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Eigenvectors and Hermitian Operators

7.1 Eigenvalues and Eigenvectors
Basic Definitions

Let L be a linear operator on some given vector space V . A scalar λ and a nonzero vector v

are referred to, respectively, as an eigenvalue and corresponding eigenvector for L if and only

if

L(v) = λv .

Equivalently, we can refer to an eigenvector v and its corresponding eigenvalue λ , or to the

eigen-pair (λ, v) .

Do note that an eigenvector is required to be nonzero.1 An eigenvalue, however, can be zero.

!◮Example 7.1: If L is the projection onto the vector i , L(v) = −→
pri(v) , then

L(i) = −→
pri(i) = i = 1 · i and L(j) = −→

pri(j) = 0 = 0 · j .

So, for this operator, i is an eigenvector with corresponding eigenvalue 1 , and j is an

eigenvector with corresponding eigenvalue 0 .

!◮Example 7.2: Suppose V is a two-dimensional vector space with basis A = {a1, a2} , and

let L be the linear operator whose matrix with respect to A is

L =

[

1 2

3 2

]

.

Letting v = 2a1 + 3a2 , we see that

|L(v)〉 = L |v〉 =
[

1 2

3 2

][

2

3

]

=
[

2 + 6

6 + 6

]

=
[

8

12

]

= 4

[

2

3

]

= 4 |v〉 = |4v〉 .

This shows that

L(v) = 4v ,

so v is an eigenvector for L with corresponding eigenvalue 4 .

1 This simply is to avoid silliness. After all, L(0) = 0 = λ0 for every scalar λ .
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!◮Example 7.3: Let V be the vector space of all infinitely-differentiable functions, and let

△ be the differential operator △( f ) = f ′′ . Observe that

△(sin(2πx)) = d2

dx2
sin(2πx) = −4π2 sin(2πx) .

Thus, for this operator, −4π2 is an eigenvalue with corresponding eigenvector sin(2πx) .2

?◮Exercise 7.1: Find other eigenpairs for △ .

In practice, eigenvalues and eigenvectors are often associated with square matrices, with a

scalar λ and a column matrix V being called an eigenvalue and corresponding eigenvector for

a square matrix L if and only if

LV = λV .

For example, in example 7.2 we saw that

[

1 2

3 2

][

2

3

]

= 4

[

2

3

]

.

Thus, we would say that matrix
[

1 2

3 2

]

has

eigenvalue λ = 4 and corresponding eigenvector V =

[

2

3

]

.

This approach to eigenvalues and eigenvectors is favored by instructors and texts whose

main interest is in getting their students to compute a bunch of eigenvalues and eigenvectors.

Unfortunately, it also obscures the basis-independent nature of the theory, as well as the basic

reasons we may be interested in eigen-thingies. It also pretty well limits us to the cases where the

operators are only defined on finite-dimensional vector spaces. Admittedly, every linear operator

on a finite-dimensional space can be described in terms of a square matrix with respect to some

basis, and every square matrix can be viewed as a matrix with respect to some basis for some linear

operator on some finite-dimensional vector space. So associating eigenpairs with matrices could

be considered “the same” as associating eigenpairs with operators — provided we only consider

finite-dimensional spaces. Ultimately, though, we want to consider infinite-dimensional spaces

(when solving partial differential equations and generating generalized Fourier series). Also,

it really is a good idea to associate eigenpairs with the single operator generating the matrices,

rather than individual matrices, if only so that we can avoid having to prove such facts as

Assume L and L′ are two square matrices related by a similarity transform. Then

L and L′ have the same eigenvalues, and their eigenvectors are related by the

matrices used in the similarity transform.

If we associate eigenpairs with operators, then the above will not need be proven. It will follow

automatically from the change of basis formulas for the matrices of linear operators.

2 When the eigenvector is actually a function, we often use the term eigenfunction instead of eigenvector.
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All that said, you will often (even in this class) be asked to “compute the eigenvalues and

corresponding eigenvectors for some N×N matrix.” Just remember that we are really looking for

the eigenpairs for the operator described by that matrix using some basis for some N -dimensional

vector space, with the column matrix being called an eigenvector really being the components

of a eigenvector with respect to that basis. And unless otherwise specified, assume the scalars

for this unspecified vector space are complex.

Eigenspaces and Multiple Eigenvalues

Now suppose we have two eigenvectors v and w for some linear operator L , with both corre-

sponding to the same eigenvalue λ . If α and β are any two scalars, then

L(αv + βw) = αL(v) + βL(w) = αλv + βλw = λ [αv + βw] .

This shows that any linear combination of eigenvectors corresponding to a single eigenvalue is

also an eigenvector corresponding to that eigenvalue (provided the linear combination doesn’t

happen to yield the zero vector). Consequently, the set of all eigenvectors corresponding to

a single eigenvalue is a vector space (after tossing in the zero vector). We call this space the

eigenspace corresponding to the given eigenvalue.

?◮Exercise 7.2: Consider the projection operator in example 7.1. What is the eigenspace

corresponding to eigenvalue 1 ? What is the eigenspace corresponding to eigenvalue 0 ?

In practice, this means that we can describe all eigenvectors for a given eigenvalue λ by

simply giving a basis for its corresponding eigenspace. This also means that we can associate with

each eigenvalue the dimension of its eigenspace. This leads to more terminology, namely:

1. The geometric multiplicity of an eigenvalue λ is the dimension of the corresponding

eigenspace.3

2. An eigenvalue λ is (geometrically) simple if its corresponding eigenspace is one dimen-

sional. Otherwise, λ is called a multiple or repeated eigenvalue.

If λ is a simple eigenvalue, then a basis for its eigenspace consists of a single vector v , and its

eigenspace is the set of all possible scalar multiples αv of this vector. If λ is a repeated eigenvalue

with multiplicity N , then any basis for its eigenspace will have N vectors {v1, v2, . . . , vN } .

Naturally, if we are actually going to do something with these basis vectors, we will want the

basis for each eigenspace to be orthonormal.

