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Complex Analysis III: Laurent Series
and Singularities

A “Laurent series” for a function is a generalization of the Taylor series, and like a Taylor series,

it is essentially a power series. With a Laurent series, however, the powers can be negative. A

major advantage of the Laurent series over the Taylor series is that Laurent series can be expanded

around singular points for a given function, and can then be used to analyze the function in the

neighborhoods of its singularities. This analysis will be needed when we develop “residue theory”

for computing all sorts of weird integrals that can arise in applications.

By the way, a singular point for a function f is a point on the complex plane where f

might not be analytic.

16.1 Laurent Series
Derivation and Main Theorem

Let f be some single-valued function analytic in some region. To derive a Laurent series for

f , we need to restrict our attention to an open “annular” subregion A on which f is analytic.

Now, when we say A is an “annular region”, we mean A is bounded by two concentric circles

Cinner and Couter about some point z0 , with radii rinner and Router , respectively, satisfying

0 ≤ rinner < Router ≤ ∞ .

If rinner = 0 , then Cinner is simply the point z0 , and A is a disk without its center z0 . This

case will be important for analyzing the function near z0 . If Router = ∞ , then there really isn’t

an outer circle, and A is the entire complex plane outside of the inner circle. This case will be

important for analyzing the behavior of the function at z as z → ∞ . In practice, the radii of

the inner and outer circles will typically depend on the distances between z0 and the various

singular points for f . Often, there will be many possible choices for the annular region A ,

and, thus, many possible Laurent series for a function about a given point, with each valid on a

different annular region.

Now let z be any point in A , choose any two positive values r and R such that

rinner < r < |z − z0| < R < Router ,
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Figure 16.1: Figure for deriving the Laurent series. In this figure, CR = C
+
R + C

−
R and the

“small” circle around z0 is Cε = C
+
ε + C

−
ε .

and let Cr and CR be the two counterclockwise oriented circles centered at z0 with radii r and

R , respectively. Add two smooth oriented curves l1 and l2 between Cr and CR as indicated

in figure 16.1, with neither touching z . Using the endpoints of l1 and l2 , break Cr and CR

into two pieces each, C
+
r and C

−
r , and C

+
R and C

−
R , respectively, as also indicated in figure

16.1. Finally, keeping track of the orientations of the subcurves, let Γ1 and Γ2 be the closed

curves given by

Γ + = C
+
R + l1 − C

+
r + l2 and Γ − = C

−
R − l2 − C

−
r − l1 ,

and consider the integrals

∮

Γ +

f (ζ )

ζ − z
dζ and

∮

Γ −

f (ζ )

ζ − z
dζ .

By the Cauchy integral theorem, we know that the integral over Γ − (the curve not encircling z )

is 0 , while the basic Cauchy integral formula tells us that the other integral is i2π f (z) . Thus,

i2π f (z) + 0 =

∮

Γ.+

f (ζ )

ζ − z
dζ +

∮

Γ −

f (ζ )

ζ − z
dζ

=

∫

C
+
R

f (ζ )

ζ − z
dζ +

∫

l1

f (ζ )

ζ − z
dζ −

∫

C
+
r

f (ζ )

ζ − z
dζ +

∫

l2

f (ζ )

ζ − z
dζ

+

∫

C
−
R

f (ζ )

ζ − z
dζ −

∫

l2

f (ζ )

ζ − z
dζ −

∫

C
−
r

f (ζ )

ζ − z
dζ −

∫

l1

f (ζ )

ζ − z
dζ

=

∮

C
+
R +C

−
R

f (ζ )

ζ − z
dζ −

∮

C
+
r +C

−
r

f (ζ )

ζ − z
dζ .

That is,

f (z) =
1

i2π

∮

CR

f (ζ )

ζ − z
dζ −

1

i2π

∮

Cr

f (ζ )

ζ − z
dζ . (16.1)
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Consider the first integral on the right side of equation (16.1). More precisely, let ζ ∈ CR .

Then

|z − z0| < R = |ζ − z0| ,

which means that
∣

∣

∣

∣

z − z0

ζ − z0

∣

∣

∣

∣

< 1 ,

and the formula for the sum of the geometric series can be applied as follows:

1

ζ − z
=

1

ζ − z0 − (z − z0)

=
1

ζ − z0

·
1

1 −
z − z0

ζ − z0

=
1

ζ − z0

·

∞
∑

k=0

(

z − z0

ζ − z0

)k

=

∞
∑

k=0

(z − z0)
k

(ζ − z0)k+1
.

