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Nonhomogeneous PDE Problems

22.1 Eigenfunction Expansions of Solutions

Let us complicate our problems a little bit by replacing the homogeneous partial differential

equation,

∑

jk

a jk

∂2u

∂xk∂x j

+
∑

l

bl

∂u

∂xl

+ cu = 0 ,

with a corresponding nonhomogeneous partial differential equation,

∑

jk

a jk

∂2u

∂xk∂x j

+
∑

l

bl

∂u

∂xl

+ cu = f

where f is some nonzero function. To keep our discussion reasonably brief, let us limit ourselves

to problems involving one spatial variable x and one temporal variable t .

For example, we might take our original heat flow problem on a rod of length L ,

Find the solution u = u(x, t) to the heat equation

∂u

∂t
− 6

∂2u

∂x2
= 0 for 0 < x < L and 0 < t (22.1a)

that also satisfies the boundary conditions

u(0, t) = 0 and u(L , t) = 0 for 0 < t (22.1b)

and the initial conditions

u(x, 0) = u0(x) for 0 < x < L (22.1c)

where u0 is some known function (precisely what u0 is will not be important in

these discussions).

and, letting f denote any reasonable function of x and y , consider

Find the solution u = u(x, t) to the heat equation

∂u

∂t
− 6

∂2u

∂x2
= f (x, t) for 0 < x < L and 0 < t (22.2a)
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that also satisfies the boundary conditions

u(0, t) = 0 and u(L , t) = 0 for 0 < t (22.2b)

and the initial condition

u(x, 0) = u0(x) for 0 < x < L (22.2c)

where u0 is some known function (precisely what u0 is will not be important in

these discussions).

The only change we are making is the addition of the f in the partial differential equation. This

f (x, t) describes the generation of heat or cold at position x and time t due to, say, radioactivity

of the material making up the rod, laser heating of spots of the rod, tiny furnaces or refrigerators

installed in the rod, or magic.

One thing we are not changing (in this section, at least) are the boundary conditions. We want

the same Sturm-Liouville appropriate boundary conditions as in the corresponding homogeneous

problem. The reason is that we will be using the set of eigenfunctions

{ φ1(x), φ2(x), φ3(x), . . . }

obtained in solving the boundary-value/eigen-problem arising in the corresponding homogeneous

problem.

Now here are the basic ideas: For each value of t , we can treat f (x, t) and u(x, t) as

functions of just x . Since our set of eigenfunctions {φ1(x), φ2(x), φ3(x), . . .} is a complete

orthogonal set (with respect to some weight function w(x) on our interval of interest (a, b) ),

we can express f (x, t) and u(x, t) in terms of these eigenfunctions,

f (x, t) =
∑

k

fk(t) φk(x) (22.3)

and

u(x, t) =
∑

k

gk(t) φk(x) . (22.4)

Remember that the use of these eigenfunctions should ensure that u(x, t) satisfies the given

(Sturm-Liouville appropriate) boundary conditions.

The fk(t)’s are the (generalized) Fourier coefficients of f (x, t) with respect to the φk’s

at time t . For each t , they can be computed using the standard formula for computing these

coefficients,

fk(t) =
〈 φk(x) | f (x, t) 〉

‖φk‖
2

=

∫ b

a
φ∗(x) f (x, t)w(x) dx
∫ b

a
|φ(x)|2 w(x) dx

.

Of course, the easiest case will be when f doen’t really depend on t . Then the fk’s will simply

be constants.

Since u(x, t) is the unknown function we are trying to find, we cannot compute the gk(t)’s

as we computed the fk(t)’s . Often, though, you will find that plugging uk(x, t) = gk(t)φk(x)

for u into the left side of the partial differential equation will yield

[formula of gk(t) and its derivatives] × φk(x) .
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This is because the φk’s are eigenfunctions from the corresponding boundary-value problem.

Consequently, replacing u(x, t) and f (x, t) in the given partial differential equation with their

eigenfunction expansions will yield something like

∑

k

[formula of gk(t) and its derivatives] × φk(x) =
∑

k

fk(t) φk(x) .

The uniqueness of the generalized Fourier coefficients then assures us that, for each k , we must

have

formula of gk(t) and its derivatives = fk(t) .