Finding Eigenpairs (Finite-Dimensional Case)

The goal is to find every scalar λ and every corresponding nonzero vector v satisfying

L(v) = λv (7.1)

where L is some linear transformation. Note that this equation is completely equivalent to the

equation

L(v) − λv = 0 . (7.1 ′)

3 We’ll discuss a slightly different notion of “multiplicity” for eigenvalues (“algebraic multiplicity”) in a few pages.
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We will assume the underlying vector space is N -dimensional, and that we’ve already picked

out some basis for this space. Letting L be the matrix for L with respect to this basis, we have

that

|L(v)〉 = L |v〉 and |λv〉 = λ |v〉 = λI |v〉

where, as you should also recall, I is the N × N identity matrix. So, in terms of components

with respect to our basis, equations (7.1) and (7.1 ′) become

L |v〉 = λ |v〉 (7.2)

and

L |v〉 − λI |v〉 = |0〉 . (7.2 ′)

If we have the value of λ , the first matrix equation, L |v〉 = λ |v〉 , turns out to be nothing more

that a system of N linear equations (the rows of the matrix equation) with N unknowns (the

components of v ). That is easily solved by various methods you should already know.

To see how to find the possible values of λ , look at the second matrix equation, equation

(7.2 ′). Factoring out the |v〉 on the right, this becomes

[L − λI] |v〉 = |0〉 .

If the matrix L − λI were invertible, then

|v〉 = [L − λI]−1 |0〉 = |0〉 ,

implying that v is the zero vector, contrary to the initial requirement that v be a nonzero vector.

So, recalling an old test for the invertibility of a matrix (see page 4–11), we see that, for a scalar

λ and nonzero vector v ,

L(v) = λv

⇐⇒ [L − λI] |v〉 = |0〉

⇐⇒ L − λI is not invertible

⇐⇒ det(L − λI) = 0 .

Computing out the last equation (involving the determinant) yields an N th degree polynomial

equation with λ as the unknown. This equation is called the characteristic equation for L , and

the polynomial obtained by computing out det(L − λI) is called the characteristic polynomial

for L . The possible values of λ , then, are the solutions to this equation.

All this leads to the following general procedure for finding all eigenpairs (λ, v) for L :

1. Pick a convenient basis for the space and find the corresponding matrix L for L .

2. Solve the characteristic equation

det(L − λI) = 0

for all possible values of λ . Remember, unless otherwise stated, we are assuming scalars

can be complex; so don’t forget to also find the possible complex values for λ .
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3. For each λ found, set

|v〉 =









v1

v2

...

vN









,

where the vk’s are scalars “to be determined”, and then solve the “ N×N ” linear system

L |v〉 = λ |v〉

for the possible vk’s . Equivalently, you could also solve

[L − λI] |v〉 = |0〉 .

Once you have found the possible vk’s , write out the corresponding column matrices for

|v〉 .

(Note 1: Because the matrix L−λI is not invertible, the above systems are degenerate,

and you will get arbitrary constants in your solution. The total number of arbitrary

constants will end up being the dimension of the corresponding eigenspace.)

(Note 2: In doing your computations, you may want to use symbols like x , y and z

instead of v1 , v2 and v3 .)

4. If desired (or demanded), find a basis — or even an orthonormal basis — for the eigenspace

corresponding to each eigenvalue.

In practice (in assigned problems, at least), the first step (finding the matrix for the operator

with respect to some basis) has usually already been done.

!◮Example 7.4: Assume we have a three-dimensional vector space, a basis A = {e1, e2, e3}
for that space, and a linear transformation on that space whose matrix is

LA = L =






1 0 −5

0 6 0

1 0 7




 .

Suppose, naturally, that we want to find all eigenvalues and corresponding eigenvectors for

this operator.

First, we find the characteristic equation:

det [L − λI] = 0

H⇒ det











1 0 −5

0 6 0

1 0 7




− λ






1 0 0

0 1 0

0 0 1









 = 0

H⇒ det











1 0 −5

0 6 0

1 0 7




−






λ 0 0

0 λ 0

0 0 λ









 = 0

version: 10/15/2013
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H⇒ det






1 − λ 0 −5

0 6 − λ 0

1 0 7 − λ




 = 0

H⇒ (1 − λ)(6 − λ)(7 − λ) + 5(6 − λ) = 0

H⇒ (6 − λ) [(1 − λ)(7 − λ) + 5] = 0

H⇒ (6 − λ)
[

λ2 − 8λ + 12
]

= 0 .

Note that we did not completely multiply out the terms. Instead, we factored out the common

factor 6 − λ to simplify the next step, which is to find all solutions to the characteristic

equation. Fortunately for us, we can easily factor the rest of the polynomial, obtaining

(6 − λ)
[

λ2 − 8λ + 12
]

= (6 − λ) [(λ − 2)(λ − 6)] = −(λ − 2)(λ − 6)2

as the completely factored form for our characteristic polynomial. Thus our characteristic

equation det[L − λI] reduces to

−(λ − 2)(λ − 6)2 = 0 ,

which we can solve by inspection. We have two eigenvalues,

λ = 2 and λ = 6

(with λ = 6 being a “repeated” root of the characteristic polynomial).

To find the eigenvectors corresponding to eigenvalue λ = 2 , we first write out

[L − λI] |v〉 = 0

with λ = 2 and

|v〉 = |v〉A =





v1

v2

v3



 =





x

y

z



 .

Then

[L − λI] |v〉 = 0

H⇒











1 0 −5

0 6 0

1 0 7




− 2






1 0 0

0 1 0

0 0 1
















x

y

z




 =






0

0

0






H⇒






1 − 2 0 −5

0 6 − 2 0

1 0 7 − 2











x

y

z




 =






0

0

0






H⇒






−1 0 −5

0 4 0

1 0 5











x

y

z




 =






0

0

0




 .
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So the unknowns x , y and z must satisfy

−x + 0y − 5z = 0

0x + 4y + 0z = 0

1x + 0y + 5z = 0

.

Using whichever method you like, this is easily reduced to

y = 0 and x + 5z = 0 .

We can choose either x or z to be an arbitrary constant. Choosing z , we then must have

x = −5z to satisfy the last equation above. Thus, the eigenvectors corresponding to eigenvalue

r = 2 are given by

|v〉 =






x

y

z




 =






−5z

0

z




 = z






−5

0

1






where z can be any nonzero value. That is, in terms of our basis vectors, the one-dimensional

eigenspace corresponding to eigenvalue λ = 2 is the set of all constant multiples of

v1 = −5e1 + e3 .