Consequently,

1

i2π

∮

CR

f (ζ )

ζ − z
dζ =

1

i2π

∮

CR

∞
∑

k=0

(z − z0)
k

(ζ − z0)k+1
f (ζ ) dζ

=
1

i2π

∞
∑

k=0

∮

CR

(z − z0)
k

(ζ − z0)k+1
f (ζ ) dζ

=

∞
∑

k=0

(z − z0)
k ·

1

i2π

∮

CR

f (ζ )

(ζ − z0)k+1
dζ .

(I know what you are wondering; namely: Do we have the necessary uniform convergence of the

series in the integral to justify the above interchanging of the integral and the summation? The

answer is yes. This can be verified using the continuity of f on the region and straightforward

extensions of theorem 12.17 on page 12–32.)

Note the following about the integrals in the last line:

1. They do not depend on z .

2. By a corollary of the Cauchy integral theorem (namely, theorem 15.5 on page 15–7) we

can replace CR with any simple, counterclockwise oriented loop in A about z0 .

This means the last sequence of equations reduces to

1

i2π

∮

CR

f (ζ )

ζ − z
dζ =

∞
∑

k=0

ak(z − z0)
k (16.2a)

where

ak =
1

i2π

∮

C

f (ζ )

(ζ − z0)k+1
dζ (16.2b)

and C is any simple, counterclockwise oriented loop in A about z0 .

An analogous derivation can be done for the other integral in equation (16.1). You do it.
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?◮Exercise 16.1: Show that, if ζ ∈ Cr , then

1

z − ζ
=

∞
∑

n=0

(ζ − z0)
n

(z − z0)n+1
,

and, using that, show that

−1

i2π

∮

Cr

f (ζ )

ζ − z
dζ =

∞
∑

n=0

bn

1

(z − z0)n+1

where

bn =
1

i2π

∮

C

(ζ − z0)
n f (ζ ) dζ

and C is any simple, counterclockwise oriented loop in A about z0 .

To combine the results from the exercise with the results given in equation set (16.2), reindex

the last summation in the exercise using k = −(n + 1) and let ak = bk−1 . The results from the

exercise then become

−
1

i2π

∮

Cr

f (ζ )

ζ − z
dζ =

−1
∑

k=−∞

ak(z − z0)
k (16.3a)

where

ak =
1

i2π

∮

C

f (ζ )

(ζ − z0)k+1
dζ (16.3b)

and C is any simple, counterclockwise oriented loop in A about z0

Combining equation sets (16.2) and (16.3) with equation (16.1) then gives us the following

theorem.

Theorem 16.1 (Laurent Series)

Assume f is a single-valued function analytic in an open annular subregion A bounded by two

concentric circles Cinner and Couter about some point z0 , with radii rinner and Router , respectively,

satisfying

0 ≤ rinner < Router ≤ ∞ .

Then, for every point z in A ,

f (z) =

∞
∑

k=−∞

ak(z − z0)
k (16.4a)

where

ak =
1

i2π

∮

C

f (ζ )

(ζ − z0)k+1
dζ (16.4b)

and C is any simple, counterclockwise oriented loop in A about z0 .

The series in equation (16.4a) (with coefficients given by formula (16.4b)) is called the

Laurent series for f about z0 (in the annulus A ). It is worth noting that the summation is

shorthand for
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f (z) = · · · +
a−3

(z − z0)3
+

a−2

(z − z0)2
+

a−1

(z − z0)1

+ a0 + a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · · .

The relation with the Taylor series is discussed in the next exercise.

?◮Exercise 16.2: Let z0 be a point in the complex plane, and assume f is a single-valued

analytic function on a disk of radius Router centered at z0 . (In particular, then, f is analytic

at z0 .) Using the Cauchy integral theorem and the Cauchy integral formulas, verify that the

Laurent series formula for f on this disk reduces to the Taylor series formula

f (z) =

∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k .

It immediately follows from this exercise that saying “ f is analytic as a complex function

at a point z0 ” is equivalent to saying that “ f can be represented by a power series expansion

about z0 ”. In other words, for complex functions, the definition of analytic given on page 14–10

(based on differentiability) is equivalent to the one given on page 12–33 in chapter 12 when we

were discussing power series representations for functions.

16.2 Computing Laurent Series

In practice, we are rarely interested in explicitly computing all the coefficients of a Laurent series

(though we will later have good reason for finding a−1 , the coefficient for the (z − z0)
−1 term).

