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The Starting Point:
Basic Concepts and Terminology

Let us begin our study of “differential equations” with a few basic questions — questions that

any beginner should ask:

What are “differential equations”?

What can we do with them? Solve them? If so, what do we solve for? And how?

and, of course,

What good are they, anyway?

In this chapter, we will try to answer these questions (along with a few you would not yet think

to ask), at least well enough to begin our studies. With luck we will even raise a few questions

that cannot be answered now, but which will justify continuing our study. In the process, we will

also introduce and examine some of the basic concepts, terminology and notation that will be

used throughout this book.

1.1 Differential Equations: Basic Definitions and
Classifications

A differential equation is an equation involving some function of interest along with a few of

its derivatives. Typically, the function is unknown, and the challenge is to determine what that

function could possibly be.

Differential equations can be classified either as “ordinary” or as “partial”. An ordinary

differential equation is a differential equation in which the function in question is a function

of only one variable. Hence, its derivatives are the “ordinary” derivatives encountered early in

calculus. For the most part, these will be the sort of equations we’ll be examining in this text.

For example,
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d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x)

4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

and

d4 y

dx4
= 81y

are some differential equations that we will later deal with. In each, y denotes a function that is

given by some, yet unknown, formula of x . Of course, there is nothing sacred about our choice

of symbols. We will use whatever symbols are convenient for the variable and function to be

determined.1,2

A partial differential equation is a differential equation in which the function of interest

depends on two or more variables. Consequently, the derivatives of this function are the partial

derivatives developed in the later part of most calculus courses.3 Because the methods for

studying partial differential equations often involve solving ordinary differential equations, it

is wise to first become reasonably adept at dealing with ordinary differential equations before

tackling partial differential equations.

As already noted, this text is mainly concerned with ordinary differential equations. So let

us agree that, unless otherwise indicated, the phrase “differential equation” in this text means

“ordinary differential equation”. If you wish to further simplify the phrasing to “DE” or even to

something like “Diffy-Q”, go ahead. This author, however, will not be so informal.

Differential equations are also classified by their “order”. The order of a differential equation

is simply the order of the highest order derivative explicitly appearing in the equation. The

equations

dy

dx
= 4x3 ,

dy

dx
+

4

x
y = x2 and y

dy

dx
= −9.8x

are all first-order equations. So is

dy

dx
+ 3y2 = y

(

dy

dx

)4

,

despite the appearance of the higher powers — dy/dx is still the highest order derivative in this

equation, even if it is multiplied by itself a few times.

The equations

d2 y

dx2
− 2

dy

dx
− 3y = 65 cos(2x) and 4x2 d2 y

dx2
+ 4x

dy

dx
+ [4x2 − 1]y = 0

are second-order equations, while

d3 y

dx3
= e4x and

d3 y

dx3
−

d2 y

dx2
+

dy

dx
− y = x2

1 On occasion, we may write “ y = y(x) ” to explicitly indicate that, in some expression, y denotes a function

given by some formula of x with y(x) denoting that “formula of x ”. More often, it will simply be understood

that y is a function given by some formula of whatever variable appears in our expressions.
2 Of course, there is nothing sacred about using y and x to denote the function and variable. We can (and will)

use whatever symbols are convenient. In particular, it is standard to use t instead of x for the variable when the

variable corresponds to time.
3 A brief introduction to partial derivatives is given in section 3.7 for those who are interested and haven’t yet seen

partial derivatives.
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are third-order equations.

?◮Exercise 1.1: What is the order of each of the following equations?

d2 y

dx2
+ 3

dy

dx
− 7y = sin(x)

d5 y

dx5
− cos(x)

d3 y

dx3
= y2

d5 y

dx5
− cos(x)

d3 y

dx3
= y6

d42 y

dx42
=

(

d3 y

dx3

)2

In practice, higher-order differential equations are usually more difficult to solve than lower-

order equations. This, of course, is not an absolute rule. There are some very difficult first-order

equations, as well as some very easily solved twenty-seventh-order equations.

Solutions: The Basic Notions
∗

Any function that satisfies a given differential equation is called a solution to that differential

equation. “Satisfies the equation”, means that, if you plug the function into the differential

equation and compute the derivatives, then the result is an equation that is true no matter what

real value we replace the variable with. And if that resulting equation is not true for some real

values of the variable, then that function is not a solution to that differential equation.

!◮Example 1.1: Consider the differential equation

dy

dx
− 3y = 0 .