To find the eigenvectors corresponding to eigenvalue λ = 6 , we write out

[L − λI] |v〉 = 0

with λ = 6 and

|v〉 = |v〉A =





v1

v2

v3



 =





x

y

z



 .

Then

[L − λI] |v〉 = 0

H⇒











1 0 −5

0 6 0

1 0 7




− 6






1 0 0

0 1 0

0 0 1
















x

y

z




 =






0

0

0






H⇒






−5 0 −5

0 0 0

1 0 1











x

y

z




 =






0

0

0




 ,

which reduces to

x + z = 0 and 0y = 0 .

In this case, let us take x to be an arbitrary constant with z = −x so that the first equation

is satisfied. The second equation is satisfied no matter what y is, so y is another arbitrary

constant. Thus, the eigenvectors corresponding to eigenvalue λ = 2 are given by

|v〉 =






x

y

z




 =






x

y

−x




 =






x

0

−x




 +






0

y

0




 = x






1

0

−1




 + y






0

1

0
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where x and y are arbitrary constants. And thus, also, we see that the eigenspace corre-

sponding to eigenvalue λ = 6 is two-dimensional, and has basis {v2, v2} with

v2 = e1 − e3 and v3 = e2 .

7.2 More Basic “Eigen-Theory”
Basis Independence of the Characteristic Polynomial

Before looking at the special cases where the operators are self adjoint, it is worthwhile to note

that the characteristic polynomial and the corresponding characteristic equation described above

are actually “basis independent”. To see this, let A and B be any two bases for our (finite-

dimensional) vector space V , and let, as usual, LA and LB be the matrices of a linear operator

L with respect to these two respective bases. From our discussion on “change of basis”, we

know these two matrices are related by

LB = M−1LAM

where M is the matrix for the change of basis formulas ( M = MAB and M−1 = MBA = MAB
†

if A and B are both orthonormal). Observe that

M−1 [LA − λI] M = M−1 [LAM − λM]

= M−1LAM − λM−1M = LB − λI .

Using this, along with properties of determinants and the fact that the value of a determinant is

just a number, we get

det(LB − λI) = det
(

M−1 [LA − λI] M
)

= det
(

M−1
)

det(LA − λI) det(M)

= det(M)−1 det(LA − λI) det(M)

= det(M)−1 det(M) det(LA − λI) = det(LA − λI) .

Cutting out the distracting middle leaves us with

det(LA − λI) = det(LB − λI) .

The determinants on the left and right of the last equation are the characteristic polynomials for

LA and LB , respectively, and the “ = ” between them tells us that these two polynomials are

the same.

What this means is that we have the following theorem:

Theorem 7.1

Each linear operator L on an N -dimensional vector space V has a single associated N th degree

polynomial PL , and this polynomial is given by

PL(λ) = det(L − λI)
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where L is the matrix for L with respect to any desired basis for V . Moreover, λ is an

eigenvalue λ for L if and only if

PL(λ) = 0 .

The polynomial PL(λ) and the equation PL(λ) = 0 are, of course, referred to as the

characteristic polynomial and characteristic equation for the operator L . Changing the basis,

and hence the matrix L , does not change the polynomial PL .4

You should be aware that any N th degree polynomial

P(x) = a0 + a1x + a2x2 + · · · + aN x N

can be rewritten in “completely factored form”

P(x) = aN (x − r1)
m1(x − r2)

m2 · · · (x − rK )mK .

The r1 , r2 , …, and rK are all the different roots of P (i.e., solutions to P(r) = 0 ). Some, or

all, of these roots may be complex numbers. Each m j is a positive integer, called the (algebriac)

multiplicity of r j . Since each of the above expressions is supposed to represent an N th degree

polyomial, the number of roots, K , must be no larger than N with

m1 + m2 + · · · + mK = N .

On occassion, it turns out to be more convenient to not “gather like terms” and to write the

polynomial as

P(x) = aN (x − x1)(x − x2)(x − x3) · · · (x − xN )

where m1 of the x j ’s are r1 , m2 of the x j ’s are r2 , and so on.

Keeping in mind that L is an N ×N matrix and I is the N ×N identity matrix, it is easy

to verify that the “completely factored form” for our characteristic polynomial

PL(λ) = det(L − λI)

is

PL(λ) = ±(λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λK )mK

where the λ j ’s are all the different eigenvalues for L , and the “ ± ” will be “ + ” if the

dimension N of the space is even, and “ − ” otherwise (in practice, though, the ± is irrelevant

and usually dropped). For example, the completely factored form of the characteristic polynomial

from our example is

−(λ − 2)(λ − 6)2 .

Not gathering like terms together, this is

−(λ − 2)(λ − 6)(λ − 6) .

4 Thus, the polynomial, itself, is a basis-free formula.

version: 10/15/2013
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Eigenvectors as Basis Vectors

Let us now suppose we were clever (or lucky) enough so that we have a basis

B = { b1, b2, . . . , bN }

in which as least some of the bk’s are eigenvectors for our linear operator L , and let us see

what we can say about

LB =











L11 L12 L13 · · · L1N

L21 L22 L23 · · · L2N

L31 L32 L33 · · · L3N

...
...

...
. . .

...

L N1 L N2 L N3 · · · L N N











,

the matrix for L with respect to basis B .

Remember, the components of the bk’s with respect to B end up simply being

|b1〉B =














1

0

0

0

...

0














, |b2〉B =














0

1

0

0

...

0














, |b3〉B =














0

0

1

0

...

0














, . . . .

Now observe:

b1 is an eigenvector for L with corresponding eigenvalue λ1

⇐⇒ L(b1) = λ1b1

⇐⇒ LB |b1〉B = λ1 |b1〉B

⇐⇒











L11 L12 L13 · · · L1N

L21 L22 L23 · · · L2N

L31 L32 L33 · · · L3N

...
...

...
. . .

...

L N1 L N2 L N3 · · · L N N





















1

0

0

...

0











= λ1











1

0

0

...

0











⇐⇒











L11

L21

L31

...

L N1











=











λ1

0

0

...

