
21

Special Functions

The fact that the radial equation in the “heat flow on a disk” problem leads to the Bessel equation

suggests that we should spend some time getting to know the solutions to the Bessel equation

more intimately. Surprisingly, these solutions are called Bessel functions, and they are members

of a large class of functions known as “special functions”. Typically, what makes these functions

‘special’ is that they are associated with solutions to Sturm-Liouville problems, and their study

involves a lot of exciting analysis and weird formulas.1 Because of time, we will limit most

of our study of special functions to Bessel functions. However, the analysis we’ll carry out

is analogous to that done for other special functions (such as Hankle functions, Legendre and

Hermite polynomials, and Mathieu functions).

We will return to actually solving the radial boundary-value problem we ended with in the

last chapter. First, though, for no apparent reason, we will discuss something called the Gamma

function.

21.1 The Gamma Function

Frankly, the “Gamma function” is not of much interest in itself (unless you like weird functions),

but it does figure in the formulas of many functions that are of interest in applications.

Basic Definition and Identities

Let z be any complex number with positive real part, Re[z] > 0 . The Gamma function Ŵ is

the complex-valued function on the right half of the complex plane given by

Ŵ(z) =
∫ ∞

t=0

e−t t z−1 dt for z with Re[z] > 0 .

Equivalently, of course,

Ŵ(x + iy) =
∫ ∞

t=0

e−t t x+iy−1 dt for x > 0 .

1 Technically, one could consider the sine and cosine functions as ‘special functions’ if we didn’t already know

everything about them.

4/16/2014



Chapter & Page: 21–2 Special Functions

The x > 0 requirement ensures that the integral is finite.2 Note that, for any positive value x ,

Ŵ(x) =
∫ ∞

t=0

e−t t x−1

︸ ︷︷ ︸

>0

dt > 0 ,

and that

lim
x→0

Ŵ(x) = lim
x→0

∫ ∞

t=0

e−t t x−1 dt > lim
x→0

∫ 1

t=0

e−t t x−1 dt

> lim
x→0

∫ 1

t=0

e−1t x−1 dt = lim
x→0

e−1 t x

x
= ∞ .

(Oddly enough, though, we will see that limx→0 Ŵ(x + iy) 6= ∞ if y 6= 0 . This is not

immediately obvious from the basic formula.)

Unfortunately, the integral for the Gamma function can be computed exactly for only a few

values of z . For most values of z , the integral for Ŵ(z) can only be approximated. Fortunately,

1. Ŵ is considered to be a “well-known” function. Most modern mathematical packages

(Maple, Mathematica, etc.) contain the Gamma functions as one of their “standard”

functions. (And the computer-phobic can find tables for computing Ŵ(z) in old texts.)

2. Those few values of z for which Ŵ(z) can be exactly computed are the values most

commonly of interest

For example, if x = 1 , Ŵ(x) is easily computed:

Ŵ(1) =
∫ ∞

t=0

e−t t1−1 dt =
∫ ∞

t=0

e−t dt = 1 .

If x = 1/2 , then Ŵ(x) can be computed using the substitution s = t1/2 and a “well-known”

integral:

Ŵ
(

1

2

)

=
∫ ∞

t=0

e−t t
1
2 −1 dt =

∫ ∞

t=0

e−t t− 1
2 dt

= 2

∫ ∞

s=0

e−s2

ds =
∫ ∞

s=−∞
e−s2

ds =
√
π .

?◮Exercise 21.1: Fill in any details of the above computations.

Thus

Ŵ(1) = 1 and Ŵ

(
1

2

)

=
√
π . (21.1)

On the other hand,

Ŵ(1 + i) =
∫ ∞

t=0

e−t t1+i−1 dt =
∫ ∞

t=0

e−t t i dt

=
∫ ∞

t=0

e−t ei ln t dt =
∫ ∞

t=0

e−t [cos(ln t)+ i sin(ln t)] dt ,

which, to the best of my knowledge, is not an integral anyone has managed to evaluate exactly.

2 It also keeps the t z−1 single valued since we naturally take t z to be its principle value, and that is well defined if

we limit ourselves to the right half of the complex plane.
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The Big Identity for Ŵ(z) , and Factorials

Let z be any complex number with positive real part. Using integration by parts:

Ŵ(z + 1) =
∫ ∞

t=0

e−t t z+1−1 dt

=
∫ ∞

t=0

t z

︸︷︷︸

u

e−t dt
︸ ︷︷ ︸

dv

= −t ze−t
∣
∣
∞
t=0

−
∫ ∞

t=0

(

zt z−1
) (

−e−t
)

dt

= 0 − 0 + z

∫ ∞

t=0

e−t t z−1 dt

︸ ︷︷ ︸

Ŵ(z)

This gives us the most significant identity for the Gamma function:

Ŵ(z + 1) = zŴ(z) for Re[z] > 0 . (21.2a)

Equivalently,

Ŵ(z) = (z − 1)Ŵ(z − 1) for Re[z] > 1 . (21.2b)

This, along with the fact that Ŵ(1) = 1 , yields

Ŵ(2) = 1 · Ŵ(1) = 1 ,

Ŵ(3) = 2 · Ŵ(2) = 2 · 1 ,

Ŵ(4) = 3 · Ŵ(3) = 3 · 2 · 1 ,

Ŵ(5) = 4 · Ŵ(4) = 4 · 3 · 2 · 1 ,

...

Clearly,

Ŵ(k) = (k − 1) · · · 3 · 2 · 1 = (k − 1)! for k = 1, 2, 3, . . . . (21.3)

Thus we can view the Gamma function as a generalization of the factorial. In fact, it is somewhat

standard practice to “redefine” the factorial by

z! = Ŵ(z + 1) whenever Ŵ(z + 1) is defined .

?◮Exercise 21.2 a: Using identity (21.2) and the value for Ŵ
(

1/2

)

found earlier, evaluate

Ŵ
(

3

2

)

, Ŵ
(

5

2

)

and Ŵ
(

7

2

)

.

b: Using the above “redefined” notion of the factorial, evaluate

3

2
! ,

5

2
! and

7

2
! .
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The Extended Definition of the Gamma Function

Observe that the big identity for the Gamma function can be rewritten as

Ŵ(z) = 1

z
Ŵ(z + 1) . (21.4)

While this was derived from the integral formula for Ŵ(z) assuming Re(z) > 0 , there is nothing

in the identity itself that prevents it from being applied so long as z 6= 0 and Ŵ(z +1) is defined.

