dx
− r

)α−1
[

rer x − rer x
]

=
(

d

dx
− r

)α−1

[0] = 0 .

For the second:

(

d

dx
− r

)α
[

xβer x
]

=
(

d

dx
− r

)α−1 (

d

dx
− r

)

[

xβer x
]

=
(

d

dx
− r

)α−1 [

d

dx

[

xβer x
]

− r xβer x

]

=
(

d

dx
− r

)α−1
[

βxβ−1er x + xβrer x − r xβer x
]

= β

(

d

dx
− r

)α−1
[

xβ−1er x
]

.

Now let k be an positive integer less than m . Using the above lemma, we see that

(

d

dx
− r

)m
[

xker x
]

= k

(

d

dx
− r

)m−1
[

xk−1er x
]

= k(k − 1)

(

d

dx
− r

)m−2
[

xk−2er x
]

= k(k − 1)(k − 2)

(

d

dx
− r

)m−3
[

xk−3er x
]

...

= k(k − 1)(k − 2) · · · (k − [k − 1])
(

d

dx
− r

)m−k
[

xk−ker x
]

= k!
(

d

dx
− r

)m−k
[

er x
]

= 0 ,

verifying equation (18.5).

Verifying Linear Independence

To finish verifying the claim of theorem 18.2, we need only confirm that

{

er x , x er x , x2er x , . . . , xm−1er x
}

is a linearly independent set of functions on the real line. Well, let’s ask if this set could be,

instead, a linearly dependent set of functions on the real line. Then one of these functions, say,

xκer x , would be a linear combination of the others,

xκer x = linear combination of the other xker x ’s .

Subtract xκer x from both sides, and you get

0 = linear combination of the other xker x ’s − 1 · xκer x ,
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which we can rewrite as

0 = c0er x + c1x er x + c2x2er x + · · · + cm xm−1er x

where the ck’s are constants with

cκ = −1 .

Dividing out er x reduces the above to

0 = c0 + c1x + c2x2 + · · · + cm−1xm−1 . (18.6)

Since this is supposed to hold for all x , it should hold for x = 0 , giving us

0 = c0 + c1 · 0 + c2 · 02 + · · · + cm−1 · 0m−1 = c0 .

Now differentiate both sides of equation (18.6) and plug in x = 0 :

d

dx
[0] = d

dx

[

c0 + c1x + c2x2 + · · · + cm−1xm−1
]

→֒ 0 = 0 + c1 + 2c2x + · · · + (m − 1)cm−1xm−2

→֒ 0 = 0 + c1 + 2c2 · 0 + · · · + (m − 1)cm−1 · 0m−2

→֒ 0 = c1 .

Differentiating both sides of equation (18.6) twice and plugging in x = 0 :

d2

dx2
[0] = d2

dx2

[

c0 + c1x + c2x2 + c3x3 · · · + cm−1xm−1
]

→֒ 0 = d

dx

[

0 + c1 + 2c2x + 3c3x2 · · · + (m − 1)cm−1xm−2
]

→֒ 0 = 0 + 0 + 2c2 + 6c3x · · · + (m − 1)cm−1(m − 2)xm−2

→֒ 0 = 0 + 0 + 2c2 + 6c3 · 0 + · · · + (m − 1)(m − 2)cm−1 · 0m−2

→֒ 0 = c2 .

Clearly, we can differentiate equation (18.6) again and again, plug in x = 0 , and, eventually,

obtain

0 = ck for k = 0, 1, 2, . . . , m − 1 .

But, one of these ck’s is cκ which we know is −1 (assuming our set of xker x ’s is linearly

dependent). In other word, for our set of xker x ’s to be linearly dependent, we must have

0 = cκ = −1 ,

which is impossible. So our set of xker x ’s cannot be linearly dependent. It must be linearly

independent, just as theorem 18.2 claimed.
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18.5 On Verifying Theorem 18.3

Theorem 18.3 is a theorem about complex conjugation in the algebra of complex numbers. So

let’s start with a brief discussion of that topic.

Algebra with Complex Conjugates

Recall that a complex number z is something that can be written as

z = x + iy

where x and y are real numbers, which we generally refer to as, respectively, the real and the

imaginary parts of z . Along these lines, we say z is real if and only if z = x (i.e., y = 0 ),

and we say z is imaginary if and only if z = iy (i.e., x = 0 ).

The corresponding complex conjugate of z — denoted z∗ — is z with the sign of its

complex part switched,

z = x + iy H⇒ z∗ = x + i(−y) = x − iy .

Note that
(

z∗)∗ = (x − iy)∗ = x + iy = z ,

and that

z∗ = z if z is real .

We will use these facts in a moment. We will also use formulas involving the complex conjugates

of sums and products. To derive them, let

z = x + iy and c = a + ib

where x , y , a and b are all real, and compute out

(c + z)∗ , c∗ + z∗ , (cz)∗ and c∗z∗

in terms of a , b , x and y . You’ll quickly discover that

(c + z)∗ = c∗ + z∗ and (cz)∗ = c∗z∗ .

It then follows that

(

z2
)∗ = (z · z)∗ = z∗ · z∗ =

(

z∗)2
,

(

z3
)∗ =

(

z2 · z
)∗ =

(

z2
)∗ · z∗ =

(

z∗)2 · z∗ =
(

z∗)3
,

...

Continuing along these lines, it is a straightforward exercise to confirm that, given any polynomial

c0zN + c1zN−1 + · · · + cN−1z + cN ,

then
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[

c0zN + c1zN−1 + · · · + cN−1z + cN

]∗

= c0
∗ (

z∗)N + c1
∗ (

z∗)N−1 + · · · + cN−1
∗z∗ + cN

∗ .