0











.
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So,

Basis vector b1 is an eigenvector for L

with corresponding eigenvalue λ1
⇐⇒











L11

L21

L31

...

L N1











=











λ1

0

0

...

0











.

By similar computations, you can easily derive

Basis vector b2 is an eigenvector for L

with corresponding eigenvalue λ2
⇐⇒











L12

L22

L32

...

L N2











=











0

λ2

0

...

0











,

Basis vector b3 is an eigenvector for L

with corresponding eigenvalue λ3
⇐⇒











L13

L23

L33

...

L N3











=











0

0

λ3

...

0











,

and so on.

In summary,

Lemma 7.2

Let L be a linear operator on a finite dimensional vector space, and let LB be its matrix with

respect to some basis B . If the kth vector in basis B is an eigenvector for L with corresponding

eigenvalue λk , then the kth column of LB is given by

[LB] jk = λkδ jk for j = 1, 2, . . . , N .

All this shows that the matrix for a linear operator L is particularly simple when as many

basis vectors as possible are also eigenvectors for the operator. Such a basis would be considered

a “natural basis” for the operator. If we are very lucky, there will be N independent eigenvectors

(with N being the dimension of the vector space). Using those eigenvectors as the basis B , the

matrix for L simplifies to the diagonal matrix

LB =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN











.

When this happens, we sometimes say that we have a complete set of eigenvectors. This will

certainly be the case if we have N different eigenvalues. Then each eigenvalue λk will have a

corresponding eigenvector bk , and it is easy to verify that {b1, b2, . . . , bN } will be a linearly

version: 10/15/2013
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independent set — and hence a basis for our N -dimensional vector space. On the other hand, if

an eigenvalue λk is a repeated root of the characteristic equation, then the most one can generally

prove is that

dimension of the eigenspace corresponding to λ j

≤ algebraic multiplicity of λ j as a root of the characteristic polynomial.

As you should have seen in the homework, it is quite possible for

dimension of the eigenspace corresponding to λ j

� algebraic multiplicity of λ j as a root of the characteristic polynomial.

So there are linear operators and square matrices that do not have complete sets of eigenvectors

(such operators or matrices are sometimes cruelly said to be defective).

At this point, it is worth noting that things simplify even more if our operator/matrix is self

adjoint (i.e., Hermitian). Using the above lemma and the basic idea of “self adjointness”, you can

easily verify the following corollary to the above lemma:

Corollary 7.3

Let H be a self-adjoint linear operator on a finite dimensional vector space, and let HB be its

matrix with respect to any orthonormal basis B . If the kth vector in basis B is an eigenvector

for H with corresponding eigenvalue λk , then the kth column of HB is given by

[HB] jk = λkδ jk for j = 1, 2, . . . , N ,

and the kth row of HB is given by

[HB]k j = λkδk j for j = 1, 2, . . . , N .

Since we will be using this corollary in a few pages, you really should verify it.

?◮Exercise 7.3: Verify the above corollary.

“Diagonalizing” a Matrix

It is a fairly common exercise to “diagonalize” a given N×N matrix L . Here are the basic ideas:

You view the given matrix as the matrix of some linear operator L with respect to whatever

orthonormal basis A we are using as a default for our N -dimensional vector space V . So, in

our more explicit notation

L = LA .

We then find a linearly independent set of N eigenvectors B = {b1, b2, . . . , bN } along with

their corresponding eigenvalues λ1 , λ2 , …, and λN . Then, by the above, we know LB is a

diagonal matrix,

LB =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN











,
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which, for possibly obvious reasons, we may wish to denote by D . Part of the exercise is to also

find the “change of basis” matrix M for computing D from L (i.e., computing LB from LA )

via

D = M−1LM .

This gives us

1. a natural basis for the operator,

2. the simplest possible matrix for this operator,

3. and the matrices for converting from the original basis to this natural basis and back again.

Of course, getting that diagonal matrix requires that the original matrix/operator has a com-

plete set of eigenvectors to serve as that basis of eigenvectors for the operator. If we are lucky,

the matrix/operator will have a complete set. If we are very lucky, we can even find an or-

thonormal set. Then the change of basis matrix M will simply be the unitary matrix MAB (and

M−1 = MBA = MAB
† ).

Just why we would want all this depends on the application. If, for example, this operator

is the “moment of inertia tensor” for some physical object, then the natural basis gives you the

principle axes (“axes of symmetry”) through the center of mass of the object.

In any case, of course, it’s just plain easier to do matrix computations with diagonal matrices.

7.3 Self-Adjoint/Hermitian Operators and Matrices
Some General Background Stuff

Let us quickly recall a few definitions and facts:

1. If A is a matrix, then its adjoint A† is the transpose of its conjugate. So

[

A†
]

jk
=
(

[A]k j

)∗
.

2. Any matrix A that equals its own adjoint (i.e., A = A† ) is said to be self adjoint or,

equivalently, Hermitian.

3. More generally, if L is a linear operator on some vector space V , then its adjoint L
†

is defined to be the linear operator satisfying

〈

L
†(v)

∣
∣ a

〉

= 〈 v | L(a) 〉 for every a, v ∈ V .

It should be noted that, since 〈 b | a 〉 = 〈 a | b 〉∗ , the above equation is completely

equivalent to

〈

a
∣
∣ L

†(v)
〉

= 〈 L(a) | v 〉 for every a, v ∈ V .

If V is finite dimensional and B is an orthonormal basis, then the matrix for L
† with

respect to B is simply L† where L is the matrix for L with respect to B .

version: 10/15/2013
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4. Any linear operator L that equals its own adjoint (i.e., L = L
† ) is said to be self adjoint

or, equivalently, Hermitian.

5. If L is a linear operator on some finite dimensional vector space, and L is its matrix

with respect to some orthonormal basis, then

L is a Hermitian operator ⇐⇒ L is a Hermitian matrix .

6. If the scalars involved are simply the real numbers, then “adjoints” reduce to “transposes” ,

and Hermitian/self-adjoint matrices and operators can be referred to as being “symmetric”.

There are several reasons to be interested in Hermitian operators and matrices. Here are a

few:

1. There are some nice (and useful) “mathematics” we can derive regarding the eigenvalues

and eigenvectors of Hermitian operators and matrices.