This allows us to recursively extend the definition of the Gamma function into (most of) the rest

of the complex plane. Thus, the full definition of the Gamma function Ŵ is that it is the function

on the complex plane satisfying

Ŵ(z) = 1

z
Ŵ(z + 1)

in general, and

Ŵ(z) =
∫ ∞

t=0

e−t t z−1 dt when Re[z] > 0 .

!◮Example 21.1: By the above

Ŵ

(

−1

2

)

= 1

−1/2
Ŵ

(

−1

2
+ 1

)

= −2Ŵ
(

1

2

)

= −2
√
π ,

and (making use of an earlier computation)

Ŵ(i) = 1

i
Ŵ(i + 1) = −i

∫ ∞

t=0

e−t [cos(ln t)+ i sin(ln t)] dt .

It isn’t hard to verify that, under this definition, Ŵ(z) is defined for every complex value z

except

z = 0, −1, −2, −3, −4, . . . .

In fact, you can even show that Ŵ is an analytic function on the complex plane except for simple

poles at zero and the negative integers.

?◮Exercise 21.3: Here are a bunch of problems about the Gamma function. In many of them,

you will want to use formula (21.4)

a: Evaluate

Ŵ

(

−3

2

)

, Ŵ

(

−5

2

)

, − 1

2
! and − 11

2
! .

b: What problems do we have with Ŵ(x) when x = 0, −1, −2, −3, . . . ?

c: Compute

lim
x→0+

Ŵ(x) , lim
x→0−

Ŵ(x) , lim
x→−1+

Ŵ(x) and lim
x→−1−

Ŵ(x) .

Then make a rough graph of Ŵ(x) on the real line. Compare your graph with the graph in

figure 13.1 of AW&H.

d: (Optional) Verify that the Gamma function is analytic on complex plane except for simple

poles at the nonpositive integers.

e: (Optional) What is the residue of Ŵ at z = 0 ? at z = −1 ? at z = −2 ? …
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Even More Formulas and Identities for the Gamma Function

There are many other formulas for the Gamma function. Using reasonably clever changes of

variables, for example, you can show that, if Re[z] > 0 , then

Ŵ(z) = 2

∫ ∞

0

e−t2

t2z−1 dt and Ŵ(z) =
∫ 1

0

[

ln

(

1

t

)]z−1

dt .

?◮Exercise 21.4: Derive the above two integral formulas from our original integral formula

for Ŵ(z) .

Some identities that we will soon find mildly useful start by observing that, if k is any

positive integer and γ is any complex number such that the following Gamma function values

exist, then

(k + γ )! = Ŵ(k + γ + 1)

= (k + γ )Ŵ(k + γ )

= (k + γ )(k + γ − 1)Ŵ(k + γ − 1)

= · · ·

= (k + γ )(k + γ − 1)(k + γ − 2) · · · (1 + γ )Ŵ(1 + γ )

= (k + γ )(k + γ − 1)(k + γ − 2) · · · γŴ(γ ) .

Thus, for k = 1, 2, 3, . . . ,

(k + γ )! = (k + γ )(k + γ − 1)(k + γ − 2) · · · γŴ(γ ) (21.5)

and

(k + γ )(k + γ − 1)(k + γ − 2) · · · (1 + γ ) = Ŵ(k + γ + 1)

Ŵ(1 + γ )
= (k + γ )!

γ !
. (21.6)

It should be noted that identity (21.5) also holds, almost by definition, for k = 0 .

A famous identity that you’ve probably already seen (at least partially) is Stirling’s approx-

imation for Ŵ(x) when x > 0 ,

Ŵ(x) ≈ x x e−x

√

2π

x
for x > 0 . (21.7)

The error in this approximation is less than

e
1

12x − 1 .

This approximation can be derived using an asymptotic expansion, one of the many neat things

we’ve not had time to discuss.

Two other identities that may be amusing (or not)

Ŵ(z)Ŵ(1 − z) = π

sin(π z)
(21.8)

and

22z−1Ŵ(z)Ŵ
(

z + 1

2

)

=
√
πŴ(2z) . (21.9)
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Both of these hold for each complex value of z for which the Gamma functions in the identity

exist.

The first of the last two identities is probably the more interesting. For one thing, it shows

that Ŵ(z) is never zero. Another reason it is of some interest is that its derivation makes use of

stuff we learned in our study of analytic functions. To see this, turn to appendix 21.5 starting on

page 21–24 where we actually do verify this identity.

?◮Exercise 21.5: Quickly skim through §8.1 of Arfken, Weber and Harris (it does have a few

things about the Gamma function this I haven’t mentioned and we won’t use) and do problems

6 and 7 on page 608.

21.2 Bessel Functions of the First Kind
The Frobenius Solutions to Bessel’s Equation
Deriving the Basic Formulas

Let us consider Bessel’s equation of order ν

d

dz

[

z
dy

dz

]

− ν2

z
y = −zy

or, equivalently,

z2 d2 y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0

where ν ≥ 0 is some constant. Because of the ‘heat flow on a disk’ problem, we are especially

interested in the solutions to this equation when

ν = m = 0, 1, 2, 3, . . . and |y(0)| < ∞ ;

however, for a number of reasons we will generally assume ν is some nonnegative real constant.

On occasions where we want to think of ν as a nonnegative integer, we may let ν = m .

You solved this equation via the Frobenius method in Homework Handout II. You discovered

that the indicial equation was

γ 2 = ν2 ;

so γ = ±ν . Using γ = +ν , you got something of the form

yγ (z) = cγ zγ
∞

∑

k=0

(−1)k

22k k! (γ + 1)(γ + 2) · · · (γ + k)
z2k

= cγ 2γ
∞

∑

k=0

(−1)k

k! [(γ + k) · · · (γ + 2)(γ + 1)]

(
z

2

)2k+γ

where cγ is some arbitrary constant. The same formula was obtained using γ = −ν , provided

ν is not an integer. Now here is a terribly clever thing to do: Using identity (21.6),

(k + γ )(k + γ − 1)(k + γ − 2) · · · (1 + γ ) = Ŵ(k + γ + 1)

Ŵ(1 + γ )
,
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we rewrite this formula for yγ as

yγ (z) = Cγ Jγ (z)

where

Cγ = cγ 2γŴ(1 + γ )

and

Jγ (z) =
∞

∑

k=0

(−1)k

k!Ŵ(k + γ + 1)

(
z

2

)2k+γ
. (21.10)

The Cγ , of course, is just an arbitrary constant. The function defined by formula (21.10) is

formally known as the Bessel function of order γ (of the first kind).3 Remember, Ŵ(ζ ) is an

analytic function on C except for simple poles at ζ = 0, −1, −2, −3, . . . . This means that,

as long as γ + k is not a negative integer,

(−1)k

k!Ŵ(γ + k + 1)

is a well-defined number. And even if k + γ is a negative integer −N , the fact that the Gamma

function only has simple poles means that we can view this expression as

(−1)k

k!Ŵ(k + γ + 1)
= (−1)k

k!Ŵ(1 − N )
= (−1)k

k! × (±∞)
= 0 for N = 1, 2, 3, . . . .

