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Elementary Linear Transform Theory

Whether they are spaces of “arrows in space”, functions or even matrices, vector spaces quickly

become boring if we don’t do things with their elements — move them around, differentiate or

integrate them, whatever. And often, what we do with these generalized vectors end up being

linear operations.

6.1 Basic Definitions and Examples

Let us suppose we have two vector spaces V and W (they could be the same vector space). Then

we can certainly have a function L that transforms any vector v from V into a corresponding

vector w = L(v) in W . This function is called a linear transformation (or linear transform or

linear operator) from V into W if and only if

L(α1v1 + α2v2) = α1L(v1) + α2L(v2)

whenever α1 and α2 are scalars, and v1 and v2 are vectors in V . This expression, of course,

can be expanded to

L

(

∑

k

αkvk

)

=
∑

k

αkL(vk)

for any linear combination
∑

k αkvk of vectors in V . (Remember, we are still insisting on linear

combinations having only finitely many terms.)

The domain of the operator is the vector space V , and the range is the set of all vectors in

W given by L(v) where v ∈ V . On occasion, we might also call V the “input space”, and W

the “target space”. This terminology is not standard, but is descriptive.

Often, V and W will be the same. If this is the case, then we will simply refer to L as a

linear transformation/transform/operator on V .

It is also often true that W is not clearly stated. In such cases we can take W to be any

vector space containing every L(v) for every v ∈ V . There is no requirement that every vector

in W can be treated as L(v) for some v ∈ V .

Here are a few examples of linear transforms on a traditional three-dimensional vector space

V with {i, j, k} being a standard basis. In each case, the operator is defined by explaining what

it does to an arbitrary vector v in V . Also given is a least one possible target space W .
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1. Any constant “magnification”, say,

M2(v) = 2v .

Here, W = V .

2. Projection onto the k vector,
−→
prk(v) .

Here, W is the one-dimensional space subspace of V consisting of all scalar multiples

of k . (Actually, you can also view all of V as W .)

3. Projection onto the plane spanned by i and j ,

P (v1i + v2j + v3k) =
−→
pr{i,j}(v) = v1i + v2j .

Here, W is the plane spanned by i and j . (Again, you can also view all of V as W .)

4. The cross product with some fixed vector a , say, a = 1i + 2j + 3k ,

Ka(v) = a × v .

Here, we can take W to be V . Also, since the cross product with a is always perpen-

dicular to a , we can refine our choice of W to being the plane orthogonal to a .

5. The dot product with some fixed vector a , say, a = 1i + 2j + 3k ,

Da(v) = a · v .

Here, it does not really make sense to view V as W since the result is not a vector in

V . Instead, since the result is a scalar (a real scalar, in fact), so W = R .

6. The rotation R through some fixed angle φ about some fixed vector, say, k .

?◮Exercise 6.1: Convince yourself that each of the above transformations are linear transfor-

mations.

We can also have very nontrivial linear transformations on nontraditional vector spaces. For

example, derivatives and the Laplace and Fourier transforms are linear transformations on certain

vector spaces of functions. Later on, we will be studying differential linear transformations of

functions which are associated with partial differential equations.

On the other hand, we can also have operators that are not linear. For example, the norm

‖·‖ is a nonlinear operator from any vector space with an inner product into R .

?◮Exercise 6.2 a: Verify that the norm is not a linear operator from any traditional vector

space V into R .

b: Come up with some other examples of nonlinear operators (i.e, functions from one vector

space into another that are not linear).
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6.2 Matrices for Linear Transforms
Defining the Matrix in General

Suppose L is a linear operator from an N -dimensional vector space V to an M-dimensional

vector space W . Let

BV = { a1, a2, . . . , aN } be a basis for V ,

and let

BW = { b1, b2, . . . , bM } be a basis for W .

Now, since each L(ak) is in W , each L(ak) must be a linear combination of the b j ’s .