2. Matrices and transformations arising in many applications are Hermitian (or even sym-

metric) because of natural symmetries. As a pseudo-example, consider a matrix A

defined by

[A] jk = ∂2φ

∂x j∂xk

where φ is some (sufficiently differentiable) real-valued function of several variables

(x1, x2, . . . , xN ) . Because the order in which partial derivatives are computed does not

affect the final result, we have that

[A] jk = ∂2φ

∂x j∂xk

= ∂2φ

∂xk∂x j

= [A]k j .

A better example is given by the moment of inertia tensor/matrix for any given object

— see example 2 on page 299 of Arfken, Weber and Harris. Unfortunately, they treat

the moment of inertia as a matrix (and use unfortunate notation). While reading this

example, try to mentally replace their moment of inertia matrix I with an operator I such

that, if the given body is rotating about its center of mass with angular velocity ω , then

its angular momentum and the energy in the rotation are given by

I(ω ) and 〈 ω | I(ω ) 〉 ,

respectively. The matrix I they have is the matrix of I with respect to some convenient

orthonormal basis. Change the basis (say, to one based on the major axes of rotation of

the object) and you have to change the matrix, but not the operator.

3. The Sturm-Liouville theory we will develop for solving partial differential equations is

the infinite dimensional version of what we will develop here. In fact, we will use some

of what we develop here.

Eigenpairs for Hermitian Operators and Matrices

Let H be an Hermitian operator on some vector space V . Remember, this means H
† = H .

So, for every pair of vectors v and w ,

〈 v | H(w) 〉 =
〈

H
†(v)

∣
∣ w

〉

= 〈 H(v) | w 〉 .
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Cutting out the middle, gives

〈 v | H(w) 〉 = 〈 H(v) | w 〉 , (7.3)

an equation important enough to be given a number.

In particular, now, let’s assume v is an eigenvector with corresponding eigenvalue λ .

Replacing w in the last equation with v , using the fact that H(v) = λv , and recalling the

properties of inner products, we have the following:

〈 v | H(v) 〉 = 〈 H(v) | v 〉

H⇒ 〈 v | λv 〉 = 〈 λv | v 〉

H⇒ λ 〈 v | v 〉 = λ∗ 〈 v | v 〉

H⇒ λ = λ∗ .

But the only way a scalar can be equal to its complex conjugate is for that scalar to be just a real

number. So we have just (rigorously) derived

Lemma 7.4 (‘realness’ of Hermitian eigenvalues)

All the eigenvalues for a Hermitian operator must be real values.

Now let us suppose v and w are two eigenvectors corresponding to two different eigenvalues

λ and µ with H(v) = λv and H(w) = µw . This, combined with equation (7.3) gives the

following:

〈 v | H(w) 〉 = 〈 H(v) | w 〉

H⇒ 〈 v | µw 〉 = 〈 λv | w 〉

H⇒ µ 〈 v | w 〉 = λ∗ 〈 v | w 〉

H⇒ (µ − λ∗) 〈 v | w 〉 = 0 .

Since we just saw that the eigenvalues of H are real, λ∗ = λ and the last equation becomes

(µ − λ) 〈 v | w 〉 = 0 ,

which means that either

µ − λ = 0 or 〈 v | w 〉 = 0 .

The first must be ruled out because we are assuming µ and λ are different values. This leaves

us with

〈 v | w 〉 = 0

verifying

Lemma 7.5 (orthogonality of eigenvectors for Hermitian operators)

Any pair of eigenectors corresponding to different eigenvalues for a Hermitian operator must be

orthogonal.

For future applications, note that we did not assume the vector space is finite dimensional

in the above.

version: 10/15/2013
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The Completeness of the Set of Eigenvectors

Now let consider a Hermitian operator H on a vector space V of finite dimension N .

If H has N different eigenvalues, then it has N different corresponding eigenvectors

{ v1, v2, . . . , vN }

As we just saw (lemma 7.5), this will be an orthogonal set of nonzero vectors. Hence, this set

will be a basis for our N -dimensional vector space. Dividing each v j by its length then yields

an orthonormal basis,

{ u1, u2, . . . , uN } where u j = v j
∥
∥v j

∥
∥

.

But what if one or more of the eigenvalues are repeated?

Two-Dimensional Case

Assume H is an Hermitian operator on a two-dimensional vector space V . The characteristic

polynomial for H can be written

PH (λ) = (λ − λ1)(λ − λ2)

where λ1 and λ2 are the eigenvalues of H . Let v1 be an eigenvector corresponding to λ1 .

Since V is two dimensional, we can find another vector v2 perpendicular to v1 , and

B = { u1, u2 } where u1 = v1

‖v1‖
and u2 = v2

‖v2‖

will be an orthonormal basis for our two-dimensional space, with (λ1, u1) being an eigenpair

for H .

Now let HB be the matrix for H with respect to this basis. Since (λ1, u1) is an eigenpair

for H we know (corollary 7.3 on page 7–12) that

HB =

[

H11 H12

H21 H22

]

=

[

λ1 0

0 H22

]

.

which means that

(λ − λ1)(λ − λ2) = PH (λ) = det

[

λ1 − λ 0

0 H22 − λ

]

= (λ − λ1)(λ − H22) .

This tells us that H22 = λ2 . So, in fact,

HB =

[

λ1 0

0 λ2

]

,

which, in turn, means that

|H(u2)〉B = HB |u2〉B =

[

λ1 0

0 λ2

][

0

1

]

= λ2

[

0

1

]

= |λ2u2〉B ,

telling us that u2 is an eigenvector corresponding to λ2 .



Self-Adjoint/Hermitian Operators and Matrices Chapter & Page: 7–17

Thus,

If H is a Hermitian operator on a two-dimensional vector space V , then

PH (λ) = (λ − λ1)(λ − λ2)

where λ1 and λ2 are the two eigenvalues for H (not necessarily different), and V

has an orthonormal basis

{ u1, u2 }

with each uk being an eigenvector for H corresponding to eignevalue λk .

Now let us verify that a similar statement can be made when V is three-dimensional. Many

of the details will be left to you.