So we can take formula (21.10) as defining the Bessel function Jγ for any value γ .

In particular, if γ is a nonnegative integer, say,

γ = m = 0, 1, 2, 3, . . . ,

then

Ŵ(k + γ + 1) = Ŵ(k + m + 1) = (k + m)!
and the formula for the Jγ becomes

Jm(z) =
∞

∑

k=0

(−1)k

k! (k + m)!

(
z

2

)2k+m

. (21.11)

Even more particularly,

J0(z) =
∞

∑

k=0

(−1)k

(k!)2
(

z

2

)2k

= 1 − 1

2
z2 + 1

64
z4 − · · · .

?◮Exercise 21.6 a: Write out both the full series formula, as well as the first three nonzero

terms of the series formula for each of the following:

J1(z) , J2(z) , J 1
2
(z) and J− 1

2
(z) .

b: Using your answers to the above, verify that

J 1
2
(z) =

√

2

π z
sin(z) and J− 1

2
(z) =

√

2

π z
cos(z) .

(Note: Identity (21.9) on page 21–5 may be helpful.)

3 We’ll discuss the second kind much later.

version: 4/16/2014
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Analyticity of the Bessel Functions

It’s worth rewriting the series formula for the Bessel function with (z/2)
γ factored out:

Jγ (z) =
(

z

2

)γ
∞

∑

k=0

(−1)k

k!Ŵ(k + γ + 1)

(
z

2

)2k

. (21.12)

For integral values of the order,

Jm(z) =
(

z

2

)m
∞

∑

k=0

(−1)k

k! (k + m)!

(
z

2

)2k

. (21.13)

So Jγ (z) is simply zγ multiplied by 2−γ and a power series with just even powers of z . Using

the ratio test (or the big theorem on the Frobenius method), you can easily verify that this series

converges for all z ∈ C , and, hence, defines an analytic function on the complex plane. Thus, if

γ = m is a nonnegative integer, then Jm(z) is also analytic on C .

However, if γ is not an integer, then zγ is, technically, multivalued (with an essential

singularity at 0 ). Naturally, to make our function single valued, we choose the branch with

−π < Arg(z) < π (equivalently, we take the negative X–axis as the cut line. That is, when

γ is not an integer, Jγ is an analytic function on the complex plane except for an essential

singularity at 0 and a cut line taken to be the negative X–axis.

But what if γ is a negative integer, say, γ = −2 ? It’s tempting to look at the formula

(21.13) with m = −2 ,

J−2(z) =
(

z

2

)−2
∞

∑

k=0

(−1)k

k! (k − 2)!

(
z

2

)2k

,

and conclude that J−2 has a double pole at z = 0 . But remember,

1

(−2)!
= 1

Ŵ(−1)
= 1

∞
= 0 and

1

(−1)!
= 1

Ŵ(0)
= 1

∞
= 0 .

This fact, along with the use of index substitution n = k − 2 , means that

∞
∑

k=0

(−1)k

k! (k − 2)!

(
z

2

)2k

= (−1)0

0! (0 − 2)!

(
z

2

)2·0
+ (−1)1

1! (1 − 2)!

(
z

2

)2·1
+

∞
∑

k=2

(−1)k

k! (k − 2)!

(
z

2

)2k

= 1

(−2)!
− 1

(−1)!

(
z

2

)2

+
∞

∑

n=0

(−1)n+2

(n + 2)! n!

(
z

2

)2(n+2)

= 0 + 0 + (−1)2
∞

∑

n=0

(−1)n

(n + 2)! n! 2−2 22

(
z

2

)2n (
z

2

)4

= (−1)2
(

z

2

)4
∞

∑

n=0

(−1)n

n! (n + 2)!

(
z

2

)2n

So, in fact,

J−2(z) =
(

z

2

)−2

(−1)2
(

z

2

)4
∞

∑

n=0

(−1)n

n! (n + 2)!

(
z

2

)2n

= (−1)2
(

z

2

)2
∞

∑

n=0

(−1)n

n! (n + 2)!

(
z

2

)2n

.
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This tells us that J−2(z) does not have a pole at z = 0 . It is analytic everywhere on C .

Moreover, if you compare the last formula above for J−2(z) with formula (21.13) for Jm(z)

with m = 2 , you will realize that we have also derived

J−2(z) = (−1)2 J2(z) .

The only special feature about 2 that we really used in the last paragraph was that 2 is an

integer. Redoing these calculations slightly more generally will yield

J−m(z) = (−1)m Jm(z) for m = 0, 1, 2, 3, . . . . (21.14)

Not only is this a nifty identity, it shows that these Jm(z)’s are all analytic on the entire complex

plane.

Does an identity similar to equation (21.14) hold for J−γ when γ is not an integer? No. If

γ > 0 is not an integer, then expanding formula (21.12) yields

Jγ (z) = zγ
[

2−γ

Ŵ(1 + γ )
︸ ︷︷ ︸

6=0

− 2−γ

Ŵ(γ + 2)

(
z

2

)2

+ · · ·
]

.

Replacing γ with −γ , the same formula yields

J−γ (z) = z−γ
[

2γ

Ŵ(1 − γ )
︸ ︷︷ ︸

6=0

− 2γ

Ŵ(−γ + 2)

(
z

2

)2

+ · · ·
]

.

From this it should be clear that J−γ (z) cannot be any constant multiple of Jγ (z) if γ is not

an integer.

General Solutions to Bessel’s Equation

Let’s get back to Bessel’s equation of order ν ≥ 0 ,

z2 d2 y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0 .