If, in this differential equation, we let y(x) = e3x (i.e., if we replace y with e3x ), we get

d

dx

[

e3x
]

− 3e3x = 0

→֒ 3e3x − 3e3x = 0

→֒ 0 = 0 ,

which certainly is true for every real value of x . So y(x) = e3x is a solution to our differential

equation.

On the other hand, if we let y(x) = x3 in this differential equation, we get

d

dx

[

x3
]

− 3x3 = 0

→֒ 3x2 − 3x3 = 0

→֒ 3x2(1 − x) = 0 ,

∗ Warning: The discussion of “solutions” here is rather incomplete so that we can get to the basic, intuitive concepts

quickly. We will refine our notion of “solutions” in section 1.3 starting on page 15.
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which is true only if x = 0 or x = 1 . But our interest is not in finding values of x that make

the equation true, but in finding functions of x (i.e., y(x) ) that make the equation true for

all values of x . So y(x) = x3 is not a solution to our differential equation. (And it makes

no sense, whatsoever, to refer to either x = 0 or x = 1 as solutions, here.)

Typically, a differential equation will have many different solutions. Any formula (or set of

formulas) that describes all possible solutions is called a general solution to the equation.

!◮Example 1.2: Consider the differential equation

dy

dx
= 6x .

All possible solutions can be obtained by just taking the indefinite integral of both sides,

∫

dy

dx
dx =

∫

6x dx

→֒ y(x) + c1 = 3x2 + c2

→֒ y(x) = 3x2 + c2 − c1

where c1 and c2 are arbitrary constants. Since the difference of two arbitrary constants is just

another arbitrary constant, we can replace the above c2 − c1 with a single arbitrary constant

c and rewrite our last equation more succinctly as

y(x) = 3x2 + c .

This formula for y describes all possible solutions to our original differential equation —

it is a general solution to the differential equation in this example. To obtain an individual

solution to our differential equation, just replace c with any particular number. For example,

respectively letting c = 1 , c = −3 , and c = 827 yield the following three solutions to our

differential equation:

3x2 + 1 , 3x2 − 3 and 3x2 + 827 .

As just illustrated, general solutions typically involve arbitrary constants. In many appli-

cations, we will find that the values of these constants are not truly arbitrary but are fixed by

additional conditions imposed on the possible solutions (so, in these applications at least, it would

be more accurate to refer to the “arbitrary” constants in the general solutions of the differential

equations as “yet undetermined” constants).

Normally, when given a differential equation and no additional conditions, we will want to

determine all possible solutions to the given differential equation. Hence, “solving a differential

equation” often means “finding a general solution” to that differential equation. That will be the

default meaning of the phrase “solving a differential equation” in this text. Notice, however, that

the resulting “solution” is not a single function that satisfies the differential equation (which is

what we originally defined “a solution” to be), but is a formula describing all possible functions

satisfying the differential equation (i.e., a “general solution”). Such ambiguity often arises in

everyday language and we’ll just have to live with it. Simply remember that, in practice, the

phrase “a solution to a differential equation” can refer either to
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any single function that satisfies the differential equation,

or

any formula describing all the possible solutions (more correctly called a general solution).

In practice, it is usually clear from the context just which meaning of the word “solution” is being

used. On occasions where it might not be clear, or when we wish to be very precise, it is standard

to call any single function satisfying the given differential equation a particular solution. So, in

the last example, the formulas

3x2 + 1 , 3x2 − 3 and 3x2 + 827

describe particular solutions to
dy

dx
= 6x .

Initial-Value Problems

One set of auxiliary conditions that often arises in applications is a set of “initial values” for

the desired solution. This is a specification of the values of the desired solution and some of its

derivatives at a single point. To be precise, an N th-order set of initial values for a solution y

consists of an assignment of values to

y(x0) , y′(x0) , y′′(x0) , y′′′(x0) , . . . and y(N−1)(x0)

where x0 is some fixed number (in practice, x0 is often 0 ) and N is some nonnegative integer.4

Note that there are exactly N values being assigned and that the highest derivative in this set is

of order N − 1 .

We will find that N th-order sets of initial values are especially appropriate for Nth-order

differential equations. Accordingly, the term N th-order initial-value problem will always mean

a problem consisting of

1. an N th-order differential equation, and

2. an N th-order set of initial values.

For example,
dy

dx
− 3y = 0 with y(0) = 4

is a first-order initial-value problem. “ dy/dx −3y = 0 ” is the first-order differential equation, and

“ y(0) = 4 ” is the first-order set of initial values. On the other hand, the third-order differential

equation
d3 y

dx3
+

dy

dx
= 0

along with the third-order set of initial conditions

y(1) = 3 , y′(1) = −4 and y′′(1) = 10

4 Remember, if y = y(x) , then

y′ =
dy

dx
, y′′ =

d2 y

dx2
, y′′′ =

d3 y

dx3
, . . . and y(k) =

dk y

dxk
.