Three-Dimensional Case

Assume H is an Hermitian operator on a three-dimensional vector space V . We know the

characteristic polynomial for H can be written

PH (λ) = −(λ − λ1)(λ − λ2)(λ − λ3)

where λ1 , λ2 and λ3 are the (not necessarily different) eigenvalues of H . Let v3 be an eigen-

vector corresponding to λ3 . By a straightforward modification of the Gram-Schmidt procedure,

we can find an orthonormal basis for V

B = { w1, w2, u3 }

with

u3 = v3

‖v3‖
.

So (λ3, u3) will be an eigen-pair for H .

Now let HB be the matrix for H with respect to this basis.

?◮Exercise 7.4: Show that the matrix for H with respect to B is

HB =






H11 H12 0

H21 H22 0

0 0 λ3




 ,

with

H0 =

[

H11 H12

H21 H22

]

being a 2×2 Hermitian matrix.

Now let V0 be the two-dimensional subspace of V with basis

B0 = { w1, w2 } ,

and let H0 be the linear operator on V0 whose matrix with respect to B0 is H0 . Since H0 is

Hermitian, so is H0 .

version: 10/15/2013
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?◮Exercise 7.5: Starting with the fact that

PH (λ) = det(HB − λI) ,

show that the characteristic polynomial for H0 is

PH0
(λ) = (λ − λ1)(λ − λ2) .

?◮Exercise 7.6: Let a be any vector in the subspace V0 . Show that:

a: The set {a, u3} is orthogonal.

b: H(a) = H0(a) . (Hint: Use the matrices HB and H0 along with the components of

a with respect to basis B .)

c: If a is an eigenvector for H0 with eigenvalue λ , then a is also an eigenvector for H

with eigenvalue λ .

Now, by our discussion of the “two-dimensional case”, above, we know there is an orthonor-

mal basis for V0

{ u1, u2 }

such that (λ1, u1) and (λ2, u2) are eigen-pairs for H0 . As you just verified in the last exercise,

(λ1, u1) and (λ2, u2) are then eigen-pairs for H as well. Moreover, from the first part of the

last exercise, it also follows that

{ u1, u2, u3 } .

is an orthonormal basis for V . And since we started with (λ3, u3) being an eigen-pair for H ,

it should be clear that we have the following:

If H is a Hermitian operator on a three-dimensional vector space V , then

PH (λ) = −(λ − λ1)(λ − λ2)(λ − λ3)

where λ1 , λ2 and λ3 are the three eigenvalues for H (not necessarily different),

and V has an orthonormal basis

{ u1, u2, u3 }

with each uk being an eigenvector for H corresponding to eignevalue λk .

The General Case

Continuing the above yields:

Lemma 7.6

If H is a Hermitian operator on an N -dimensional vector space V , then

PH (λ) = ±(λ − λ1)(λ − λ2)(λ − λ3) · · · (λ − λN )

where λ1 , λ2 , . . . and λN are the N eigenvalues for H (not necessarily different), and V has

an orthonormal basis

{ u1, u2, . . . , uN }
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with each uk being an eigenvector for H corresponding to eigenvalue λk .

It is worth noting that if, say, m of the above λ j ’s are the same value, then the lemma

assures us that there are m corresponding u j ’s in a basis for V . Hence:

Corollary 7.7

If H is a Hermitian operator on an N -dimensional vector space V with characteristic polynomial

PH (λ) = ±(λ − λ1)
m1(λ − λ2)

m2(λ − λ3)
m3 · · · (λ − λK )mK

where λ1 , λ2 , . . . and λK are all the different eigenvalues H , then the dimension of the

eigenspace for each λ j is the algebraic multiplicity, m j , of that eigenvalue.

In other words, if λ is an eigenvalue for a Hermitian operator, then

The dimension of the eigenspace corresponding to λ

= the algebraic multiplicity of λ as a root of the characteristic polynomial.

Compare this to the corresponding statement made a few pages ago (page 7–12) for the case

where λ is an eigenvalue for an arbitrary linear operator on some vector space:

The dimension of the eigenspace corresponding to λ j

≤ the algebraic multiplicity of λ j as a root of the characteristic polynomial.

Summary of the Big Results

We have too many lemmas regarding Hermitian operators. Let’s summarize them in one theorem

so that, in the future, we can forget the lemmas and just refer to the one theorem.

Theorem 7.8 (Big Theorem on Hermitian Operators)

Let H be a Hermitian (i.e., self-adjoint) operator on a vector space V . Then:

1. All eigenvalues of H are real.

2. Any pair of eigenvectors corresponding to different eigenvalues is orthogonal.

Moreover, if V is finite dimensional, then

1. If λ is an eigenvalue of algebraic multiplicity m in the characteristic polynomial, then

we can find an orthonormal set of exactly m eigenvectors whose linear combinations

generate all other eigenvectors corresponding to λ .

2. V has an orthonormal basis consisting of eigenvectors for H .

version: 10/15/2013
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7.4 Diagonalizing Hermitian Matrices and Operators
General Ideas and Procedures

The above big theorem on Hermitian operators, along with what we know know about “change of

basis” (especially theorem 6.1 on page 6–8) and the matrix of an operator with respect to a basis

of eigenvectors (lemma 7.2 on page 7–11 or corollary 7.3 on page 7–12), gives us the following

result on diagonalizing Hermitian operators/matrices.

Corollary 7.9

Let H be a Hermitian operator on a vector space V of finite dimension N , and let HA be the

matrix for H with respect to some orthonormal basis A . Let

U = { u1, u2, . . . , uN }

be an orthonormal basis for V consisting of eigenvectors for H . Then the matrix for H with

respect to this basis of eigenvectors is given by

HU = MUAHAMAU =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN











where each λ j is the eigenvalue corresponding to eigenvector u j , and MAU and MUA are the

unitary change of bases matrices described in theorem 5.3 on page 5–9.

In light of this corollary, “diagonalizing a Hermitian operator H ” simply means the finding

of an orthonormal basis of eigenvectors U so that the matrix of this operator with respect to this

basis is the diagonal matrix HU given in the corollary.

If on the other hand, we are asked to “diagonalize a Hermitian matrix H ”, then we are to

find a unitary matrix U and a diagonal matrix D so that

D = U†HU .

The above corollary tells us that, treating H as HA , the matrix for a corresponding operator

with respect to the “original basis” , we can use

D = HU and U = MAU .