Remember, we derived Jγ (z) with γ = +ν as a first solution to this differential equation

obtained via the Frobenius method.

If ν is not an integer, then the basic Frobenius method yields a second solution. If you check

back to your answers to the appropriate problem(s) in Homework Handout II, you will discover,

amazingly, that the second solution can be written as a constant times Jγ with γ = −ν . So Jν
and J−ν is a pair of solutions. By the work just done a paragraph or two ago, we know neither

can be written as a constant times the other (provided γ is not an integer). Thus, if ν is not an

integer,

y(z) = c1 Jν(z) + c2 J−ν(z)

is a general solution to Bessel’s equation of order ν .

On the other hand, if ν is an integer m , then the basic Frobenius method did not yield a

second solution. That is reflected above by the discovery that J−m = (−1)m Jm . So J−m cannot

serve as a second (independent) solution. We have to go back to the big theorem on the Frobenius

version: 4/16/2014
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method (theorem 13.2 on page 13–14) to find that, in this case, the general solution to Bessel’s

equation of order m is

y(z) = c1 Jm(z) + c2 ym2(z)

where

ym2(z) =















J0(z)

[

ln z +
∞

∑

k=0

bk zk

]

if m = 0

Jm(z)

[

α ln z + z−2m

∞
∑

k=0

bk zk

]

if m = 1, 2, 3, . . .

with, in either case, b0 6= 0 (by calculation if m = 0 ; by the Frobenius theory if m 6= 0 ).

Recursion Formulas and the Generating Function

Using the series formula for the Bessel functions, you can “easily” verify any of the following

identities:

J0
′(z) = −J1(z) (21.15)

Jγ−1(z) − Jγ+1(z) = 2Jγ
′(z) for γ 6= 0, −1, −2, −3, . . . (21.16)

d

dz

[

zγ Jγ (z)
]

= zγ Jγ−1(z) for γ 6= 0, −1, −2, −3, . . . (21.17)

d

dz

[

z−γ Jγ (z)
]

= −z−γ Jγ+1(z) for γ 6= −1, −2, −3, . . . (21.18)

Jγ−1(z) + Jγ+1(z) = 2γ

z
Jγ (z) for γ 6= 0, −1, −2, −3, . . . (21.19)

?◮Exercise 21.7: Using the series formula for the Bessel functions, verify/derive

a: identity (21.15)

b: and any one of the other identities (be able to verify/derive all of them).

(Suggestion: Use x as the variable symbol, instead of z .)

Identities (21.15)—(21.19) are “recursion identities”. Using them, we can express Jγ (z)

for any real γ in terms of one or two corresponding Bessel functions of lower order. This can

be very useful in compiling tables.

?◮Exercise 21.8 a: Verify that

J 3
2
(z) =

√

2

π z

[

sin(z)

z
− cos(z)

]

.

What are the analogous formulas for J− 3
2
(z) and J 5

2
(z) ?

b: Express each of the following in terms of J0(z) and J1(z) :

J2(z) , J3(z) and J4(z) .
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Another thing you can show using the series formulas for the Bessel functions of integral

order is that
∞

∑

m=−∞
Jm(z)t

m = exp

(

z

2

[

t − 1

t

])

.

The function on the right is said to be the generating function for the Bessel functions (of integral

order). What’s neat is that, if we treat t as the variable (and z as some arbitrary constant), then

the above series is the Laurent series for the generating function about t = 0 . So the coefficients

— which just happen to be Jk(z)’s — can be determined from the generating function via the

integrals described in our discussion of Laurent series (see theorem 16.1 on page 16–4). After

applying some straighforward changes of variables, these integrals for the Laurent coefficients

become the following integral formulas for the Bessel functions of integral order:

Jm(z) = 1

π

∫ π

0

cos(z sin(θ) − mθ) dθ for m = 0, 1, 2, 3, . . . . (21.20)

In particular,

J0(z) = 1

π

∫ π

0

cos(z sin(θ)) dθ .

These integral formulas give an alternative to the series formulas for computing Bessel functions

of integral order.

If you check appropriate texts (including our text by Arfken, Weber & Harris), you will

find many other identities involving the Bessel functions, as well as other integral formulas for

Bessel functions of integral and non-integral order. You will also find different approaches to

the development of “Bessel function theory”. A few more formulas will be developed in the next

few pages, but we won’t come near to exhausting the subject. Feel free this summer to spend a

few pleasant weeks in a really thorough self-study of Bessel function formulas/identities.

Qualitative Behavior of Bessel Functions (of the First Kind)
on the Real Line

For the following, we will restrict ourselves to trying to figure out what the graphs of Jγ (x) look

like where x is restricted to the real line and γ is a real constant. Remember, if γ is not an

integer, then the negative real axis is used as a cut line for Jγ . So if γ is not an integer, we will

further restrict x to being positive.

Remember, also, that our main interest is in the cases where γ is an integer.

Upper Bounds and Symmetry (with Integral Orders)

For the following, we will limit our attention to Jm(x) where m is an integer, and x ∈ R .

From integral formula (21.20),

|Jm(x)| =
∣
∣
∣
∣

1

π

∫ π

0

cos(x sin(θ) − mθ) dθ

∣
∣
∣
∣

≤ 1

π

∫ π

0

|cos(x sin(θ) − mθ)| dθ

≤ 1

π

∫ π

0

1 dθ = 1 .
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So,

|Jm(x)| ≤ 1 for x ∈ R and m = 0, 1, 2, 3, . . . .

Of course, this bound also holds if m is a negative integer simply because J−m(x) = (−1)m Jm(x) .

Now take another look at series formula (21.13) for Jm , noting in particular that the powers

of x in the series are all even integers:

Jm(x) =
(

x

2

)m
∞

∑

k=0

(−1)k

k! (k + m)!

(
x

2

)2k

︸ ︷︷ ︸

an even function

.

Since we basically have xm multiplied by an even function, we clearly have that

Jm(x) is an even function if m is an even integer.

and

Jm(x) is an odd function if m is an odd integer.

Behavior Near Zero

For these results, we do not need γ to be an integer.

Let us write out the first few terms of formula (21.12) for the Bessel function:

Jγ (x) =
(

x

2

)γ
∞

∑

k=0

(−1)k

k!Ŵ(k + γ + 1)

(
x

2

)2k

= xγ
[

1

Ŵ(γ + 1)2γ
− x2

Ŵ(γ + 2)2γ+1
+ x4

Ŵ(γ + 3)2γ+2
− · · ·

]

.