So, there are constants λ jk such that, for k = 1, 2, . . . , N ,

L(ak) =

M
∑

j=1

λ jkb j for k = 1, 2, . . . N , (6.1a)

which, we might note, can also be written as

L(ak) =

M
∑

j=1

b jλ jk =
[

b1 b2 · · · bN

]











λ1k

λ2k

...

λMk











, (6.1b)

or even as

|L(ak)〉BW
=













λ1k

λ2k

...

λMk













. (6.1c)

Using these λ jk’s , we then define the matrix L for L with respect to these bases to be the

M ×N matrix given by

[L] jk = λ jk for j = 1, 2, . . . , M and k = 1, 2, . . . , N .

That is, the ( j, k)th entry in L is the j th (scalar) component with respect to BW of the kth vector

in BV ,

L(ak) =

M
∑

j=1

[L] jkb j for k = 1, 2, . . . N . (6.2)

Equivalently, we can say that L is the M ×N matrix such that

[

b1 b2 · · · bM

]

L =
[

L(a1) L(a2) · · · L(aN )
]

, (6.3)

or, perhaps more simply, we can say that





kth

column

of L



 = |L(ak)〉BW
for k = 1, 2, . . . , N . (6.4)
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Any of these can be used to find L for a given L .

Keep in mind that matrix L depends on the choice of bases BV and BW . On occasion, it

may be important to explicitly indicate which bases are being used. We will do that by denoting

the matrix for L by

LBWBV
.

This will be simplified to

LB

if the input and target spaces are the same and we are just using one basis B (so, in the above,

BV = BW = B ).

!◮Example 6.1: Let’s consider the cross product with some fixed vector a , say, a = 1i + 2j ,

Ka(v) = a × v

where V = W is a traditional vector space with standard basis B = {i, j, k} . We already

know Ka is a linear operator on V . Computing the “Ka for each basis vector”, we get

Ka(i) = a × i =
(

1i + 2j
)

× i = · · · = 0i + 0j − 2k ,

Ka(j) = a × j =
(

1i + 2j
)

× j = · · · = 0i + 0j + 1k

and

Ka(k) = a × k =
(

1i + 2j
)

× k = · · · = 2i − 1j + 0k .

So,

|Ka(i)〉 =





0

0

−2



 , |Ka(j)〉 =





0

0

1



 , |Ka(k)〉 =





2

−1

0



 .

But, as noted above (equation (6.4)), these are also the respective columns in the matrix K

for the operator Ka . Thus,

K =





0 0 2

0 0 −1

−2 1 0



 .

So What? (Using the Matrix)

So what? Well, let v be a vector in V , and let w = L(v) . Since v ∈ V , it has (scalar)

components v1 , v2 , . . . and vN with respect to the given basis for V . So we can write

v =

N
∑

k=1

vkak and |v〉 = |v〉BV
=













v1

v2

...

vN













.
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And since w = L(v) is in W , w has (scalar) components w1 , w2 , . . . and wM with respect

to the given basis for W . So we can write

w =

M
∑

j=1

w j b j and |w〉 = |w〉BW
=













w1

w2

...

wM













.

Using this with the linearity of the operator,

∑

j

w j b j = w = L(v) = L

(

∑

k

vkak

)

=
∑

k

vkL(ak)

=
∑

k

vk

∑

j

λ jkb j

=
∑

j

∑

k

λ jkvkb j =
∑

j

[

∑

k

[L] jkvk

]

b j .

So
∑

j

w j b j = w =
∑

j

[

∑

k

[L] jkvk

]

b j , (6.5)

which means

w j =
∑

k

[L] jkvk for each j .

But the righthand side of this is simply the formula for the j th entry in the matrix product of L

with |v〉 . So,

|L(v)〉 = |w〉 = L |v〉 ,

or, more explicitly,

|L(v)〉BW
= LBWBV

|v〉BV
.

What we have demonstrated is that:

1. Computationally, any linear transform can be completely described by a corresponding

matrix (provided we have a basis for each of the spaces).

2. This matrix is easily constructed from the components with respect to the basis of the

target space of the transforms of the basis vectors used for the “input space”.