We will use the ‘prime’ notation for derivatives when the d/dx notation becomes cumbersome.
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makes up a third-order initial-value problem.

A solution to an initial-value problem is a solution to the differential equation that also

satisfies the given initial values. The usual approach to solving such a problem is to first find

the general solution to the differential equation (via any of the methods we’ll develop later), and

then determine the values of the ‘arbitrary’ constants in the general solution so that the resulting

function also satisfies each of the given initial values.

!◮Example 1.3: Consider the initial-value problem

dy

dx
= 6x with y(1) = 8 .

From example 1.2 we know that the general solution to the above differential equation is

y(x) = 3x2 + c

where c is an arbitrary constant. Combining this formula for y with the requirement that

y(1) = 8 , we have

8 = y(1) = 3 · 12 + c = 3 + c ,

which, in turn, requires that

c = 8 − 3 = 5 .

So the solution to the initial-value problem is given by

y(x) = 3x2 + c with c = 5 ;

that is,

y(x) = 3x2 + 5 .

By the way, the terms “initial values”, “initial conditions”, and “initial data” are essentially

synonymous and, in practice, are used interchangeably.

1.2 Why Care About Differential Equations? Some
Illustrative Examples

Perhaps the main reason to study differential equations is that they naturally arise when we

attempt to mathematically describe “real-world” processes that vary with, say, time or position.

Let us look at one well-known process: the falling of some object towards the earth. To illustrate

some of the issues involved, we’ll develop two slightly different sets of mathematical descriptions

for the same process.

By the way, any collection of equations and formulas describing some process is called a

(mathematical) model of the process, and the process of developing a mathematical model is

called, unsurprisingly, modeling.
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y(t)y(0) v(t) falling object of mass m

the ground (where y = 0)

initial height (1,000 meters)

Figure 1.1: Rough sketch of a falling object of mass m.

The Situation to Be Modeled:

Let us concern ourselves with the vertical position and motion of an object dropped from a plane

at a height of 1,000 meters. Since it’s just being dropped, we may assume its initial downward

velocity is 0 meters per second. The precise nature of the object — whether it’s a falling marble,

a frozen duck (live, unfrozen ducks don’t usually fall) or some other familiar falling object — is

not important at this time. Visualize it as you will.

The first two things one should do when developing a model is to sketch the process (if

possible) and to assign symbols to quantities that may be relevant. A crude sketch of the process

is in figure 1.1 (I’ve sketched the object as a ball since a ball is easy to sketch). Following ancient

traditions, let’s make the following symbolic assignments:

m = the mass (in grams) of the object

t = time (in seconds) since the object was dropped

y(t) = vertical distance (in meters) between the object and the ground at time t

v(t) = vertical velocity (in meters/second) of the object at time t

a(t) = vertical acceleration (in meters/second2) of the object at time t

Where convenient, we will use y , v and a as shorthand for y(t) , v(t) and a(t) . Remember

that, by the definition of velocity and acceleration,

v =
dy

dt
and a =

dv

dt
=

d2 y

dt2
.

From our assumptions regarding the object’s position and velocity at the instant it was

dropped, we have that

y(0) = 1,000 and
dy

dt

∣

∣

∣

∣

t=0

= v(0) = 0 . (1.1)

These will be our initial values. (Notice how appropriate it is to call these the “initial values” —

y(0) and v(0) are, indeed, the initial position and velocity of the object.)
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As time goes on, we expect the object to be falling faster and faster downwards, so we expect

both the position and velocity to vary with time. Precisely how these quantities vary with time

might be something we don’t yet know. However, from Newton’s laws, we do know

F = ma

where F is the sum of the (vertically acting) forces on the object. Replacing a with either the

corresponding derivative of velocity or position, this equation becomes

F = m
dv

dt
(1.2)

or, equivalently,

F = m
d2 y

dt2
. (1.2 ′)

If we can adequately describe the forces acting on the falling object (i.e., the F ), then the velocity,

v(t) , and vertical position, y(t) , can be found by solving the above differential equations, subject

to the initial conditions in line (1.1).

The Simplest Falling Object Model

The Earth’s gravity is the most obvious force acting on our falling object. Checking a convenient

physics text, we find that the force of the Earth’s gravity acting on an object of mass m is given

by

Fgrav = −gm where g = 9.8
(

meters/second2
)

.