Assuming γ 6= 0 , the derivative of this is

Jγ
′(x) = xγ−1

[

γ

Ŵ(γ + 1)2γ
− (2 + γ )x2

Ŵ(γ + 2)2γ+1
+ (4 + γ )x4

Ŵ(γ + 3)2γ+2
− · · ·

]

.

If x is very close to 0 , then only the first few terms of either series is significant; the rest of

these series will be much smaller, and vanish much more quickly as x → 0 . So we let us write

these formulas as

Jγ (x) = xγ
[

1

Ŵ(γ + 1)2γ
− x2

Ŵ(γ + 2)2γ+1
+ εγ 0(x)

]

and

Jγ
′(x) = xγ−1

[

γ

Ŵ(γ + 1)2γ
+ εγ 1(x)

]

,

and look at what they tell us about the graph of Jγ (x) when x ≈ 0 (keeping in mind that εγ 0(x)

and εγ 1(x) , the rest of the series for these functions, are negligibly small for these values of x ).

For γ = 0 : We’ve already noted that J0(x) is an even function defined for −∞ < x < ∞ .

By the above,

J0(x) = 1 − 1

4
x2 + ε00(x)
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So the graph of J0(x) looks like the parabola 1 − x2
/4 right around x = 0 . That is, it

looks something like

1

0 2 X

For 0 < γ < 1 : Remember that, in this case, the negative real axis is a cut line for Jγ . So

we can only graph this Jγ on the positive X–axis. By the above.

Jγ (x) = xγ
[

1

Ŵ(γ + 1)2γ
− x2

Ŵ(γ + 2)2γ+1
+ εγ 0(x)

]

−→ 0 as x → 0+

and

Jγ
′(x) = xγ−1

[

γ

Ŵ(γ + 1)2γ
+ εγ 1(x)

]

−→ +∞ as x → 0+ ,

which looks something like

1

0 X

For γ = 1 : J1(x) is an odd function on the X–axis. By the above.

J1(x) = x

[

1

2
− 1

16
x2 + ε10(x)

]

= 1

2
x − 1

16
x3 + xε10(x) −→ 0 as x → 0

and

J1
′(x) = 1

2
− 3

16
x2 + ε11(x) −→ 1

2
as x → 0 ,

which looks something like

1

0 X

For γ > 1 : Here we have

Jγ (x) = xγ
[

1

Ŵ(γ + 1)2γ
− x2

Ŵ(γ + 2)2γ+1
+ εγ 0(x)

]

−→ 0 as x → 0+
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and

Jγ
′(x) = xγ−1

[

γ

Ŵ(γ + 1)2γ
+ εγ 1(x)

]

−→ 0 as x → 0+ .

For x ≥ 0 this looks like

1

0 X

This is all we can say if γ is not an integer. If γ = m is a (positive) integer, then Jm(x)

is an even or odd function on R , depending on whether m is an even or odd integer. Thus,

for m = 2, 4, 6, . . . , the graph of Jm(x) around x = 0 looks something like

1

0 X

While the graph of Jm(x) around x = 0 for m = 3, 4, 5, . . . looks something like

1

0 X

For γ < 0 and not an integer: For psychological purposes, let ν = −γ > 0 . Then the

formula for Jγ gives

Jγ (x) = J−ν(x) = 1

xν

[

1

Ŵ(1 − ν)2−ν − · · ·
]

−→ ±∞ as x → 0+ ,

with the sign on the ∞ depending on whether Ŵ(2 − ν) is positive or negative. Thus, in

this case, Jγ (x) blows up near x = 0 .

For γ = −m = −1, −2, −3, · · · : In this case, we already know that J−m(x) = (−1)m Jm(x) ,

so the graph of J−m(x) is simply ± the graph of Jm(x) .

?◮Exercise 21.9: Let m be a nonnegative integer, and let ym2 be the “second” solution to

Bessel’s equation of order m . Using the formula described earlier for ym2 and the above,

verify that

lim
x→0+

ym2(x) = ±∞ .
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It is worth noting that

lim
x→0

J0(x) = 1 ,

while

lim
x→0+

Jγ (x) = 0 if γ > 0 .

It is also worth noting that our analysis shows that all other solutions to Bessel’s equations (other

than constant multiples of the above) “blow up” as x → 0+ . This gives us the following

corollary:

Corollary 21.1

Let ν ≥ 0 . The only solutions to Bessel’s equation of order ν ,

z2 d2 y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0

which also satisfy

|y(0)| < ∞

are given by

y(z) = cν Jν(z)

where cν is an arbitrary constant.

Behavior Far from Zero

Now let’s consider Jγ (x) when x is large.

Recall that the independent pair of solutions we’ve found to Bessel’s equation of order 1/2

are

J 1
2
(x) =

√

2

πx
sin(x) and J− 1

2
(x) =

√

2

πx
cos(x) .

That is,

J± 1
2

= x p s±(x)

where p = −1/2 ,

s+(x) =
√

2

π
sin(x) and s−(x) =

√

2

π
cos(x) .

Could it be that, for any other γ ,

Jγ (x) = x p s(x)

where p is some constant and s is some reasonably nice (maybe periodic) function?

This turns out to be a question worth pursuing.

Accordingly, let us seek all solutions to the Bessel equation of order ν ≥ 0 which are of the

form

y(x) = x p s(x)
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where p and s(x) are, respectively, a constant and function to be determined. Plugging this

into the Bessel’s equation, we get

0 = x2 d

dx

[

x p s(x)
]

+ x
d

dx

[

x p s(x)
]

+
(

x2 − ν2
)

x p s(x)

= · · ·

= x p+2

[

d2s

dx2
+ 2p + 1

x

ds

dx
+

(

1 + p2 − ν2

x2

)

s

]

,

which means that s(x) must satisfy

d2s

dx2
+ 2p + 1

x

ds

dx
+

(

1 + p2 − ν2

x2

)

s = 0 .

If we now choose p = −1/2 , then 2p + 1 = 0 and the above differential equation reduces to

d2s

dx2
+

(

1 + 1 − 4ν2

4x2

)

s = 0 .

Unless ν = 1/2 , this is not a differential equation that can be solved by elementary means (and

we already know about the solutions when ν = 1/2 — they are what inspired our search). So we

aren’t finding quite what we want. However, do observe that

1 − 4ν2

4x2
→ 0 as x → ∞ .