Just for the heck of it, take another look at equation (6.5), which I will slightly rewrite as

L(v) =

M
∑

j=1

b j

[ N
∑

k=1

[L] jkvk

]

This is just the matrix product

L(v) =
[

b1 b2 · · · bM

]

L |v〉 ,

or, more explicitly,

L(v) =
[

b1 b2 · · · bM

]

LBWBV
|v〉BV

.
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!◮Example 6.2: Again let’s consider the cross product operator from example 6.1,

Ka(v) = a × v with a = 1i + 2j .

In that example, we saw that the matrix of this operator with respect to the standard basis

{i, j, k} is

K =





0 0 2

0 0 −1

−2 1 0



 .

So, in general,

|a × v〉 = |Ka(v)〉 = K |v〉 .

In particular, if v = 2i + 3j + 5k , then

|a × v〉 =





0 0 2

0 0 −1

−2 1 0









2

3

5



 =





10

−5

−1



 .

That is,

a × v = 10i − 5j − 1k .

Special (but Common) Cases
Using an Orthonormal Basis of the Target Space

Let’s now assume that we are being intelligent and using an orthonormal basis at least of the

target space W , and let’s emphasize this by renaming the vectors in this basis as

BW = { e1, e2, . . . , eM } .

Then equation (6.2) describing the entries of L(ak) becomes

L(ak) =

M
∑

m=1

[L]mkem for k = 1, 2, . . . N .

As we’ve done at least a couple of times before, we’ll take the inner product of both sides with

one of the em’s and use the orthonormallity of this basis along with the linearity of L :

〈

e j

∣

∣ L(ak)
〉

=

〈

e j

∣

∣

∣

∣

∣

M
∑

m=1

[L]mkem

〉

=

M
∑

m=1

[L]mk

〈

e j

∣

∣ em

〉

=

M
∑

m=1

[L]mkδ jm = [L] jk .

Thus,
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If the basis being used for the target space,

BW = { e1, e2, . . . , eM } ,

is orthonormal, then the ( jk)th entry of the corresponding matrix L for a linear

operator L is

[L] jk =
〈

e j

∣

∣ L(ak)
〉

. (6.6)

Target Space Equals Input Space

In a great many cases, we will be interested in a linear operator L just on a vector space V (i.e.,

L just transforms each vector in V to another vector in V ). Then we might as well use a single

orthonormal basis

BV = BW = B = { e1, e2, . . . , eM } .

In this case, when we are being explicit about the basis used for the matrix L , we use

LB instead of LBW ,BV
.

The above formula for the ( j, k)th entry in this matrix reduces a little further to

[L] jk =
[

LB

]

jk
=
〈

e j

∣

∣ L(ek)
〉

. (6.7)

Linear Functionals

A linear functional is simply a linear operator for which the target space is the space of all scalars,

R or C . The traditional vector operators described in problems A7 and B7, and the integral

operator described in problems C2 and D of Homework Handout V are linear functionals, and an

interesting theorem (the Riesz theorem) relating linear functionals to inner products is developed

in problem K in the same homework set.

Infinite Dimensional Spaces

See problem D of Homework Handout V.

6.3 Change of Basis for Transform Matrices

Suppose we have some linear transform L on an N -dimensional vector space V (with V being

both the input and the target space).1 Let A and B be two orthonormal bases for this space.

Then L has matrices LA and LB with respect to bases A and B . Our goal now is to figure

out how to find matrix LB from matrix LA using the “change of basis” matrices MAB and

MBA from the Big Theorem (theorem 5.3).

1 For fun, you might try redoing this section assuming L is a linear transform from one vector space V into another

(possibly different) vector space W . It’s not that hard.
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To do this, let v be any vector in V , and observe that

LB |v〉B = |L(v)〉B

= MBA |L(v)〉A

= MBA

[

LA |v〉A
]

= MBA

[

LA

[

MAB |v〉B
]]

.