Of course, the value for g is an approximation and assumes that the object is not too far above

the Earth’s surface. It also assumes that we’ve chosen “up” to be the positive direction (hence

the negative sign).

For this model, let us suppose the Earth’s gravity, Fgrav , is the only significant force involved.

Assuming this (and keeping in mind that we are measuring distance in meters and time in seconds),

we have

F = Fgrav = −9.8m

in the “ F = ma ” equation. In particular, equation (1.2 ′) becomes

−9.8m = m
d2 y

dt2
.

The mass conveniently divides out, leaving us with

d2 y

dt2
= −9.8 .

Taking the indefinite integral with respect to t of both sides of this equation yields

∫

d2 y

dt2
dt =

∫

−9.8 dt

→֒
∫

d

dt

(

dy

dt

)

dt =

∫

−9.8 dt
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→֒
dy

dt
+ c1 = −9.8t + c2

→֒
dy

dt
= −9.8t + c

where c1 and c2 are the “arbitrary constants of integration” and c = c2 − c1 . This gives us our

formula for dy/dt up to an unknown constant c . But recall that the initial velocity is zero,

dy

dt

∣

∣

∣

∣

t=0

= v(0) = 0 .

On the other hand, setting t equal to zero in the formula just derived for dy/dt yields

dy

dt

∣

∣

∣

∣

t=0

= −9.8 · 0 + c .

Combining these two expressions for y′(0) yields

0 =
dy

dt

∣

∣

∣

∣

t=0

= −9.8 · 0 + c .

Thus, c = 0 and our formula for dy/dt reduces to

dy

dt
= −9.8t .

Again, we have a differential equation that is easily solved by integrating both sides with respect

to t ,

∫

dy

dt
dt =

∫

−9.8t dt

→֒ y(t) + C1 = −9.8
[

1

2
t2

]

+ C2

→֒ y(t) = −4.9t2 + C

where, again, C1 and C2 are the “arbitrary constants of integration” and C = C2 − C1 .5

Combining this last equation with the initial condition for y(t) (from line (1.1)), we get

1,000 = y(0) = −4.9 · 02 + C .

Thus, C = 1,000 and the vertical position (in meters) at time t is given by

y(t) = −4.9t2 + 1,000 .

5 Note that slightly different symbols are being used to denote the different constants. This is highly recommended

to prevent confusion when (and if) we ever review our computations.
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A Better Falling Object Model

The above model does not take into account the resistance of the air to the falling object — a

very important force if the object is relatively light or has a parachute. Let us add this force to

our model. That is, for our “ F = ma ” equation, we’ll use

F = Fgrav + Fair

where Fgrav is the force of gravity discussed above, and Fair is the force due to the air resistance

acting on this particular falling body.

Part of our problem now is to determine a good way of describing Fair in terms relevant to

our problem. To do that, let us list a few basic properties of air resistance that should be obvious

to anyone who has stuck their hand out of a car window:

1. The force of air resistance does not depend on the position of the object, only on the relative

velocity between it and the surrounding air. So, for us, Fair will just be a function of v ,

Fair = Fair(v) . (This assumes, of course, that the air is still — no up- or downdrafts —

and that the density of the air remains fairly constant throughout the distance this object

falls.)

2. This force is zero when the object is not moving, and its magnitude increases as the speed

increases (remember, speed is the magnitude of the velocity). Hence, Fair(v) = 0 when

v = 0 , and |Fair(v)| gets bigger as |v| gets bigger.

3. Air resistance acts against the direction of motion. This means that the direction of the

force of air resistance is opposite to the direction of motion. Thus, the sign of Fair(v)

will be opposite that of v .

While there are many formulas for Fair(v) that would satisfy the above conditions, common

sense suggests that we first use the simplest. That would be

Fair(v) = −γ v

where γ is some positive value. The actual value of γ will depend on such parameters as the

object’s size, shape, and orientation, as well as the density of the air through which the object is

moving. For any given object, this value could be determined by experiment (with the aid of the

equations we will soon derive).

?◮Exercise 1.2: Convince yourself that

a: this formula for Fair(v) does satisfy the above three conditions, and

b: no simpler formula would work.

We are now ready to derive the appropriate differential equations for our improved model

of a falling object. The total force is given by

F = Fgrav + Fair = −9.8m − γ v .

Since this formula explicitly involves v instead of dy/dt , let us use the “ F = ma ” equation from

line (1.2) on page 10,

F = m
dv

dt
.
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Combining the last two equations,

m
dv

dt
= F = −9.8m − γ v .