Thus, “for large values of x ”, the function s(x) satisfies

d2s

dx2
+ s ≈ 0 ,

which has general solution

s(x) ≈ a sin(x) + b cos(x)

where a and b are arbitrary constants. Thus, for large values of x ,

y(x) = x p s(x) ≈ x−1/2 [a sin(x) + b cos(x)] .

That is, for large values of x , any solution to Bessel’s equation — including any Bessel function

— must look like a sinusoidal function whose amplitude is decreasing like x−1/2 as x → ∞ .

In particular, the full graph of J0(x) looks something like that drawn (by Maple) in figure 21.7.

?◮Exercise 21.10: Roughly sketch the graphs of J1 , J2 , and J3 .

Now recall a little trigonometry: Given any two real values a and b , we can find two other

pairs of real values (C, φ) and (D, ψ) such that

a sin(x) + b cos(x) = C sin(x − φ) = D cos(x − ψ) .
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Figure 21.7: Graph of J0 .

Thus, given any real value γ , there are corresponding constants aγ , bγ , Cγ , φγ , Dγ and ψγ
such that, for large values of x ,

Jγ (x) ≈ x−1/2
[

aγ sin(x) + bγ cos(x)
]

= Cγ

sin
(

x − φγ
)

√
x

= Dγ

cos
(

x − ψγ
)

√
x

.

Deriving the precise values of these constants, as well as the error in this approximation, requires

tools we haven’t developed (asymptotic expansions, again – see AW&H chapter 12.6).4 It can

be shown that, at least for γ ≥ 0 ,

Dγ =
√

2

π
and ψγ =

(

γ + 1

2

)

π

2
.

That is,

Jγ (x) ≈
√

2

πx
cos

(

x −
(

γ + 1

2

)

π

2

)

for large x .

In particular,

J0(x) ≈
√

2

πx
cos

(

x − π

4

)

for large x .

To get an idea of just how good this approximation is, turn to page 694 of AW&H and look at

figure 14.13 in which the graphs of J0(x) and the above approximation are drawn on the same

coordinate system. The two graphs sketched become virtually identical when x > 4 .

4 And, frankly, isn’t nearly as important as it was before programs like Maple and Mathematica made computing

and graphing Bessel functions so easy.
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J0(x)

J1(x)

z01z01 z02 z03z11 z12 z13

Figure 21.8: Graphs of J0 and J1 including the first three zeroes of each (drawn with the

aid of Maple).

Zeroes of the Bessel Functions

Let’s recall a little standard (but still poorly considered) terminology: Given a function f , any

value z0 such that f (z0) = 0 is called a zero for f . For f (z) = sin(z) ,

sin(z) = 0 ⇐⇒ z = zk = kπ for k = 0, ±1, ±2, ±3, . . . .

So the zeroes for the sine function are the above zk values. In particular, the “positive zeros” of

the sine function are

π , 2π , 3π , 4π , · · · .

Knowing these zeroes was important in solving some of our partial differential equation problems

on an interval 0 < x < L . Remember? We often had to find all λ > 0 satisfying

sin
(√
λ L

)

= 0 .

So
√
λ L must be one of the above zeroes for the sine function, leading to the “eigenvalue

formula”

λ = λk =
(

kπ

L

)2

for k = 1, 2, 3, . . . .

Because of the “heat flow on a disk” problem, we are currently most interested in the positive

zeroes of the Bessel functions of the first kind and integral order. Following common convention,

we will let

zmk = kth positive zero of Jm .

The first few positive zeroes of J0 and J1 are indicated figure 21.8.

It turns out that

z01 ≈ 2.4 z11 ≈ 3.83

z02 ≈ 5.52 z12 ≈ 7.02

and

z03 ≈ 8.65 z12 ≈ 10.17 .
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Solving Jm(z) = 0 for z is not as easy as solving sin(z) = 0 for z . At best, we can only

find approximations using numerical methods (such as Newton’s method for finding roots). Of

course, the approxiation

Jγ (z) ≈
√

2

πx
cos

(

z −
(

γ + 1

2

)

π

2

)

for large x

tells us that the big zeroes are approximately given by solving

z −
(

γ + 1

2

)

π

2
= (2n + 1)π

2

for z using large integral values for n . In practice, it’s generally agreed that this means n >>
γ 2
/π .

Fortunately, we no longer need to compute the zeroes for Bessel functions from scratch. A

lot of work has been done by tireless computational experts in compiling tables of these values.

These tables can be found in many texts and compendiums of tables. One dauntless soul, in

1958, published a table of “the first 700 zeroes of Bessel functions”. That had to have been a lot

of work, then.

Today, however, you can do much better using Maple or Mathematica. In Maple

BesselJZeros(m, k) ,

gives zm,k as quickly and accurately as anyone could reasonably wish. On my computer, Maple

cranks out

z0,1000 ≈ 3140.807295 and z1000,1 ≈ 1018.660881

in less time than it takes to pour a beer.

Using the Bessel Functions

Our interest in Bessel equations came from the “heat flow on a disk of radius a ” problem in the

previous chapter of these notes. In separating that problem, we got the eigenproblems

d

dr

[

r
dφ

dr

]

− m2

r
φ = −λrφ

|φ(0)| < ∞ and φ(a) = 0

for m = 0, 1, 2, 3, . . . . For each of these values of m we need to solve this eigen-problem

for all possible eigenvalues and eigenfunctions,

(λ, φ) = (λmk, φmk) for k = 1, 2, 3, . . . .

From the Rayleigh quotient, we learned that λ had to be positive. Then, using the change of

variables

z =
√
λ r

and letting “φ(r) = y(z) ”, we found5 that

φ(r) = y
(√
λ r

)

5 well, you found (in homework)

version: 4/16/2014



Chapter & Page: 21–20 Special Functions

where the function y = y(z) satisfies Bessel’s equation of order m , with y and λ , together,

satisfying the boundary conditions

|y(0)| < ∞ and y
(√
λ a

)

= 0 .

Because of the boundedness of the solution at z = 0 , we now know the solution y must be of

the form

y(z) = constant × Jm(z) .

Using this for y(z) , the other boundary condition becomes

Jm

(√
λ a

)

= 0 .

Thus,
√
λ a must be one of the positive zeroes for Jm ,

√
λ a = zmk for k = 1, 2, 3, . . . .