If, in addition, each ck is a real number, then ck
∗ = ck and the above reduces even more.

Lemma 18.8

Let

c0zN + c1zN−1 + · · · + cN−1z + cN

be a polynomial in which each ck is a real number. Then, for any complex number z ,

[

c0zN + c1zN−1 + · · · + cN−1z + cN

]∗

= c0

(

z∗)N + c1

(

z∗)N−1 + · · · + cN−1z∗ + cN .

The Proof of Theorem 18.3

Let me remind you of the statement of theorem 18.3:

Consider a polynomial

p(r) = a0r N + a1r N−1 + · · · + aN−2r 2 + aN−1r + aN

in which a0 , a1 , . . . , and aN are all real numbers. Let λ and ω be two real

numbers, and let m be some positive integer. Then

r0 = λ + iω is a root of multiplicity m for polynomial p(r)

if and only if

r0
∗ = λ − iω is a root of multiplicity m for polynomial p(r) .

To start our proof of this theorem, assume r0 is a root of multiplicity m of p . Then

0 = a0 (r0)
N + a1 (r0)

N−1 + · · · + aN−2 (r0)
2 + aN−1r0 + aN .

But

0 = 0∗ =
[

a0 (r0)
N + a1 (r0)

N−1 + · · · + aN−2 (r0)
2 + aN−1r0 + aN

]∗

= a0

(

r0
∗)N + a1

(

r0
∗)N−1 + · · · + aN−2

(

r0
∗)2 + aN−1r0

∗ + aN ,

showing that r0
∗ is also a root of p . This also means that r − r0 and r − r0

∗ are both factors

of p(r) , and, hence,

p(r) = p1(r) (r − r0) (r − r0
∗)

where p1 is the polynomial of degree N − 2 that can be obtained by dividing these two factors

out of p ,

p1(r) = p(r)

(r − r0) (r − r0
∗)

.
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Now

(r − r0)
(

r − r0
∗) = (r − [λ + iω]) (r − [λ − iω]) = · · · = r 2 − 2λr + ω2 .

So the coefficients of both the denominator and the numerator in the fraction defining p1(r) are

real-valued constants. If you think about how one actually computes this fraction (via, say, long

division), you will realize that all the coefficients of p1(r) must also be real.

If m > 1 then (r − r0)
m−1 — but not (r − r0)

m — will be a factor of p1(r) . Thus, r0

will be a root of multiplicity m − 1 for p1 . Repeating the above arguments with p1 replacing

p leads to the conclusions that

1. r0
∗ is also a root of p1

and

2. there is an (N − 4)th degree polynomial p2 with real coefficients such that

p(r) = p1(r) (r − r0)
(

r − r0
∗) = p2(r) (r − r0)

2 (r − r0
∗)2 .

Clearly, we can continue repeating these arguments, ultimately obtaining the formula

p(r) = pm(r) (r − r0)
m (r − r0

∗)m

where pm is a polynomial of degree N − 2m with just real coefficients and for which r0 is not

a root.

Could r0
∗ be a root of pm ? If so, then the argument given at the start of this proof would

show that (r0
∗)∗ is also a root of pm . But (r0

∗)∗ = r0 and we know r0 is not a root of pm . So

it is not possible for r0
∗ to be a root of pm .

All this shows that

r0 is a root of multiplicity m for p(r)

H⇒ r0
∗ is a root of multiplicity m for p(r) .

Replacing r0 with r0
∗ then gives us

r0
∗ is a root of multiplicity m for p(r)

H⇒
(

r0
∗)∗

is a root of multiplicity m for p(r) .

Together with the fact that (r0
∗)∗ = r0 , these two implications give us

r0 is a root of multiplicity m for p(r)

⇐⇒ r0
∗ is a root of multiplicity m for p(r) ,

completing our proof of theorem 18.3.

Additional Exercises

18.1. Using clever factoring of the characteristic polynomials (such as done in example 18.6

on page 382), find the general solution to each of the following:
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a. y(4) − 4y(3) = 0

b. y(4) + 4y′′ = 0

c. y(4) − 34y′′ + 225y = 0

d. y(4) − 81y = 0

e. y(4) − 18y′′ + 81y = 0

f. y(5) + 18y(3) + 81y′ = 0

18.2. For each of the following differential equations, one or more roots to the corresponding

characteristic polynomial can be found by “testing candidates” (as illustrated in example

18.7 on page 383). Using this fact, find the general solution to each.

a. y′′′ − y′′ + y′ − y = 0

b. y′′′ − 6y′′ + 11y′ − 6y = 0

c. y′′′ − 8y′′ + 37y′ − 50y = 0

d. y(4) + 2y(3) + 10y′′ + 18y′ + 9y = 0

18.3. Find the solution to each of the following initial-value problems:

a. y′′′ + 4y′ = 0 with y(0) = 4 , y′(0) = 6 and y′′(0) = 8

b. y′′′ − 6y′′ + 12y′ − 8y = 0

with y(0) = 5 , y′(0) = 13 and y′′(0) = 86

c. y(4) + 26y′′ + 25y = 0

with y(0) = 6 , y′(0) = −28 , y′′(0) = −102 and y(3)(0) = 628

18.4. Find the general solution to each of the following:

a. y′′′ − 8y = 0

b. y(4) + 13y′′ + 36y = 0

c. y(6) − 3y(4) + 3y′′ − y = 0

d. y(6) − 2y(3) + y = 0