Cutting out the middle and dividing through by the mass gives the slightly simpler equation

dv

dt
= −9.8 − κv where κ =

γ

m
. (1.3)

Remember that γ , m and, hence, κ are positive constants, while v = v(t) is a yet unknown

function that satisfies the initial condition v(0) = 0 . After solving this initial-value problem for

v(t) , we could then find the corresponding formula for height at time t , y(t) , by solving the

simple initial-value problem

dy

dt
= v(t) with y(0) = 1,000 .

Unfortunately, we cannot solve equation (1.3) by simply integrating both sides with respect

to t ,
∫

dv

dt
dt =

∫

[−9.8 − κv] dt .

The first integral is not a problem. By the relation between derivatives and integrals, we still have

∫

dv

dt
dt = v(t) + c1

where c1 is an arbitrary constant. It’s the other side that is a problem. Since κ is a constant, but

v = v(t) is an unknown function of t , the best we can do with the righthand side is

∫

[−9.8 − κv] dt = −

∫

9.8 dt − κ

∫

v(t) dt = −9.8t + c2 − κ

∫

v(t) dt .

Again, c2 is an arbitrary constant. However, since v(t) is an unknown function, its integral is

simply another unknown function of t . Thus, letting c = c2 −c1 and “integrating the equation”

simply gives us

v(t) = −9.8t + c − (κ · some unknown function of t ) ,

which is not very helpful.

Fortunately, this is a text on differential equations, and methods for solving equations such

as equation (1.3) will be discussed in chapters 4 and 5. But there’s no need to rush things. The

main goal here is to simply to see how differential equations arise in applications. Of course,

now that we have equation (1.3), we also have a good reason to continue on and learn how to

solve it.

By the way, if we replace v in equation (1.3) with dy/dt , we get the second-order differential

equation

d2 y

dt2
= −9.8 − κ

dy

dt
.

This can be integrated, yielding

dy

dt
= −9.8t − κy + c
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where c is an arbitrary constant. Again, this is first-order differential equation that we cannot

solve until we delve more deeply into the various methods for solving these equations. And if,

in this last equation, we again use the fact that v = dy/dt , all we get is

v = −9.8t − κy + c (1.4)

which is another not-very-helpful equation relating the unknown functions v(t) and y(t) .6

Summary of Our Models and the Related Initial Value
Problems

For the first model of a falling body, we had the second-order differential equation

d2 y

dt2
= −9.8 .

along with the initial conditions

y(0) = 1,000 and y′(0) = 0 .

In other words, we had a second-order initial-value problem. This problem, as we saw, was

rather easy to solve.

For the second model, we still had the initial conditions

y(0) = 1,000 and y′(0) = 0 ,

but we found it a little more convenient to write the differential equation as

dv

dt
= −9.8 − κv where

dy

dt
= v

and κ was some positive constant. There are a couple of ways we can view this collection of

equations. First of all, we could simply replace the v with dy/dt and say we have the second-order

initial problem
d2 y

dt2
= −9.8 − κ

dy

dt

with

y(0) = 1, 000 and y′(0) = 0 .

Alternatively, we could (as was actually suggested) view the problem as two successive first-order

problems:
dv

dt
= −9.8 − κv with v(0) = 0 ,

followed by
dy

dt
= v(t) with y(0) = 1,000 .

The first of these two problems can be solved using methods we’ll develop later. And once we

have the solution, v(t) , to that, the second can easily be solved by integration.

6 well, not completely useless — see exercise 1.10 b on page 21.
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Though, ultimately, the two ways of viewing our second model are equivalent, there are

advantages to the second: It is conceptually simple, and it makes it a little easier to use solution

methods that will be developed relatively early in this text. It also leads us to finding v(t) before

even considering y(t) . Moreover, it is probably the velocity of landing, not the height of landing,

that most concerns a falling person with (or without) a parachute. Indeed, if we are lucky, the

solution to the first, v(t) , may tell us everything we are interested in, and we won’t have to deal

with the initial-value problem for y at all.

Finally, I should mention that, together, the two equations

dv

dt
= −9.8 − κv and

dy

dt
= v

form a “system of differential equation”. That is, they comprise a set of differential equations

involving unknown functions that are related to each other. This is an especially simple system

since it can be solved by successively solving the individual equations in the system. Much more

complicated systems can arise that are not so easily solved, especially when modeling physical

systems consisting of many components, each of which can be modeled by a differential equation

involving several different functions (as in, say, a complex electronic circuit). Dealing with these

sorts of systems will have to wait until we’ve become reasonably adept at dealing with individual

differential equations.