That is, we have a differential equation for each gk . Solving this differential equation will give

the formula for each gk(t) , a formula which will involve an arbitrary constant or two. These

constants can then be found as they were found in the homogeneous case, by setting

u0(x) = u(x, 0) =
∑

k

gk(0)φk(x)

and using the fact that we must then have

gk(0) =
〈 φk | u0 〉

‖φk‖
2

.

(This assumes u(x, 0) = u0(x) is the initial condition. Obvious adjustments must be made if

there are other initial conditions.)

!◮Example 22.1: Let us solve the sample problem given above assuming f (x, t) depends

only on x . That is, assume f (x) and u0(x) are any two known ‘reasonable’ functions of

x , and let’s find the solution u = u(x, t) to the heat equation

∂u

∂t
− 6

∂2u

∂x2
= f (x, t) for 0 < x < L and 0 < t (22.5)

that also satisfies the boundary conditions

u(0, t) = 0 and u(L , t) = 0 for 0 < t (22.6)

and the initial condition

u(x, 0) = u0(x) for 0 < x < L . (22.7)

In solving the corresponding homogeneous problem (with f ≡ 0 ) we got the complete

set of eigenfunctions

{φ1(x), φ2(x), φ3(x), . . . }

given by

φk(x) = sin
(

kπ

L
x
)

for k = 1, 2, 3, . . . .

The corresponding eigenfunction expansion of the supposedly known function f is

f (x, t) =

∞
∑

k=1

fk(t) sin
(

kπ

L
x
)
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where

fk(t) =

〈

sin
(

kπ

L
x
) ∣

∣

∣
f (x, t)

〉

∥

∥

∥
sin

(

kπ

L
x
)
∥

∥

∥

2
= · · · =

2

L

∫ L

0

f (x, t) sin
(

kπ

L
x
)

dx .

The corresponding eigenfunction expansion for u(x, t) for each t > 0 is

u(x, t) =

∞
∑

k=1

gk(t) sin
(

kπ

L
x
)

where the gk’s are functions to be determined. Now observe what happens if we replace u

with

uk(x, t) = gk(t)φk(x) = gk(t) sin
(

kπ

L
x
)

in the the left side of our partial differential equation:

∂uk

∂t
− 6

∂2uk

∂x2
=

∂

∂t

[

gk(t) sin
(

kπ

L
x
)]

− 6
∂2

∂x2

[

gk(t) sin
(

kπ

L
x
)]

=
dgk

dt
sin

(

kπ

L
x
)

− 6gk(t)

[

−

(

kπ

L

)2

sin
(

kπ

L
x
)

]

=

[

dgk

dt
+ 6

(

kπ

L

)2

gk(t)

]

sin
(

kπ

L
x
)

.

So we do get that

“ some formula of gk(t) × φk(x) ”

as desired. And thus, using the eigenfunction expansions for u and f , we have

∂u

∂t
− 6

∂2u

∂x2
= f (x, t)

H⇒
∂

∂t

[

∞
∑

k=1

uk(x, t)

]

− 6
∂2

∂x2

[

∞
∑

k=1

uk(x, t)

]

=

∞
∑

k=1

fk(t) sin
(

kπ

L
x
)

H⇒

∞
∑

k=1

[

∂uk

∂t
− 6

∂2uk

∂x2

]

=

∞
∑

k=1

fk(t) sin
(

kπ

L
x
)

H⇒

∞
∑

k=1

[

dgk

dt
+ 6

(

kπ

L

)2

gk(t)

]

sin
(

kπ

L
x
)

=

∞
∑

k=1

fk(t) sin
(

kπ

L
x
)

.

Hence, for each k , we must have

dgk

dt
+ 6

(

kπ

L

)2

gk(t) = fk(t) .

Recalling what the corresponding eigenvalues were, we see that we can also write this as

dgk

dt
+ 6λk gk(t) = fk(t) where λk =

(

kπ

L

)2

. (22.8)
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The above is a first-order linear ordinary differential equation that can be solved using the

integrating factor e6λk t .1 Its solution is

gk(t) = e6λk t

∫

f (t)e−6λk t dt

which we can rewrite using a definite integral as

gk(t) = e−6λk t

∫ t

s=0

f (s)e6λks ds + cke−6λk t (22.9)

where ck is an arbitrary constant. For brevity, let’s further rewrite this as

gk(t) = g0,k(t) + cke−6λk t with g0,k(t) = e−6λk t

∫ t

s=0

f (s)e6λks ds ,

and observe that

g0,k(0) = e−6λk ·0

∫ 0

s=0

f (s)e6λks ds = 0 ,

which, in turn, gives us

gk(0) = g0,k(0) + cke−6λk ·0 = ck .