Let us now consider the mechanics of “diagonalizing a Hermitian matrix/operator”. Assume

we have either a Hermitian operator H on an N -dimensional vector space V , or an N × N

Hermitian matrix H .

If it is an operator H that we have, then the first thing is to find its matrix H = HA with

respect some convenient orthonormal basis

A = { a1, a2, . . . , aN } .
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If, instead, we are starting with a matrix H , then the first thing is to view it as H = HA , the

matrix of a Hermitian operator H with respect to some convenient orthonormal basis

A = { a1, a2, . . . , aN } .

In practice, of course, the vectors in our convenient orthonormal basis A will usually be a1 = i ,

a2 = j , . . . .

For example, let’s suppose we’ve been asked to diagonalize the Hermitian matrix

H =






8 −2 −2

−2 5 −4

−2 −4 5




 .

Here, we have a 3×3 Hermitian matrix H which we will view as the matrix HA

of a Hermitian operator H with respect to

A = { a1, a2, a3 } = { i, j, k } .

The first step after getting the matrix H is to find all of its eigenvalues (and their multiplic-

ities) by solving

det(H − λI) = 0 .

(If N ≥ 3 , this can be a challenge.)

For our example,

det(H − λI) = 0

H⇒ det











8 −2 −2

−2 5 −4

−2 −4 5




 − λ






1 0 0

0 1 0

0 0 1









 = 0

H⇒ det






8 − λ −2 −2

−2 5 − λ −4

−2 −4 5 − λ




 = 0

H⇒ · · · = 0

H⇒ −
[

λ3 − 18λ2 + 81λ
]

= 0

H⇒ −λ(λ − 9)2 = 0

H⇒ −(λ − 0)(λ − 9)2 = 0 .

So,

λ = 0 is a simple eigenvalue for H ,

and

λ = 9 is an eigenvalue of multiplicity 2 for H .

version: 10/15/2013
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For each simple eigenvalue λ (i.e., each eigenvalue with multiplicity 1 ), we merely need

to solve either

H |v〉A = λ |v〉A or [H − λI] |v〉A = |0〉A
(our choice) for the components with respect to A of any eigenvector v corresponding to that

eigenvalue λ . Since this eigenvalue has multiplicity 1 , its eigenspace will be one-dimensional,

which means that you should get an expression for |v〉A involving exactly one arbitrary constant.

Set that constant equal to any convenient (nonzero) value to get a eigenvector v , and then

normalize v (i.e., divide by its length) to get a unit eigenvector u corresponding to eigenvalue

λ .

For our example, the only simple eigenvalue is λ = 0 . Let v1 , v2 and v3 be the

components with respect to basis A of any corresponding eigenvector v . Then

H |v〉 = λ |v〉 H⇒






8 −2 −2

−2 5 −4

−2 −4 5











v1

v2

v3




 = 0






v1

v2

v3




 .

Multiplying through then yields the system

8v1 − 2v2 − 2v3 = 0

−2v1 + 5v2 − 4v3 = 0

−2v1 − 4v2 + 5v3 = 0 ,

which, after appropriately multiplying the equations by appropriate scalars and

adding/subtracting various equations, reduces to the system

2v1 + 0v2 − 1v3 = 0

1v2 − 1v3 = 0

0 = 0 .

As noted above, there will be exactly one arbitrary constant since λ = 0 is a simple

eigenvalue. We can use v1 or v2 or v3 as that constant in this case. Choosing v1

will be convenient. Then, by the last set of equations, we have that

v3 = 2v1 and v2 = v3 = 2v1 .

So

|v〉 =






v1

v2

v3




 =






v1

2v1

2v1




 = v1






1

2

2




 .

In particular, (with v1 = 1 ) we have that

v = 1i + 2j + 2k

is an eigenvector corresponding to λ = 0 . Normalizing this eigenvector then gives

our first unit eigenvector,

u1 = 1

3

[

1i + 2j + 2k
]

.

Remember, it corresponds to eigenvalue λ1 = 0 . (It’s a good idea to start indexing

the unit eigenvectors and corresponding eigenvalues.)
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For each eigenvalue λ with multiplicity m > 1 , we still need to solve either

H |v〉A = λ |v〉A or [H − λI] |v〉A = |0〉A

(our choice) for the components with respect to A of any eigenvector v corresponding to that

eigenvalue λ .5 Since this eigenvalue has multiplicity m , its eigenspace will be m-dimensional.

Thus, any basis for this eigenspace will contain m vectors. This means that you should get an

expression for |v〉A involving exactly m arbitrary constants — call them α1 , α2 , . . . , and αm ,

for now. Now choose m sets of values for these constants to generate a linearly independent set

of m eigenvectors

{ v1, v2, . . . , vm } .

For example, v1 could be the result of choosing

αk =
{

1 if k = 1

0 otherwise
,

v2 could be the result of choosing

αk =

{

1 if k = 2

0 otherwise
,

and so on. With great luck (or skill on your part) the resulting set of m eigenvectors will

be orthonormal. If not, construct an orthonormal set from the v j ’s using the Gram-Schmidt

procedure (or any other legitimate trick).

For our example, λ = 9 is an eigenvalue of multiplicity 2 . Let v1 , v2 and v3 be

the components with respect to basis A of any eigenvector v corresponding to this

eigenvalue. Then

[H − λI] |v〉A = |0〉A

H⇒











8 −2 −2

−2 5 −4

−2 −4 5




 − 9






1 0 0

0 1 0

0 0 1
















v1

v2

v3




 =






0

0

0






H⇒






−1 −2 −2

−2 −4 −4

−2 −4 −4











v1

v2

v3




 =






0

0

0




 .

Multiplying through gives the system

−1v1 − 2v2 − 2v3 = 0

−2v1 − 4v2 − 4v3 = 0

−2v1 − 4v2 − 4v3 = 0 .

But each of these equations is just

v1 + 2v2 + 2v3 = 0

5 Unless you can use one or more of the ‘cheap tricks’ discussed later.

version: 10/15/2013
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multiplied by either −1 or −2 . Since the eigenvalue here has multiplicity 2 , we

can choose any two of the components to be arbitrary constants. Choosing v2 and

v3 to be our two arbitrary constants means that

v1 = −2v2 − 2v3 ,

and that every eigenvector v corresponding to λ = 9 can be written

|v〉A =






v1

v2

v3




 =






−2v2 − 2v3

v2

v3




 = v2






−2

1

0




 + v3






−2

0

1




 .