1.3 More on Solutions
Intervals of Interest

When discussing a differential equation and its solutions, we should include a specification of

the interval over which the solution(s) is (are) to be valid. The choice of this interval, which we

may call the interval of solution, the interval of the solution’s validity, or, simply, the interval

of interest, may be based on the problem leading to the differential equation, on mathematical

considerations, or, to a certain extent, on the whim of the person presenting the differential

equation. One thing we will insist on, in this text at least, is that solutions must be continuous

over this interval.

!◮Example 1.4: Consider the equation

dy

dx
=

1

(x − 1)2
.

Integrating this gives

y(x) = c −
1

x − 1

where c is an arbitrary constant. No matter what value c is, however, this function cannot

be continuous over any interval containing x = 1 because (x − 1)−1 “blows up” at x = 1 .

So we will only claim that our solutions are valid over intervals that do not include x = 1 . In

particular, we have valid (continuous) solutions to this differential equation over the intervals

[0, 1) , (−∞, 1) , (1,∞) , and (2, 5) ; but not over (0, 2) or (0, 1] or (−∞,∞) .
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Why should we make such an issue of continuity? Well consider, if a function is not

continuous at a point, then its derivatives do not exist at that point — and without the derivatives

existing, how can we claim that the function satisfies a particular differential equation?

Another reason for requiring continuity is that the differential equations most people are

interested in are models for “real-world” phenomena, and real-world phenomena are normally

continuous processes while they occur — the temperature of an object does not instantaneously

jump by fifty degrees nor does the position of an object instantaneously change by three kilome-

ters. If the solutions do “blow up” at some point, then

1. some of the simplifying assumptions made in developing the model are probably no

longer valid, or

2. a catastrophic event is occurring in our process at that point, or

3. both.

Whatever is the case, it would be foolish to use the solution derived to predict what is happening

beyond the point where “things blow up”. That should certainly be considered a point where the

validity of the solution ends.

Sometimes, it’s not the mathematics that restricts the interval of interest, but the problem

leading to the differential equation. Consider the simplest falling object model discussed earlier.

There we had an object start falling from an airplane at t = 0 from a height of 1,000 meters.

Solving the corresponding initial-value problem, we obtained

y(t) = −4.9t2 + 1,000

as the formula for the height above the earth at time t . Admittedly, this satisfies the differential

equation for all t , but, in fact, it only gives the height of the object from the time it starts falling,

t = 0 , to the time it hits the ground, Thit .7 So the above formula for y(t) is a valid description

of the position of the object only for 0 ≤ t ≤ Thit ; that is, [0, Thit] is the interval of interest for

this problem. Any use of this formula to predict the position of the object at a time outside the

interval [0, Thit] is just plain foolish.

In practice, the interval of interest is often not explicitly given. This may be because the

interval is implicitly described in the problem, or because determining this interval is part of the

problem (e.g., determining where the solutions must “blow up”). It may also be because the

person giving the differential equation is lazy or doesn’t care what interval is used because the

issue at hand is to find formulas that hold independently of the interval of interest.

In this text, if no interval of interest is given or hinted at, assume it to be any interval that

makes sense. Often, this will be the entire real line, (−∞,∞) .

Solutions Over Intervals

In introducing the concept of the “interval of interest”, we have implicitly refined our notion of “a

(particular) solution to a differential equation”. Let us make that refinement explicit: A solution

to a differential equation over an interval of interest is a function that is both continuous and

satisfies the differential equation over the given interval.

7 Thit is computed in exercise 1.9 on page 21.
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Recall that the domain of a function is the set of all numbers that can be plugged into the

function. Naturally, if a function is a solution to a differential equation over some interval, then

that function’s domain must include that interval.8

Since we’ve refined our definition of particular solutions, we should make the corresponding

refinement to our definition of a general solution: A general solution to a differential equation

over an interval of interest is a formula or set of formulas describing all possible particular

solutions over that interval.

Describing Particular Solutions

Let us get somewhat technical for a moment. Suppose we have a solution y to some differential

equation over some interval of interest. Remember, we’ve defined y to be a “function”. If

you look up the basic definition of “function” in your calculus text, you’ll find that, strictly

speaking, y is a mapping of one set of numbers (the domain of y ) onto another set of numbers

(the range of y ). This means that, for each value x in the function’s domain, y assigns a

corresponding number which we usually denote y(x) and call “the value of y at x ”. If we are

lucky, this function, y , is described by some formula, say, x2 . That is, the value of y(x) can

be determined for each x in the domain by the equation

y(x) = x2 .