Thus,

u(x, t) =

∞
∑

k=1

gk(t) sin
(

kπ

L
x
)

=

∞
∑

k=1

[

g0,k(t) + cke−6λk t
]

sin
(

kπ

L
x
)

. (22.10a)

with

g0,k(t) = e−6λk t

∫ t

s=0

f (s)e6λks ds (22.10b)

Finally, we apply the initial condition:

u0(x) = u(x, 0) =

∞
∑

k=1

[

g0,k(0) + cke−6λk ·0
]

sin
(

kπ

L
x
)

=

∞
∑

k=1

[0 + ck] sin
(

kπ

L
x
)

=

∞
∑

k=1

ck sin
(

kπ

L
x
)

.

Clearly, the ck’s here are the Fourier sine series coefficents for u0 ,

ck =
2

L

∫ L

0

u0(x) sin
(

kπ

L
x
)

dx .

1 You may want to dash back to Appendix A (A Brief Review of Elementary Ordinary Differential Equations) to

review how to solve these equations.
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Combining this with formula (22.10) for u(x, t) then yields our final solution:

u(x, t) =

∞
∑

k=1

[

g0,k(t) + cke−6λk t
]

sin
(

kπ

L
x
)

(22.11a)

where

λk =

(

kπ

L

)2

, (22.11b)

g0,k(t) = e−6λk t

∫ t

s=0

f (s)e6λks ds (22.11c)

and

ck =
2

L

∫ L

0

u0(x) sin
(

kπ

L
x
)

dx . (22.11d)

The final set of formulas for the generic solution given above used a particular form for the

solution to the ordinary differential equations given in (22.8). Rather than memorize the above,

just remember the general process, and don’t worry about using any particular form for solving

those ordinary differential equations.

!◮Example 22.2: Let’s find the solution u = u(x, t) to the heat equation

∂u

∂t
− 6

∂2u

∂x2
= 1 for 0 < x < 3 and 0 < t

that also satisfies the boundary conditions

u(0, t) = 0 and u(3, t) = 0 for 0 < t

and the initial condition

u(x, 0) = 0 for 0 < x < 3 .

This is just what we considered in the last example, but with L = 3 , f = f (x) = 1 and

u0(x) = 0 . The corresponding eigenfunction expansions of this f and u0 ,

1 = f (x) =

∞
∑

k=1

fk sin
(

kπ

3
x
)

and

0 = u0(x) =

∞
∑

k=1

u0,k sin
(

kπ

3
x
)

,

are easily found:

fk =
2

3

∫ 3

0

1 · sin
(

kπ

3
x
)

dx = · · · =
2

[

1 − (−1)k
]

kπ

and

u0,k = 0 .



Eigenfunction Expansions of Solutions Chapter & Page: 22–7

The corresponding eigenfunction expansion for u(x, t) for each t > 0 is

u(x, t) =

∞
∑

k=1

uk(x, t) with uk(x, t) = gk(t) sin
(

kπ

3
x
)

where the gk’s are functions to be determined. As before, we have

∂uk

∂t
− 6

∂2uk

∂x2
=

∂

∂t

[

gk(t) sin
(

kπ

3
x
)]

− 6
∂2

∂x2

[

gk(t) sin
(

kπ

3
x
)]

=
dgk

dt
sin

(

kπ

3
x
)

− 6gk(t)

[

−

(

kπ

3

)2

sin
(

kπ

3
x
)

]

=

[

dgk

dt
+ 6

(

kπ

3

)2

gk(t)

]

sin
(

kπ

3
x
)

.

From this, the fact that λk =

(

kπ

3

)2

and our sine series for f , we then get

∂u

∂t
− 6

∂2u

∂x2
= 1

H⇒
∂

∂t

[

∞
∑

k=1

uk(x, t)

]

− 6
∂2

∂x2

[

∞
∑

k=1

uk(x, t)

]

=

∞
∑

k=1

fk sin
(

kπ

3
x
)

H⇒

∞
∑

k=1

[

∂uk

∂t
− 6

∂2uk

∂x2

]

=

∞
∑

k=1

fk sin
(

kπ

3
x
)

H⇒

∞
∑

k=1

[

dgk

dt
+ 6λk gk(t)

]

sin
(

kπ

3
x
)

=

∞
∑

k=1

fk sin
(

kπ

3
x
)

.

where

fk =
2

[

1 − (−1)k
]

kπ
.