Solving for the λ’s , we get all the possible eigenvalues (for each choice of m ) as being

λ = λmk =
(

zmk

a

)2

for k = 1, 2, 3, . . . .

The corresponding eigenfunctions (for each choice of m ) are then given by

φmk(r) = “ y
(√
λ r

)

”

= cmk Jm

(√

λmk r
)

= cmk Jm

(
zmk

a
r
)

for k = 1, 2, 3, . . .

where the cmk’s are arbitrary constants.

21.3 Other Bessel Functions

In all of the following, assume ν ≥ 0 .

We will be concerned with “other” basic solutions to Bessel’s equation of order ν . At this

point, we have two. The first (and our current favorite) is Jν , the Bessel function of the first kind

of order ν . It is a favorite because it is bounded at 0 . The other solution is yν where

yν(z) = J−ν(z) if ν 6= an integer

and, for ν = m = 0, 1, 2, 3, . . . , ym(z) is of the form

ym(z) = Jm(z)

[

α ln z + z−2m

∞
∑

k=0

βk zk

]

.

Remember, whether ν is or is not an integer, this second solution was not bounded at 0 .
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Bessel Functions of the Second Kind

As an alternative to the second solution yν given above, we can use any linear combination

Aν Jν(z)+ Bν yν(z) with Bν 6= 0 . The Bessel function of the second kind of order ν , also called

the Neumann function of order ν and denoted by Nν(z) , is just such a linear combination.6 For

ν 6= an integer , this function is given by

Nν(z) = Aν Jν(z) + Bν J−ν(z)

with

Aν = cos(νπ)

sin(νπ)
and Bν = −1

sin(νπ)
.

That is,

Nν(z) = cos(νπ) Jν(z) − J−ν(z)

sin(νπ)
.

(It may be worth while to observe that, for m = 0, 1, 2, 3, . . . ,

Nm+ 1
2

=
cos

(
(

m + 1
2

)

π
)

J
m+ 1

2
(z)− J−m− 1

2
(z)

sin
(
(

m + 1
2

)

π

) = (−1)m J−m− 1
2
(z) .

)

The Neumann function of an integral order m is defined by

Nm(z) = lim
ν→m

Nν(z) = lim
ν→m

cos(νπ) Jν(z) − J−ν(z)

sin(νπ)
,

which can be shown to exist and be a linear combination of Jm and ym .

It can be shown that Nν satisfies relations similar to those satisfied by Jν . For example,

d

dx

[

x−m Nm(x)
]

= −x−m Nm+1(x)

N0(x) = − 2

π

∫ ∞

0

cos(x cosh(t)) dt

and

Nν(x) ≈
√

2

πx
sin

(

x −
(

ν + 1

2

)

π

2

)

for large x .

The last relation helps explains why the Neumann functions are often considered the natural

“second” solution to the Bessel equation, at least it does once you recall that

Jν(x) ≈
√

2

πx
cos

(

x −
(

ν + 1

2

)

π

2

)

for large x .

In a sense, Jν(x) and Nν(x) can be viewed as a natural pair of solutions to Bessel’s equation of

order ν , just as the the pair cos(x) and sin(x) are considered to be a natural pair of solutions

to y′′ + y = 0 .

6 Many texts use Yν(z) instead of Nν(z) . I also vaguely recall the Bessel functions of the first and second kind,

Jν and Nν , being represented in some texts by J
(1)
ν and J

(2)
ν .
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The Hankel Functions

The two Hankel functions of order ν can be defined as follows:

H (1)
ν (z) = “the Hankel function of the first kind of order ν”

= Jν(z) + i Nν(z)

and

H (2)
ν (z) = “the Hankel function of the second kind of order ν”

= Jν(z) − i Nν(z)

Again, it can be shown that the Hankel functions satisfy relations similar to those satisfied by the

Bessel functions of the first and second kind.

Note that the general solution to Bessel’s equation of order ν can be written as either

y(z) = c1 Jν(z) + c2 Nν(z)

or as

y(z) = c1 H (1)
ν (z) + c2 H (2)

ν (z)

Crudely speaking, Jν and Nν are the “trig-like” solutions, and H (1)
ν and H (2)

ν are the “complex-

exponential-like” solutions.

?◮Exercise 21.11: Confirm that the Hankel functions are “complex-exponential-like” by

deriving the approximations for H (1)
ν (x) and H (2)

ν (x) when x is a large positive value. (Use

the corresponding approximations for the Bessel and Neumann functions.)

One advantage of the Hankel functions is that it is a little easier (and more ‘elegant’) to

develop the full theory of Bessel functions by starting with the Hankel functions, and then

deriving results for the Bessel functions of the first kind from corresponding results for the

Hankel functions. This is something one discovers in retrospect.

?◮Exercise 21.12: What are the formulas for Jν and Nν in terms of H (1)
ν and H (2)

ν ?

21.4 Other Special Functions
Even More ‘Bessel’ Functions

We were led to the Bessel functions, and especially the Bessel functions of the first kind of

integral order, by our attempts to solve a heat flow problem on a disk. (We would also have

gotten them if the problem had involved a vibrating membrane attached to a circle — i.e., a

vibrating drumhead.)

If, instead we had been interested in the heat flow in either a finitely long cylinder or a ball,

then we would have been lead, respectively, to either the “modified Bessel functions” or the

“spherical Bessel functions”. It turns out that all of these ‘Bessel’ functions are related.
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The modified Bessel functions of order ν , usually denoted by Iν and Kν , are basically the

corresponding Bessel and Hankel functions computed along the imaginary axis. In particular,

Iν(x) = e−iνπ/2 Jν(i x) and Kν(x) = i
π

2
eiνπ/2 H (1)

ν (i x) when x > 0 .

More careful authors refer to Iν as the modified Bessel function of the first kind of order ν ,

and call Kν either the modified Bessel function of the third kind or the MacDonald’s function

of order ν . When treated as a function of a complex variable z = reiθ , one must use slightly

different formulas that take into account the value of θ .)

The collection of “spherical Bessel functions of order ν ” include the spherical Bessel

function (of the first kind) jν , the spherical Neumann function nν , and the spherical Hankel

functions h(1)ν and h(2)ν . They are related to the ordinary Bessel/Neumann/Hankel functions via

jν(z) =
√

π

2z
Jν+ 1

2
(z)

nν(z) =
√

π

2z
Nν+ 1

2
(z)

h(1)ν (z) =
√

π

2z
H
(1)

ν+ 1
2

(z)

and

h(2)ν (z) =
√

π

2z
H
(2)

ν+ 1
2

(z) .