Even when we do want to explicitly find a Laurent series for a particular function f , the integral

formula (16.4b) is often too difficult to calculate to be of much use. What is often more helpful

is the clever use of the geometric series formula,

1

1 − A
=

∞
∑

k=0

Ak for |A| < 1 ,

and/or clever use of a known Taylor or Laurent series.

Using Geometric Series

To illustrate both an honest-to-goodness Laurent series and how to use the geometric series, let

us attempt to find all the Laurent series for

f (z) =
1

(z − 1)(z − 4)
about z0 = 1 .

The singular points for this function are z = 1 and z = 4 , so our annular regions about z0 = 1

must not contain these points. And since these regions are centered at z0 = 1 , this means that

the bounding circle of these regions is the circle centered at z0 = 1 of radius R = |4 − 1| = 3

(see figure 16.2). So we will have two Laurent series expansions of the form

f (z) =

∞
∑

k=−∞

ak(z − 1)k ,
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1 2 3 4

A0

A∞

R = 3

Figure 16.2: The two regions A0 (inside the circle) and A∞ (outside the circle) for the

Laurent series about z0 = 1 of

f (z) =
1

(z − 1)(z − 4)
.

one for the function on the region

A0 where z ∈ A0 ⇐⇒ 0 < |z − 1| < 3 ,

and one for the function on the region

A∞ where z ∈ A∞ ⇐⇒ 3 < |z − 1| .

We will find these two series in the following two examples.

!◮Example 16.1 (Laurent series in A0 ): Consider finding the Laurent series about z0 = 1

for

f (z) =
1

(z − 1)(z − 4)

when

0 < |z − 1| < 3 .

Since the goal is to express f (z) in terms of z − 1 and

f (z) =
1

z − 1
·

1

z − 4
= (z − 1)−1 1

z − 4
,

much of the work will be done once we’ve expressed (z − 4)−1 in terms of z − 1 . By the

assumption on z , we have
∣

∣

∣

∣

z − 1

3

∣

∣

∣

∣

< 1 .

Being mildly clever, then, we get

1

z − 4
=

1

z − 1 − 3

=
1

3
·

1

z − 1

3
− 1

=
−1

3
·

1

1 −
z − 1

3

=
−1

3

∞
∑

k=0

[

z − 1

3

]k

.
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Thus, if 0 < |z − 1| < 3 ,

f (z) =
1

z − 1
·

1

z − 4

= (z − 1)−1 ·
−1

3

∞
∑

k=0

[

z − 1

3

]k

=

∞
∑

k=0

−1

3k+1
(z − 1)k−1 .

With a slight change of index ( n = k − 1 ) we have the Laurent series representation

f (z) =

∞
∑

n=−1

−1

3n+2
(z − 1)n =

−1

3(z − 1)
−

1

9
−

1

27
(z − 1) −

1

81
(z − 1)2 − · · ·

valid when 0 < |z − 1| < 3 .

!◮Example 16.2 (Laurent series in A∞ ): Now consider finding the Laurent series about

z0 = 1 for

f (z) =
1

(z − 1)(z − 4)

when

3 < |z − 1| .

This time,
∣

∣

∣

∣

3

z − 1

∣

∣

∣

∣

< 1 .

So,
1

z − 4
=

1

z − 1 − 3

=
1

z − 1
·

1

1 −
3

z − 1

=
1

z − 1

∞
∑

k=0

[

3

z − 1

]k

,

and

f (z) =
1

z − 1
·

1

z − 4

=
1

z − 1
·

1

z − 1

∞
∑

k=0

[

3

z − 1

]k

=

∞
∑

k=0

3k

(z − 1)k+2
.

With a slight change of index ( n = −(k + 2) ) we have the Laurent series representation

f (z) =

−∞
∑

n=−2

1

3n+2
(z − 1)n

=
1

(z − 1)2
+

3

(z − 1)3
+

9

(z − 1)4
+

27

(z − 1)5
+ · · ·

valid when 3 < |z − 1| .

The derivations of the above expansions were simplified by the fact that the expansions were

about z0 = 1 and one factor of the function of interest was already of the form (z −1)−1 . If that

had not been the case, say z0 = i , then we could have first expanded f (z) by partial fractions,

f (z) =
1

(z − 1)(z − 4)
=

−1/3

z − 1
+

1/3

z − 4
,

and then expanded each term using a geometric series as illustrated in the examples.
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Using Known Taylor or Laurent Series

Of course, you know of many power series other than the geometric series, and you are free to

use your knowledge of these series to find Laurent series.