Strictly speaking, the function y , it’s value at x (i.e., y(x)), and any formula describing how

to compute y(x) are different things. In everyday usage, however, the fine distinctions between

these concepts are often ignored, and we say things like

consider the function x2 or consider y = x2

instead of the more correct statement

consider the function y where y(x) = x2 for each x in the domain of y .

For our purposes, “everyday usage” will usually suffice and we won’t worry that much about

the differences between y , y(x) , and a formula describing y . This will save ink and paper,

simplify the English, and, frankly, make it easier to follow many of our computations.

In particular, when we seek a particular solution to a differential equation, we will usually be

quite happy to find a convenient formula describing the solution. We will then probably mildly

abuse terminology by referring to that formula as “the solution”. Please keep in mind that, in

fact, any such formula is just one description of the solution — a very useful description since

it tells you how to compute y(x) for every x in the interval of interest. But other formulas can

also describe the same function. For example, you can easily verify that

x2 , (x + 3)(x − 3) + 9 and

∫ x

t=0

2t dt

are all formulas describing the same function on the real line.

There will also be differential equations for which we simply cannot find a convenient for-

mula describing the desired solution (or solutions). On those occasions we will have to find some

8 In theory, it makes sense to restrict the domain of a solution to the interval of interest so that irrelevant questions

regarding the behavior of the function off the interval have no chance of arising. At this point of our studies, let us

just be sure that a function serving as a solution makes sense at least over whatever interval we have interest in.
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alternative way to describe our solutions. Some of these will involve using the differential equa-

tions to sketch approximations to the graphs of their solutions. Other alternative descriptions will

involve formulas that approximate the solutions and allow us to generate lists of values approxi-

mating a solution at different points. These alternative descriptions may not be as convenient or

as accurate as explicit formulas for the solutions, but they will provide usable information about

the solutions.

Additional Exercises

1.3. For each differential equation given below, three choices for a possible solution y =

y(x) are given. Determine whether each choice is or is not a solution to the given

differential equation. (In each case, assume the interval of interest is the entire real line

(−∞,∞) .)

a.
dy

dx
= 3y

i. y = e3x ii. y = x3 iii. y = sin(3x)

b. x
dy

dx
= 3y

i. y = e3x ii. y = x3 iii. y = sin(3x)

c.
d2 y

dx2
= 9y

i. y = e3x ii. y = x3 iii. y = sin(3x)

d.
d2 y

dx2
= −9y

i. y = e3x ii. y = x3 iii. y = sin(3x)

e. x
dy

dx
− 2y = 6x4

i. y = x4 ii. y = 3x4 iii. y = 3x4 + 5x2

f.
d2 y

dx2
− 2x

dy

dx
− 2y = 0

i. y = sin(x) ii. y = x3 iii. y = ex2

g.
d2 y

dx2
+ 4y = 12x

i. y = sin(2x) ii. y = 3x iii. y = sin(2x) + 3x

h.
d2 y

dx2
− 6

dy

dx
+ 9y = 0

i. y = e3x ii. y = xe3x iii. y = 7e3x − 4xe3x
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1.4. For each initial-value problem given below, three choices for a possible solution y =

y(x) are given. Determine whether each choice is or is not a solution to the given

initial-value problem.

a.
dy

dx
= 4y with y(0) = 5

i. y = e4x ii. y = 5e4x iii. y = e4x + 1

b. x
dy

dx
= 2y with y(2) = 20

i. y = x2 ii. y = 10x iii. y = 5x2

c.
d2 y

dx2
− 9y = 0 with y(0) = 1 and y′(0) = 9

i. y = 2e3x − e−3x ii. y = e3x iii. y = e3x + 1

d. x2 d2 y

dx2
− 4x

dy

dx
+ 6y = 36x6 with y(1) = 1 and y′(1) = 12

i. y = 10x3 − 9x2 ii. y = 3x6 − 2x2 iii. y = 3x6 − 2x3

1.5. For the following, let

y =
√

x2 + c

where c is an arbitrary constant.

a. Verify that this y is a solution to

dy

dx
=

x

y

no matter what value c is.

b. What value should c be so that the above y satisfies the initial condition

i. y(0) = 3 ? ii. y(2) = 3 ?

c. Using your results for the above, give a solution to each of the following initial-value

problems:

i.
dy

dx
=

x

y
with y(0) = 3

ii.
dy

dx
=

x

y
with y(2) = 3

1.6. For the following, let

y = y(x) = Aex2

− 3

where A is an arbitrary constant.