Consequently, each gk(t) must satisfy

dgk

dt
+ 6λk gk(t) = fk .

Accidentally forgetting that we had already solved a more general version of this, we re-solve

this simple, first-order linear differential equation, obtaining (this time)

gk(t) = e−6λk t

∫

fke6λk t dt

= e−6λk t

[

fk

6λk

e6λk t + ck

]

=
fk

6λk

+ cke−6λk t

Replacing fk and λk in the first term with their values, this reduces to

gk(t) =
3

[

1 − (−1)k
]

(kπ)3
+ cke−6λk t .
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Thus,

u(x, t) =

∞
∑

k=1

gk(t) sin
(

kπ

L
x
)

=

∞
∑

k=1

[

3
[

1 − (−1)k
]

(kπ)3
+ cke−6λk t

]

sin
(

kπ

3
x
)

.

Finally, we apply our initial condition:

0 = u(x, 0) =

∞
∑

k=1

[

3
[

1 − (−1)k
]

(kπ)3
+ cke−6λk 0

]

sin
(

kπ

3
x
)

=

∞
∑

k=1

[

3
[

1 − (−1)k
]

(kπ)3
+ ck

]

sin
(

kπ

3
x
)

.

Since each term must be zero, we must have

ck = −
3

[

1 − (−1)k
]

(kπ)3
for k = 1, 2, 3, . . . .

Plugging this back into our last formula for u(x, t) and simplifying slightly, we get

u(x, t) =

∞
∑

k=1

3
[

1 − (−1)k
]

π3k3

[

1 − e−6λk t
]

sin
(

kπ

3
x
)

with λk =

(

kπ

3

)2

. (22.12)

It’s may be worth noting that the exponential terms shrink to zero rapidly as t increases,

and that the k−3 terms also shrink quickly to zero as k increases. So, for ‘large t ’,

u(x, t) ≈

∞
∑

k=1

3
[

1 − (−1)k
]

π3k3
[1 − 0] sin

(

kπ

3
x
)

=
3

[

1 − (−1)1
]

π3 · 13
sin

(

1π

3
x
)

+
3

[

1 − (−1)2
]

π323
sin

(

2π

3
x
)

+
3

[

1 − (−1)3
]

π333
sin

(

3π

3
x
)

+ · · ·

≈
6

π3
sin

(

π

3
x
)

.

?◮Exercise 22.1: Consider the problem in example 22.1.

a: Solve it assuming L = 3 , u0 ≡ 0 and

f (x) =

{

1 if 0 ≤ x ≤ 3/2

0 if 3/2 < x ≤ 3
.

b: As t gets large, what does u(x, t) become? (Try graphing it, using a computer if

necessary.)

c: Is the initial condition u0 really relevant to the solution of the problem when t is large?
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?◮Exercise 22.2: Let α denote some real value, and consider the problem of finding the

solution u = u(x, t) to the heat equation

∂u

∂t
− 6

∂2u

∂x2
= eαt f (x) for 0 < x < 3 and 0 < t

that also satisfies the boundary conditions

u(0, t) = 0 and u(3, t) = 0 for 0 < t

and the initial condition

u(x, 0) = u0(x) for 0 < x < 3 .

Assume f (x) and u0(x) are ‘reasonable’ known functions on (0, L) .

a: Find the formula (analogous to formula (22.11)) for the solution u(x, t) .

b: What happens to u(x, t) as t → ∞ when α > 0 ?

c: What happens to u(x, t) as t → ∞ when α < 0 ?

?◮Exercise 22.3: Consider the problem of finding the solution u = u(x, t) to the heat

equation
∂u

∂t
− 6

∂2u

∂x2
= f (x) for 0 < x < 3 and 0 < t

that also satisfies the boundary conditions

ux(0, t) = 0 and ux(3, t) = 0 for 0 < t

and the initial condition

u(x, 0) = u0(x) for 0 < x < 3 .

Assume f (x) and u0(x) are ‘reasonable’ known functions on (0, L) .

a: Find the formula (analogous to formula (22.11)) for the solution u(x, t) .

b: What happens to u(x, t) as t → ∞ ?
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