!◮Example 16.3: Find all Laurent series for

f (z) = z2 exp

(

1

z

)

about z0 = 0 .

Since we know

exp(ζ ) = eζ =

∞
∑

k=0

1

k!
ζ k for all ζ ∈ C ,

we immediately have

z2 exp

(

1

z

)

= z2

∞
∑

k=0

1

k!

(

1

z

)k

=

∞
∑

k=0

1

k!
z2−k

whenever 1/z is a finite complex number. This is the the Laurent series expansion for our

function. Reindexing it and expanding it, we have

z2 exp

(

1

z

)

=

−∞
∑

n=2

1

(2 − n)!
zn

= z2 + z +
1

2
+

1

3!

1

z
+

1

4!

1

z2
+ · · · ,

and this expansion is valid for |z| > 0 .

?◮Exercise 16.3: Find the Laurent expansions about z0 = 0 for the following using known

power series (Taylor series) expansions. Also state the region in which the Laurent series

expansion is valid.

a: sin

(

1

z

)

b: z cos

(

3

z

)

c: z2

[

1 − exp

(

1

z

)]

d: z−2
[

1 − exp
(

z2
)]

e: ln

(

z − 2

z

)

Products of Laurent Series

Suppose our function of interest f is the product of functions whose Laurent series around some

point z0 are known (or are reasonably easy to compute). That is, suppose we know

f (z) = g(z)h(z)

where, for each z in an annular region around z0 ,

g(z) =

∞
∑

m=−∞

gm(z − z0)
m and h(z) =

∞
∑

n=−∞

hn(z − z0)
n .
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Of course, if these functions are simple enough, then it is relatively easy to find the coefficients

in the corresponding Laurent series expansion for f ,

f (z) =

∞
∑

k=−∞

fk(z − z0)
k ,

in the region. Alternatively, we can multiply the series for g and h to get the series for f .

Here is a relatively simple approach to computing this product of infinite series, using the basic

formula for the coefficients in a Laurent series and one integral we should know by heart at this

point. Remember, the basic formula for the Laurent series coefficients is

fk =
1

i2π

∮

C

f (ζ )

(ζ − z0)k+1
dζ .

where C is some simple loop about z0 oriented counterclockwise. Replacing f with gh and

then replacing g and h with their Laurent series, we get

fk =
1

i2π

∮

C

f (ζ )

(ζ − z0)k+1
dζ

=
1

i2π

∮

C

g(ζ )h(ζ )(ζ − z0)
−k−1 dζ

=
1

i2π

∮

C

∞
∑

m=−∞

gm(ζ − z0)
m

∞
∑

n=−∞

hn(ζ − z0)
n(ζ − z0)

−k−1 dζ

=

∞
∑

m=−∞

∞
∑

n=−∞

gmhn

1

i2π

∮

C

(ζ − z0)
m+n−k−1 dζ .

The last integral is one we’ve computed before. It is i2π if m + n − k − 1 = −1 (i.e., n=k-m),

and 0 otherwise. Thus,

fk =

∞
∑

m=−∞

∞
∑

n=−∞

gmhn

1

i2π

{

i2π if n = k − m

0 otherwise

}

=

∞
∑

m=−∞

gmhk−m . (16.5)

In particular,

f−1 =

∞
∑

m=−∞

gmh1−m . (16.6)

(We mention this particular coefficient because, as we will see in the next chapter, it is often the

only coefficient of real interest.)

In practice, rather than blindly applying the above two formulas, you may just want to

“rederive” the above from basics for the problem at hand.

!◮Example 16.4: Suppose we want to find the Laurent series in the region just around z0 = 0 ,

f (z) =

∞
∑

k=−∞

fk zk ,

for the function

f (z) =
sin(1/z)

z2 + a2
with 0 < |z| < a .
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Here,

f = gh where g(z) =
1

z2 + a2
and h(z) = sin

(

1

z

)

.

Using the geometric series (and remembering that |z| < a ),

g(z) =
1

a2
·

1

1 −

[

−
z2

a2

] =
1

a2

∞
∑

m=0

[

−
z2

a2

]m

=

∞
∑

m=0

(−1)m

a2m+2
z2m .

And using the Taylor series for the sine function, we get the corresponding Laurent series

expansion

sin

(

1

z

)

=

∞
∑

n=0

(−1)n

(2n + 1)!