Setting (v2, v3) = (1, 0) and then (v2, v3) = (0, 1) gives two eigenvectors v2 and

v3 with

|v2〉A =






−2

1

0




 and |v3〉A =






−2

0

1




 .

That is,

v2 = −2i + j and v3 = −2i + k .

But {v2, v3} is not orthonormal. To get a corresponding orthonormal pair {u2, u3}
of eigenvectors corresponding to λ = 9 , we’ll use the Gram-Schmidt procedure.

Hence, we’ll set

u2 = v2

‖v2‖
= · · · = 1

√
5

[

−2i + j
]

and

u3 = w3

‖w3‖
where

w3 = v3 − 〈 u2 | v3 〉 u2 = · · · = 1

5

[

−2i − 4j + 5k
]

.

Thus,

u3 = w3

‖w3‖
= · · · = 1

3
√

5

[

−2i − 4j + 5k
]

.

Eventually, you will have used up all the eigenvalues, and found an orthonormal set of N

eigenvectors

U = { u1, u2, . . . , uN } .

This is a basis for our vector space. Let

{λ1, λ2, . . . , λN }

be the corresponding set of eigenvalues (with λk being the eigenvalue corresponding to eigen-

vector uk ).

If we are “diagonalizing the Hermitian operator H ”, then, as we already noted, U is the

desired basis for our vector space, and

HU =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN
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is our desired diagonal matrix. Writing these facts down (with the values found) completes the

task.

If we are “diagonalizing the Hermitian matrix H ”, then, as we already noted, we have a

diagonal matrix D and a unitary matrix U such that

D = U†HU

by just setting U = MAU and

D = HU =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN











.

Computing MAU , and writing out the resulting U and D completes the task.

Don’t forget the true reason for doing all this: HU is the matrix for the operator H with

respect to the orthonormal basis U . This basis is a “natural basis” for the operator, and HU is

the simplest description for this operator.

For our example, we have obtained the orthonormal basis of eigenvectors

B = { u1, u2, u3 }

with corresponding eigenvalues

λ1 = 0 , λ2 = 9 and λ3 = 9 .

We can compute MAU either using the basic definition,

[MAU ] jk =
〈

a j

∣
∣ uk

〉

,

or, more easily, by observing that our formulas for the uk’s can be written as

[ u1, u2, u3 ] =
[

i, j, k
]

︸ ︷︷ ︸

[ a1, a2, a3 ]











1

3
− 2

√
5

− 2

3
√

5

2

3

1
√

5
− 4

3
√

5

2

3
0

5

3
√

5











︸ ︷︷ ︸

MAU

.

So D = U†HU with

D = HU =






λ1 0 0

0 λ2 0

0 0 λ3




 =






0 0 0

0 9 0

0 0 9






and

U = MAU =











1

3
− 2

√
5

− 2

3
√

5

2

3

1
√

5
− 4

3
√

5

2

3
0

5

3
√

5











.

version: 10/15/2013
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Cheap Tricks

Don’t forget that the uk’s discussed above form an orthonormal basis. You can often use this

fact to shortcut your computations by using one or more of the following ‘cheap tricks’:

1. If V can be viewed as a three-dimensional space of traditional vectors, and an orthonor-

mal pair of eigenvectors {u1, u2} has already been found, then the third vector in the

orthonormal basis {u1, u2, u3} can be found via the cross product,

u3 = u1 × u2 .

2. If the uk’s have been found for all but one value of the eigenvalues, then the remaining

eigenvectors can be chosen by just picking vectors orthogonal to those already found.

By the theory we’ve developed, we know these will be eigenvectors corresponding to our

last eigenvalue.

In our example above, we found that the simple eigenvalue λ1 = 0 has correspond-

ing unit eigenvector

u1 = 1

3

[

1i + 2j + 2k
]

.

For {u2, u3} , the orthonormal pair corresponding to the double eigenvalue λ = 9 ,

we can first pick any unit vector orthogonal to u1 , say,

u2 = 1
√

2

[

j − k
]

(you should verify that this is a unit vector orthogonal to u1 ), and then set

u3 = u1 × u2 = · · · = 1

3
√

2

[

−4i + j + k
]

.

7.5 Spectral Decomposition

Let V be an N -dimensional vector spacehaving an orthonormal basis

B = { e1, e2, . . . , eN } .

We now know that, given any Hermitian operator H on V , there is an orthonormal basis of

eigenvectors for H

U = { u1, u2, . . . , uN } .

We also know that the matrix of H with respect to U is simply

HU = D =











λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λN
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where

{ λ1, λ2, . . . , λN }

is the set of eigenvalues corresponding to U . We even know that this matrix is related to the

matrix of H with respect to basis B via

D = MUBHBMBU .

Equivalently,

HB = MBUDMUB .

Now, notice that the entries in D are given by

[D]mn = λmδmn .

Using this, and various things from previous chapters,

[HB] jk = [MBUDMUB] jk

=
N
∑

m=1

N
∑

n=1

[MBU ] jm [D]mn [MUB]mk

=
N
∑

m=1

N
∑

n=1

〈

e j

∣
∣ um

〉

λmδmn 〈 un | ek 〉

=
N
∑

m=1

〈

e j

∣
∣ um

〉

λm 〈 um | ek 〉 .

Rewritten in terms of the bra and ket matrices of components, this is

[HB] jk =
N
∑

m=1

〈e j |B |um〉B λm 〈um |B |ek〉B

= 〈e j |B

(
N
∑

m=1

|um〉B λm 〈um |B

)

|ek〉B =

[
N
∑

m=1

|um〉B λm 〈um |B

]

jk

.

In other words,

HB =
N
∑

m=1

|um〉B λm 〈um |B . (7.4)

This equation is just another way of writing

HB = MBUDMUB .

Do note that both this and (7.4) are formulas that are independent of the choice of original

orthonormal basis B .

By the way, the set of eigenvalues of an operator is said to be the spectrum of that operator,

and formula (7.4) is called the spectral decomposition of Hermitian operator H .
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