In practice, ν is usually a nonnegative integer. If you recall the definitions and that

J 1
2
(z) =

√

2

π z
sin(z) and J− 1

2
(z) =

√

2

π z
cos(z) ,

then you will realize that

j0(z) = sin(z)

z

n0(z) = −cos(z)

z

h
(1)
0 (z) = − i

z
ei z

and

h
(2)
0 (z) = i

z
e−i z .

Similar relatively simple formulas for higher integral order spherical Bessel functions can be

derived using various recursion formulas. (See AW&H, §14.7.)

And Others

There are many other collections of special functions that arise in solving various classes of partial

differential equation problems. Legendre polynomials (and the related spherical harmonics)

would probably be the next collection worth studying because of their importance in problems

in which spherical coordinates are used (as in the classical hydrogen atom problem of quantum

mechanics). Other applications lead to the collections associated with Laguerre, Chebyshev,

Hermite, Mathieu, and Professor Hypergeometric. My suggestion: learn about them as the need

arises.
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21.5 Appendix: Verifying Identity (21.8)

Our goal is to verify that

Ŵ(z)Ŵ(1 − z) = π

sin([1 − z]π)

for every z at which either side is defined.

For convenience, let

f (z) = Ŵ(z)Ŵ(1 − z) and g(z) = π

sin([1 − z]π)
,

so that we can rephrase our goal as showing that

f (z) = g(z)

whenever f (z) or g(z) is defined.

By what we know about the Gamma and sine functions, it immediately follows that both f

and g are defined and analytic on all the complex plane except for simple poles at the integers.

Also, if 0 < Re[z] < 1 , we can use the integral formula for the Gamma function to get

f (z) = Ŵ(z)Ŵ(1 − z) =
(∫ ∞

t=0

e−t t z−1 dt

)(∫ ∞

s=0

e−ss[1−z]−1 ds

)

=
∫ ∞

t=0

∫ ∞

s=0

e−[t+s]t z−1s−z ds dt

=
∫ ∞

t=0

∫ ∞

s=0

e−[t+s]
(

t

s

)z

t−1 ds dt

The s and t in the above integrals can be viewed as a set of coordinates in a Euclidean

system. Let us now introduce a (u, v) coordinate system on the upper right quarter of the

ST –plane related to the (s, t) coordinate system by

u = s + t and v = t

s
(21.21)

(see figure 21.9a). Note that

s > 0 and t > 0 ⇐⇒ u > 0 and v > 0

Solving for s and t in terms of v and u , we get

s = u

1 + v
and t = vu

1 + v
.

The corresponding Jacobian is then easily computed,

∂(s, t)

∂(u, v)
=

∣
∣
∣
∣
∣
∣
∣

∂s

∂u

∂t

∂u
∂s

∂v

∂t

∂v

∣
∣
∣
∣
∣
∣
∣

= · · · = u

(1 + v)2
.
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Figure 21.9: (a) The (s, t) and (u, v) coordinate systems corresponding to the change of

coordinates formula (21.21). (b) A chain of disks linking z0 to ζ .

So (see section 10.3 of the lecture notes),

f (z) =
∫ ∞

t=0

∫ ∞

s=0

e−[t+s]
(

t

s

)z

t−1 ds dt

=
∫ ∞

v=0

∫ ∞

u=0

e−uvz
(

uv

1 + v

)−1 ∂(s, t)

∂(u, v)
du dv

=
∫ ∞

v=0

∫ ∞

u=0

e−uvz 1 + v

uv

u

(1 + v)2
du dv =

∫ ∞

v=0

∫ ∞

u=0

e−u v
z−1

1 + v
du dv .

The integral with respect to u can be easily integrated, leaving us with

f (z) =
∫ ∞

v=0

vz−1

1 + v
dv when 0 < Re[z] < 1 .

Now compare this integral to the one you computed using residues for problem M in Homework

Handout V (which refers to exercise 11.8.24 in AW&H). From that problem, we know

f (z) =
∫ ∞

v=0

vz−1

1 + v
dv = π

sin([1 − z]π)
when 0 < z < 1 ,

Verifying that f (z) = g(z) when z is restricted to the real axis between 0 and 1 .

To finish verifying our claim, we now need only show that

f (ζ ) = g(ζ )

for any ζ in the complex plane other than a point on the real axis between 0 and 1 , and other

than an integral point on the real axis. So let ζ be any such point, and, as illustrated in figure

21.9b, form a “chain” of overlapping disks

D0 , D1 , D2 , D3 , . . . , , DM

with nonzero radii and corresponding centers

z0 , z1 , z2 , z3 , . . . , , zM

satisfying all the following:
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1. z0 = 1/2 .

2. For k = 1, 2, . . . , M , zk is inside disk Dk−1 .

3. ζ is inside disk DM .

4. For k = 0, 1, 2, . . . , M , disk Dk contains no integral point on the real axis. (This

ensures that f and g are analytic on Dk , and are given by their power series about zk .)

Now, since f and g are equal and analytic on the real axis between 0 and 1 , their

derivatives at z0 are equal. Hence, their power series about z0 (i.e., their Taylor series about

z0 ) are the same. And since f and g are given by the same power series throughout D0 , f

must equal g throughout D0 .

But z1 is inside D0 (where f = g ). So all the derivatives of f at z1 must equal the

corresponding derivatives of g at z1 . Consequently, the power series about z1 for f is the

same as the power series about z1 for g . Hence, f and g are given by the same power series

throughout D1 , and, hence, f = g throughout D1 .

Continuing this way, we can ultimately verify that f = g throughout each of the disks, and

since ζ is in the last disk, DM , we must have, in particular, that

f (ζ ) = g(ζ ) ,

which, as noted a few paragraphs ago, finishes our verification of identity the identity given at

the beginning of this appendix.

(By the way, the process we just used to extend

f (z) = g(z) when 0 < z < 1

to an equation holding on a much larger region of the complex plane is call analytic continuation.

It can, in theory, be used to extend the domain of any function given by a power series with a

finite radius of convergence to include regions outside the initial disk on which the power series

is convergent. You just have to be careful that none of the overlapping disks being used contain

a singular point of the function.)