a. Verify that this y is a solution to

dy

dx
− 2xy = 6x

no matter what value A is.
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b. In fact, it can be verified (using methods that will be developed later) that the above

formula for y is a general solution to the above differential equation. Using this fact,

finish solving each of the following initial-value problems:

i.
dy

dx
− 2xy = 6x with y(0) = 1

ii.
dy

dx
− 2xy = 6x with y(1) = 0

1.7. For the following, let

y = A cos(2x) + B sin(2x)

where A and B are arbitrary constants.

a. Verify that this y is a solution to

d2 y

dx2
+ 4y = 0

no matter what values A and B are.

b. Again, it can be verified that the above formula for y is a general solution to the above

differential equation. Using this fact, finish solving each of the following initial-value

problems:

i.
d2 y

dx2
+ 4y = 0 with y(0) = 3 and y′(0) = 8

ii.
d2 y

dx2
+ 4y = 0 with y(0) = 0 and y′(0) = 1

1.8. It was stated (on page 7) that “ N th-order sets of initial values are especially appropriate

for N th-order differential equations.” The following problems illustrate one reason this

is true. In particular, they demonstrate that, if y satisfies some N th-order initial-value

problem, then it automatically satisfies particular higher-order sets of initial values.

Because of this, specifying the initial values for y(m) with m ≥ N is unnecessary and

may even lead to problems with no solutions.

a. Assume y satisfies the first-order initial-value problem

dy

dx
= 3xy + x2 with y(1) = 2 .

i. Using the differential equation along with the given value for y(1) , determine what

value y′(1) must be.

ii. Is it possible to have a solution to

dy

dx
= 3xy + x2

that also satisfies both y(1) = 2 and y′(1) = 4 ? (Give a reason.)

iii. Differentiate the given differential equation to obtain a second-order differential

equation. Using the equation obtained along with the now known values for y(1)

and y′(1) , find the value of y′′(1) .

iv. Can we continue and find y′′′(1) , y(4)(1) , …?
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b. Assume y satisfies the second-order initial-value problem

d2 y

dx2
+ 4

dy

dx
− 8y = 0 with y(0) = 3 and y′(0) = 5 .

i. Find the value of y′′(0) and of y′′′(0)

ii. Is it possible to have a solution to

d2 y

dx2
+ 4

dy

dx
− 8y = 0

that also satisfies all of the following:

y(0) = 3 , y′(0) = 5 and y′′′(0) = 0 ?

1.9. Consider the simplest model we developed for a falling object (see page 10). In that,

we derived

y(t) = −4.9t2 + 1,000

as the formula for the height y above ground of some falling object at time t .

a. Find Thit , the time the object hits the ground.

b. What is the velocity of the object when it hits the ground?

c. Suppose that, instead of being dropped at t = 0 , the object is tossed up with an initial

velocity of 2 meters per second. If this is the only change to our problem, then:

i. How does the corresponding initial-value problem change?

ii. What is the solution y(t) to this initial value problem?

iii. What is the velocity of the object when it hits the ground?

1.10. Consider the “better” falling object model (see page 12), in which we derived the

differential equation
dv

dt
= −9.8 − κv (1.5)

for the velocity. In this, κ is some positive constant used to describe the air resistance

felt by the falling object.

a. This differential equation was derived assuming the air was still. What differential

equation would we have derived if, instead, we had assumed there was a steady updraft

of 2 meters per second?

b. Recall that, from equation (1.5) we derived the equation

v = −9.8t − κy + c

relating the velocity v to the distance above ground y and the time t (see page 14).

In the following, you will show that it, along with experimental data, can be used to

determine the value of κ .

i. Determine the value of the constant of integration, c , in the above equation using

the given initial values (i.e., y(0) = 1,000 and v(0) = 0 ).
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ii. Suppose that, in an experiment, the object was found to hit the ground at t = Thit

with a speed of v = vhit . Use this, along with the above equation, to find κ in

terms of Thit and vhit .

1.11. For the following, let

y = Ax + Bx ln |x |

where A and B are arbitrary constants.

a. Verify that this y is a solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0 on the intervals (0,∞) and (−∞, 0) ,

no matter what values A and B are.

b. Again, we will later be able to show that the above formula for y is a general solution

for the above differential equation. Given this, find the solution to the above differential

equation satisfying y(1) = 3 and y′(1) = 8 .

c. Why should your answer to 1.11 b not be considered a valid solution to

x2 d2 y

dx2
− x

dy

dx
+ y = 0

over the entire real line, (−∞,∞) ?