1

z2n+1
.

Applying “basics”:

fk =
1

i2π

∮

C

f (ζ )

(ζ − 0)k+1
dζ

=
1

i2π

∮

C

g(ζ )h(ζ )ζ−k−1 dζ

=
1

i2π

∮

C

∞
∑

m=0

(−1)m

a2m+2
ζ 2m

∞
∑

n=0

(−1)n

(2n + 1)!

1

ζ 2n+1
ζ−k−1 dζ

=

∞
∑

m=0

∞
∑

n=0

(−1)m+n

a2m+2(2n + 1)!
·

1

i2π

∮

C

ζ 2m−2n−1−k−1 dζ

=

∞
∑

m=0

∞
∑

n=0

(−1)m+n

a2m+2(2n + 1)!
·

1

i2π

{

i2π if 2m − 2n − 1 − k − 1 = −1

0 otherwise

}

=

∞
∑

m=0

∞
∑

n=0

(−1)m+n

a2m+2(2m − k)!

{

1 if 2n = 2m − 1 − k

0 otherwise

}

.

In particular,

f−1 =

∞
∑

m=0

∞
∑

n=0

(−1)m+n

a2m−2(2m − k)!

{

1 if 2n = 2m − 1 − (−1)

0 otherwise

}

=

∞
∑

m=0

(−1)m+m

a2m+2(2m + 1)!

=
1

a

∞
∑

m=0

1

(2m + 1)!

(

1

a

)2m+1

.

After recalling that

sinh(ζ ) =

∞
∑

m=0

1

(2m + 1)!
(ζ )2m+1 ,

we see that the above reduces to

f−1 =
1

a
sinh

(

1

a

)

.
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16.3 Singularities and the Laurent Series
Singularities at Finite Points

Let z0 be a point in the complex plane and f a single-valued function analytic in some region

about z0 , but, possibly, not at z0 . To be precise, we assume there is a R > 0 such that f is

analytic on

R = {z : 0 < |z − z0| < R} .

In this region, we can expand f in its Laurent series,

f (z) =

∞
∑

k=−∞

ak(z − z0)
k (16.7)

For our convenience, let’s break this into the natural pieces,

f (z) =

−1
∑

k=−∞

ak(z − z0)
k +

∞
∑

k=0

ak(z − z0)
k

=

∞
∑

n=1

a−n

(z − z0)n
+

∞
∑

k=0

ak(z − z0)
k

= fS(z) + fA(z) ,

where, for even more convenience, we’ve let

fS(z) = the ‘singular part’ of f (z) in this region =

∞
∑

n=1

a−n

(z − z0)n

and

fA(z) = the ‘analytic part’ of f (z) in this region =

∞
∑

k=0

ak(z − z0)
k .

Clearly, fA will be analytic at every point z with |z − z0| < R , including the point z = z0 .

Moreover, by what we know about power series, we know the series for fA(z) will converge

uniformly on any disk centered about z0 of radius less than R .

The convergence properties of fS(z) can easily be deduced by considering the function

h(ζ ) = fS

(

z0 +
1

ζ

)

.

I’ll leave the details to you:

?◮Exercise 16.4: Let f and h be as above, and assume that fS is not trivial (i.e., at least

one of the a−n’s is nonzero).

a: Find the power series for h(ζ ) from the series for fS(z) , and verify that the radius of

convergence for the power series for h(ζ ) is infinite. (Use facts learned a few weeks ago

about power series in general, and the fact that the series for fS(z) converges at least on

0 < |z − z0| < R .)

b: From what you just derived about h , show that

version: 2/26/2014
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i: The series for fS(z) converges at every complex point z except z = z0 .

ii: fS is analytic everywhere in the complex plane except at z0

iii: If ε is any positive real number, then the series for fS(z) converges uniformly on the

region ε ≤ |z − z0| .

Now, as we already know, f will be analytic at z0 if and only if

f (z) =

∞
∑

k=0

ak(z − z0)
k = fA(z)

on R . This, of course, means that fS is trivial. If fS is not trivial, we say f has a singularity

at z0 and classify that singularity as being either a ‘pole’ or an ‘essential’ singularity according

to the following criteria:

1. We say f has a pole at z0 of order M (for some positive integer M ) if and only if the

following equivalent conditions hold:

• In formula (16.7), a−M 6= 0 but ak = 0 whenever k < −M .