After cutting out the middle and dropping the needless brackets, we have

LB |v〉B = MBALAMAB |v〉B for every v ∈ V ,

telling us that

LB = MBALAMAB .

This, along with the corresponding formula for computing LA from LB , is important enough

to be called a theorem (even though it is really just a corollary of Big Theorem 5.3).

Theorem 6.1 (Change of Orthonormal Bases for Linear Transforms)

Assume V is a vector space with orthonormal bases A and B , and let L be a linear operator

on V . Then LA and LB , the matrices of L with respect to basis A and basis B , respectively,

are related by

LB = MBALAMAB and LA = MABLBMBA (6.8)

where MAB and MBA are the change of bases matrices described in theorem 5.3.

The formulas

MBALAMAB and MABLBMBA

are said to define similarity transforms of matrices LA and LB respectively. In short, a similarity

transform of a matrix is simply the computations for converting a matrix for some linear operator

with respect to one basis into the corresponding matrix with respect to another basis for the same

operator.

In common practice, the notation MAB and MBA is not particularly common. Instead, you

might have, say, the matrix we are calling MBA denoted by U . Keeping in mind MAB and

MBA are adjoints of each other, the above similarity transforms would then be written as

ULAU† and U†LBU ,

and the above theorem would be written as

Theorem 6.1 ′ (Change of Orthonormal Bases for Linear Transforms – Alt. Version)

Assume V is a vector space with orthonormal bases

A = { a1, a2, . . . , aN } and B = { b1, b2, . . . , bN } ,

and let L be a linear operator on V . Then LA and LB , the matrices of L with respect to basis

A and basis B , respectively, are related by

LB = ULAU† and LA = U†LBU

where U is the unitary matrix such that

|v〉B = U |v〉A for each v ∈ V .
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Don’t forget that all the above was based on our bases A and B being orthonormal. If

they are not orthonormal, then arguments very similar to that given for theorem 6.1 lead to the

following theorem. Since we plan to limit ourselves to orthonormal bases, we probably won’t

need this theorem. It is included here just for completeness, and for those who may be interested.

Theorem 6.2 (Change of General Bases for Linear Transforms)

Assume V is a vector space with bases

A = { a1, a2, . . . , aN } and B = { b1, b2, . . . , bN } ,

and let L be a linear operator on V . Then LA and LB , the matrices of L with respect to basis

A and basis B , respectively, are related by

LB = MLAM−1 and LA = M−1LBM

where M is the invertible matrix such that

|v〉B = M |b〉A for each v ∈ V .

?◮Exercise 6.3 (very optional): Derive/prove the above theorem.

6.4 Adjoints of Operators

Let L be a linear operator on a vector space V having an inner product 〈 · | · 〉 . We define the

adjoint of L , denoted by L
† , to be the linear operator on V satisfying

〈

L
†(v)

∣

∣ a
〉

= 〈 v | L(a) 〉 for every a, v ∈ V

“provided it exists”. Actually, it’s not hard to prove it exists when V is finite-dimensional (we’ll

do that in a minute). If V is not finite-dimensional, then L
† may or may not exist.

It also is not hard to show that, if it exists, then L
† is also a linear operator on V :

?◮Exercise 6.4: Let L be a linear operator on a vector space V having inner product

〈 · | · 〉 .

a: Let α and β denote two arbitrary scalars, and let v , w and c denote three arbitrary

vectors in V . Using the properties of inner products and definition of L
† , show that

〈

L
†(αv + βw)

∣

∣ c
〉

=
〈

αL
†(v) + βL

†(w)
∣

∣ c
〉

.

b: Why does the last exercise verify that L
† is a linear operator?

Let us now assume V is finite dimensional and L is the matrix for L with respect to some

orthonormal basis

{ e1, e2, . . . , eN } .

version: 9/25/2013
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Finding the matrix for L
† turns out to be easy — just use formula (6.7), the conjugate symmetry

of the inner product and the definition of the adjoint operator:

( j, k)th entry in the matrix for L
† =

〈

e j

∣

∣ L
†(ek)

〉

=
〈

L
†(ek)

∣

∣ e j

〉∗

=
〈

ek

∣

∣ L(e j)
〉∗

=
(

[L]k j

)∗
= [L†] jk .