• On R ,

f (z) =

∞
∑

k=−M

ak(z − z0)
k

=
a−M

(z − z0)M
+

a−M+1

(z − z0)M−1
+ · · · +

a−1

z − z0

+

∞
∑

k=0

ak(z − z0)
k

with a−M 6= 0 .

• a−M 6= 0 and

fS(z) =
a−M

(z − z0)M
+

a−M+1

(z − z0)M−1
+ · · · +

a−1

z − z0
.

2. We say f has a simple pole at z0 if and only if it has a pole of order 1 at z0 .

3. We say f has an essential singularity (or pole of infinite order) at z0 if and only if the

following equivalent conditions hold:

• In formula (16.7), for any integer M , there is a k ≤ −M for which ak 6= 0 .

• On R ,

f (z) =

∞
∑

k=−∞

ak(z − z0)
k

= · · · +
a−M+1

(z − z0)M−1
+ · · · +

a−1

z − z0

+

∞
∑

k=0

ak(z − z0)
k

and the series for the singular part has infinitely many nonzero terms.

• There are infinitely many nonzero terms in

fS(z) = · · · +
a−M

(z − z0)M
+

a−M+1

(z − z0)M−1
+ · · · +

a−1

z − z0

=

∞
∑

n=1

a−n

(z − z0)n
.
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Typically, a function behaves “very badly” near any essential singularity. In particular, “it

can be shown” that, if f has an essential singularity at z0 , then we can pick any fixed value A

and find a corresponding sequence of points {ζ1, ζ2, ζ3, . . .} such that

ζk → z0 and f (ζk) → A as k → ∞ .

Because of this,

we do NOT have | f (z)| → ∞ as k → ∞

when f has an essential singularity at z0 . This is illustrated in the following exercise.

?◮Exercise 16.5: Let

f (z) = exp

(

1

z

)

= e
1/z .

a: Verify that f has an essential singularity at z = 0 and find its Laurent series about 0 .

(Hint: see example 16.3 on page 16–8.)

b: Pick any real or complex value A other than 0 (go ahead, really pick one this time) and

let

ζk =
1

ln(A) + i2πk
for k = 1, 2, 3, . . . .

i: Show that f (ζk) = A for each positive integer k .

ii: Show that ζk → 0 as k → ∞ .

iii: By what you’ve just shown, you have

lim
k→∞

f (ζk) = lim
k→∞

A = A and lim
k→∞

| f (ζk)| = lim
k→∞

|A| = |A| .

Why does this NOT mean that

lim
ζ→0

f (ζ ) = A and lim
ζ→0

| f (ζk)| = |A|

even though ζk → 0 as k → ∞ ?

Behavior of a function near a pole is not so terrible. To see this, assume f has a pole at z0

of finite order M , and let g be the function

g(z) = (z − z0)
M f (z) .

About z0 , f has the Laurent expansion

f (z) =

∞
∑

k=−M

ak(z − z0)
k

with the first coefficient, a−M not being zero. For g we have

g(z) = (z − z0)
M f (z)

= (z − z0)
M

∞
∑

k=−M

ak(z − z0)
k

=

∞
∑

k=−M

ak(z − z0)
M+k =

∞
∑

n=0

an−M (z − z0)
n .
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That is,

g(z) =

∞
∑

n=0

cn(z − z0)
n

with

cn = an−M (and, hence, ak = ck+M ) .

From this, all the following follows:

1. g is analytic at z0 with g(z0) = c0 = a−M 6= 0 .

2. f (z) can be written as

f (z) =
g(z)

(z − z0)M

for some function g which is analytic and nonzero at z0 .

3. If z ≈ z0 , then

f (z) ≈
A

(z − z0)M

for some nonzero value A ( A = g(z0) = a−M ). (But integrals of f may still depend

more on higher-order terms.)

4. For each integer k ≥ −M ,

ak = cM+k = the (M + K )th term in the Taylor series formula for g about z0

=
g(M+k)(z0)

(M + k)!

=
1

(M + k)!

d M+k

dzM+k

[

(z − z0)
M f (z)

]

∣

∣

∣

∣

z=z0

.

In particular,

a−1 =
1

(M − 1)!

d M−1

dzM−1

[

(z − z0)
M f (z)

]

∣

∣

∣

∣

z=z0

, (16.8)

and if the pole is simple (i.e., M = 1 , then

a−1 = (z − z0) f (z)|z=z0
. (16.9)

We will find uses for these formulas soon. (Note: The evaluation of the above formulas

at z0 may require computing the limit of the formulas as z0 , possibly using L’Hôpital’s

rule.)

Identifying Singularities in Practice

In practice, it is usually easy to identify where a function has singularities. This is because

singularities typically arise due to a division by zero, and it is usually easy to spot where a division

by zero occurs. (But if, on closer inspection, you really have something like “ f (z0) = 0/0 ”

then try to compute

lim
z→z0

f (z) ,
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possibly using L’Hôpital’s rule. If you get a finite number, the function is actually analytic at

z0 .)

To determine whether a singularity is a finite or infinite order pole, you can simply use the

methods discussed earlier (using known Taylor series or the geometric series) to first find the

Laurent series for the function f about each singularity, and examine the series found to see

how many terms are in the singular part, fS(z) .

!◮Example 16.5: Consider

f (z) = exp

(

1

z

)

.

Clearly, the only ‘trouble spot’ is z = 0 , and, in exercise 16.5 on page 16–13 you saw that

the corresponding Laurent series,

exp

(

1

z

)

=

∞
∑

k=0

1

k!

(

1

z

)k

= 1 +
1

z
+

1

2
·

1

z2
+

1

3!
·

1

z3
+ · · · ,

has infinitely many nonzero terms in the singular part. Hence, exp
(

1/z

)

has an essential

singularity about 0 .

Alternatively, you can use the observations noted above regarding the behavior of a function

f near a singularity. The simplest case is where f can clearly be written as

f (z) =
g(z)

(z − z0)M

for some positive integer M and a function g that is analytic and nonzero at z0 . If this is the

case, then f has a pole of order M . (If, however, g(z0) = 0 , then either f has a pole of lower

order, or is analytic at z0 .)

If it is not clear that f (z) can be written as just described, try computing

lim
z→z0

(z − z0)
N f (z)

for a “suitably chosen” positive integer N (use your judgement). If f does have a pole of order

M at z0 , then f (z) can be written as

f (z) =
g(z)

(z − z0)M

for some function g that is analytic and nonzero at z0 , and, thus,

lim
z→z0

∣

∣(z − z0)
N f (z)

∣

∣ = lim
z→z0

∣

∣

∣

∣

(z − z0)
N g(z)

(z − z0)M

∣

∣

∣

∣

= lim
z→z0

|z − z0|
N−M |g(z)| =















0 if N > M

g(z0) if N = M

∞ if N < M

.

From this and what we know about the behavior of functions near essential singularities, we then

get the following:
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1. If

lim
z→z0

(z − z0)
N f (z) = 0 ,

then f either has a pole of order less than N at z0 or is analytic at z0 .

2. If

lim
z→z0

(z − z0)
N f (z)

is a finite number other than 0 , then f has a pole of order N at z0 .

3. If

lim
z→z0

(z − z0)
N f (z) = ∞ ,

(more precisely, if

lim
z→z0

∣

∣(z − z0)
N f (z)

∣

∣ = +∞ ,)

then f has a pole of order greater than N at z0 .

4. Finally, if

lim
z→z0

(z − z0)
N f (z)

is not well defined, then f has an essential singularity at z0 .

Zeroes at Finite Points

A discussion somewhat analogous to that for poles can be had for “zeroes” of functions. Re-

member, given a function f and a point z0 ,

z0 is a zero of f ⇐⇒ f (z0) = 0 .

(And, perhaps once again, we’ll note how stupid this standard terminology is since, in fact, most

zeroes are nonzero.)

So assume z0 , a point in C , is a zero for some single-valued function f analytic in some

region “right around” z0 . Since f (z0) = 0 , f clearly cannot have a singularity at z0 . Hence

f is analytic at z0 , and its Laurent series “right around” z0 will only contain an analytic part.

That is, for some positive radius R and all z with |z − z0| < R ,

f (z) =

∞
∑

k=0

ak(z − z0)
k

= a0 + a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · · .

Of course, since z0 is a zero of f , we have, upon plugging z = z0 into the above,

0 = f (z0) = a0 + a1(0) + a2(0)2 + a3(0)3 + · · · .

So, in fact, a0 = 0 and, for |z − z0| < R ,

f (z) = a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · ·

= (z − z0)
[

a1) + a2(z − z0) + a3(z − z0)
2 + · · ·

]

= (z − z0)

∞
∑

k=1

ak(z − z0)
k−1 .
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And if a1 also happens to be 0 , then we can factor out another z−z0 , obtaining, for |z − z0| < R ,

f (z) = (z − z0)
2

∞
∑

k=2

ak(z − z0)
k−2

= (z − z0)
2
[

a2 + a3(z − z0) + a4(z − z0)
2 + · · ·

]

.