So the matrix for L
† , the adjoint of operator L , is L† , the adjoint of matrix L . What a surprise!

(Side note: The existence of L
† actually follows from the above computations for its matrix

and the fact that L† certainly exists.)

Unsurprisingly, we refer to a linear operator L as being self adjoint or Hermitian if L
†

exists and equals L . By the above, an operator (on a finite-dimensional vector space) is self

adjoint if and only if its matrix with respect to any orthonormal basis is self adjoint. We will be

discussing these operators more extensively in a week or so.

?◮Exercise 6.5: Take a look at the linear operators defined in Homework Handout V problems

A1 (a magnification), A2 (a projection), A3 (a different projection), A5 (a 2-dimensional

rotation), B3 (another projection), B4 (a 3-dimensional rotation) and B8 (a cross product),

and do the following:

a: Find the matrix for the adjoint.

b: Identify those operators that are Hermitian.

c: Verbally describe what the adjoint operator does to inputted vectors.

Finally, let me throw in one more little exercise, the result of which may be useful later:

?◮Exercise 6.6: Let L be a linear operator on V that has an adjoint. Show that

〈

a
∣

∣ L
†(v)

〉

= 〈 L(a) | v 〉 for every a, v ∈ V .

Hermitian operators are important because they often describe “linear processes” in which

you expect certain symmetries. Later, we will develop the Sturm-Liouville theory and use it

to find solutions to partial differential equations. This theory is really a theory of Hermitian

differential operators.

6.5 Inner-Product Preserving Operators and
Unitary/Orthogonal Matrices

Though our main interest with unitary matrices is how they arise in the “change of basis formulas”,

their relation with the matrices for “inner product preserving” linear operators should be noted,

at least in exercise:

?◮Exercise 6.7: Let L be a linear operator on a finite-dimensional vector space V with inner

product 〈 · | · 〉 , and let L be its matrix with respect to some orthonormal basis for V .
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a: Assume L is a unitary matrix. Show that, if

x = L(a) and y = L(b) ,

then

〈 x | y 〉 = 〈 a | b 〉 .

In other words, “ L preserves the inner product.”

b: Assume L is a unitary matrix. Show that, if

x = L(a) ,

then

‖x‖ = ‖a‖ .

In other words, “ L preserves the norm.” (Don’t forget the problem just done.)

c: Now assume that “ L preserves the inner product.” That is,

〈 x | y 〉 = 〈 a | b 〉 whenever x = L(a) and y = L(b) .

Show that L is unitary.2

6.6 On Confusing Matrices and Linear Operators — A
Brief Rant

You are likely to see many cases where a matrix for an operator and the operator are treated as

the same thing. This is unfortunate and leads to too much confusion, silly computations, and a

lack of understanding as to what the hell is going on. It complicates matters and leads to the idea

that much of mathematical physics is just the blind manipulation of symbols according to arcane

laws. Avoid doing this yourself where possible.

The matrix of an operator depends on the basis. The operator does not. The matrix describes

the operator in terms of some particular basis. If there is only one basis, and everyone knows what

it is, then there is no great harm in confusing the operator and its matrix with respect to that basis.

If no basis is given, however, then the description of the operator as a matrix is vacuous (typically,

though, someone is assuming a “standard basis” without telling you). Worse yet are the cases

where more than one basis is floating around — especially if no one tells you that multiple bases

are involved. For example, you may recall “diagonalizing matrices”. Did you realize that half

the issue was the finding of a basis for which the matrix of the underlying operator is particularly

simple? Or did you think it was just an exercise to pass the time?

Yes, sometimes everyone knows what everyone really means, and we can use verbal and

written shortcuts. The problem is, of course, that, more often than not, not everyone knows what

everyone else really means.

2 You can even show that L is unitary if you simply know that it preserves the norm. That’s a bit harder to verify.
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