Continuing, we eventually factor out z − z0 as many times as possible without introducing any

singularities in the remaining series, obtaining, for some positive integer M and all z with

|z − z0| < R ,

f (z) = (z − z0)
M

∞
∑

k=M

ak(z − z0)
k−2

= (z − z0)
M

[

aM + aM+1(z − z0) + aM+2(z − z0)
2 + · · ·

]

with

aM 6= 0 .

This integer M is called the order of the zero z0 (of f ). If M = 1 , we say the zero is simple;

if m = 2 we may say we have a double zero, and so on.

Do note some completely equivalent definitions of “ z0 being a zero of order M for f ”:

1. In some region containing z0 ,

f (z) = (z − z0)
M g(z)

for some function g analytic in the region with g(z0) 6= 0 .

2. The function

g(z) =
f (z)

(z − z0)M

is analytic in a region containing z0 and is nonzero at z0 .

In a sense, zeroes are “anti-poles” of functions. As you can easily confirm, poles and zeroes

can cancel each other out, and division by a pole or zero can generate a zero or pole, respectively.

?◮Exercise 16.6: Let g have a pole of order M at z0 , and let h have a zero of order N at

z0 . What can be said about the product f = gh at z0 when

a: M < N ? b: M = N ? c: M > N ?

?◮Exercise 16.7: Let g have a pole of order M at z0 , and let h have a zero of order N at

z0 . What can be said about the quotients 1/g and 1/h at z0 ?

Singularities and Zeroes at Infinity (A Sidenote)

Let f be a function, and suppose, for some z0 in C and some finite positive value R , that f

can be expressed as a Laurent series

f (z) =

∞
∑

k=−∞

ak(z − z0)
k
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in the region where R < |z − z0| . Instead of considering the behavior of this function ‘near

z0 ’, let us consider its behavior ‘near ∞ ’. In fact, just consider what happens to

(z − z0)
k and

1

(z − z0)k

when k is any positive integer and |z − z0| → ∞ .

For reasons that should now be obvious, we say

1. “ f is analytic at ∞ ” if and only if, in this region,

f (z) =

0
∑

k=−∞

ak(z − z0)
k = a0 +

a−1

z − z0

+
a−2

(z − z0)2
+ · · · .

In this case, we also say “ f (∞) = a0 ”.

Moreover, we say “ ∞ is a zero of order M ” (for some positive integer M ) if and

only if, in this region,

f (z) =

−M
∑

k=−∞

ak(z − z0)
k

=
a−M

(z − z0)M
+

a−M−1

(z − z0)M+1
+

a−M−2

(z − z0)M+2
+ · · ·

=
1

(z − z0)M

[

a−M +
a−M−1

(z − z0)
+

a−M−2

(z − z0)2
+ · · ·

]

with

a−M 6= 0 .

2. “ f has pole at ∞ ” of order M (for some positive integer M ) if and only if, in this

region,

f (z) =

M
∑

k=−∞

ak(z − z0)
k

= aM(z − z0)
M + aM−1(z − z0)

M−1 + · · · + a0 +
a−1

z − z0

+ · · ·

= (z − z0)
M

[

aM +
aM−1

(z − z0)
+ · · · +

a0

(z − z0)M
+

a−1

(z − z0)M+1
+ · · ·

]

.

with aM 6= 0 . (And the pole is simple if M = 1 .)

3. “ f has an essential singularity (or a pole of infinite order) at ∞ ” if and only if, in this

region,

f (z) =

∞
∑

k=−∞

ak(z − z0)
k .

with an infinite number of ak’s with positive indices being nonzero.

If you think about it just a little, you will realize that, basically, the “singularity of f (z) at

∞ ” is the same as the “singularity of h(ζ ) at ζ = 0 ” where

h(ζ ) = f
(

z0 +
1

ζ

)

.

Also, if you think about it, you will also realize that
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1. If f is analytic at ∞ , then there is a constant C such that

f (z) ≈ C when |z| is large.

2. If f has a pole of order M at ∞ , then there is a nonzero constant C such that

f (z) ≈ CzM when |z| is large.

3. If ∞ is a zero of order M for f , then there is a nonzero constant C such that

f (z) ≈
C

zM
when |z| is large.
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