Homework Handout VIII

Note: L always denotes some finite distance in the following problems.

A. Compute the following, assuming the interval is (0,3) and the weight function is w(x) = 1.

1.
$$\langle x | \sin(2\pi x) \rangle$$

2.
$$\langle x^2 | 9 + i8x \rangle$$

3.
$$\langle 9 + i8x | x^2 \rangle$$

4.
$$\langle e^{i2\pi x} | x \rangle$$

5.
$$||x||$$

6.
$$||9+i8x||$$

7.
$$\|\sin(2\pi x)\|$$

8.
$$||e^{i2\pi x}||$$

B. Repeat the above problem, but using the interval (0,1) and the weight function w(x) = x.

C. Verify that each of the following sets of functions is orthogonal on (0, L) and with respect to the weight function w(x) = 1.

1.
$$\left\{ \sin\left(\frac{k\pi}{L}x\right) : k = 1, 2, 3, \dots \right\}$$
 2. $\left\{ \cos\left(\frac{k\pi}{L}x\right) : k = 1, 2, 3, \dots \right\}$

2.
$$\left\{\cos\left(\frac{k\pi}{L}x\right) : k = 1, 2, 3, \dots\right\}$$

3.
$$\left\{ e^{i2\pi \frac{k}{L}x} : k = 0, \pm 1, \pm 2, \pm 3, \dots \right\}$$

D. Determine a value for β so that $\{e^{i2\pi x^2}, e^{i2\pi\beta x^2}\}$ is an orthogonal set on (0,1) with weight function w(x) = x.

E. In each of the following, we have a function on (0, L) along with a set of functions $\{\phi_1(x), \phi_2(x), \phi_3(x), \dots\}$ known to be orthogonal on (0, L) with respect to the weight function w(x) = 1. Consider, now, the corresponding generalized Fourier series for f,

G.F.S.
$$[f]$$
|_x = $\sum_{k=1}^{\infty} c_k \, \phi_k(x)$ with $c_k = \frac{\langle \phi_k | f \rangle}{\|\phi_k\|^2}$

1. Assuming each ϕ_k is given by $\phi_k(x) = \sin\left(\frac{k\pi}{L}x\right)$, verify that the G.F.S. $[f]|_x$ reduces to the classical Fourier sine series for f, i.e.,

$$\sum_{k=1}^{\infty} b_k \sin\left(\frac{k\pi}{L}x\right) \quad \text{with} \quad b_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{k\pi}{L}x\right) dx .$$

Homework Handout VIII page 2

2. To what does the generalized Fourier series for f reduce when the ϕ_k 's are given by

$$\phi_k(x) = \cos\left(\frac{k\pi}{L}x\right) ?$$

3. To what does the generalized Fourier series for f reduce when the ϕ_k 's are given by

$$\phi_k(x) = e^{i2\pi \frac{k}{L}x} ?$$

(WARNING: Your answers to b and c will not quite be the classical Fourier cosine or exponential series — some terms will be missing!)

F. Assume $\{\phi_1(x), \phi_2(x), \phi_3(x), \dots\}$ is an orthogonal set of functions and f(x) is any suitably integrable function. Let

$$\text{G.F.S.}[f]|_{x} = \sum_{k=1}^{\infty} c_{k} \, \phi_{k}(x) \quad \text{with} \quad c_{k} = \frac{\left\langle \, \phi_{k} \, | \, f \, \right\rangle}{\left\| \phi_{k} \right\|^{2}} \quad ,$$

1. Show that, for each positive integer N,

$$\left\| f - \sum_{k=1}^{N} c_k \, \phi_k \right\|^2 = \|f\|^2 - \sum_{k=1}^{N} |c_k|^2 \, \|\phi_k\|^2 .$$

2. Using the above, verify that, in general,

$$||f||^2 \ge \sum_{k=1}^{\infty} |c_k|^2 ||\phi_k||^2$$
 (Bessel's inequality),

and that, if $\{\phi_1(x), \phi_2(x), \phi_3(x), \dots\}$ is complete, then

$$||f||^2 = \sum_{k=1}^{\infty} |c_k|^2 ||\phi_k||^2$$
 (Bessel's equality).

3. Assume $\{\phi_1(x), \phi_2(x), \phi_3(x), \dots\}$ is complete,

$$\text{G.F.S.}[g]|_x = \sum_{k=1}^{\infty} a_k \, \phi_k(x)$$
 and $\text{G.F.S.}[h]|_x = \sum_{k=1}^{\infty} b_k \, \phi_k(x)$.

Show that

$$\langle g | h \rangle = \sum_{k=1}^{\infty} a_k^* b_k \|\phi_k\|^2$$
.

G. Using the interval (0, L) and weight function w(x) = 1, show that the set

$$\{\phi_1(x), \, \phi_2(x), \, \phi_3(x), \, \dots\} = \left\{ \cos\left(\frac{k\pi}{L}x\right) : k = 1, 2, 3, \dots \right\}$$

is not complete by showing that

$$f(x) \neq \sum_{k=1}^{\infty} c_k \cos\left(\frac{n\pi}{L}x\right)$$
 with $c_k = \frac{\langle \phi_k | f \rangle}{\|\phi_k\|^2}$

when f(x) = 1 everywhere on (0, L).

H. It can be shown that the set

$$\{\phi_1(x), \phi_2(x), \phi_3(x), \dots\} = \left\{ \sin\left(\frac{k\pi}{L}x\right) : k = 1, 2, 3, \dots \right\}$$

is complete (on the interval (0,L) with weight function w(x)=1). The "Fourier series" for a function f using this set is the classic sine series, $\sum_{k=1}^{\infty}b_k\sin\left(\frac{k\pi}{L}x\right)$ (as described in problem EI). Find the sine series for each of the following:

1.
$$f(x) = 1$$
 2. $f(x) = x$

3.
$$f(x) = \begin{cases} x & , & 0 \le x \le \frac{L}{2} \\ L - x & , & \frac{L}{2} \le x \le L \end{cases}$$

Also, for each, sketch and compare the graphs of

$$f(x)$$
 , $\sum_{k=1}^{5} b_k \sin\left(\frac{k\pi}{L}x\right)$, $\sum_{k=1}^{10} b_k \sin\left(\frac{k\pi}{L}x\right)$ and $\sum_{k=1}^{25} b_k \sin\left(\frac{k\pi}{L}x\right)$

(use a computer and appropriate software such as Mathcad, Maple, Mathematical, etc.)

- I. Convert each of the following to self-adjoint form (treat λ and μ as constants with λ being the "eigenvalue"). Also, for the last three, be sure to clearly identify the formulas for p(x), q(x), and, especially, w(x).
 - 1. $\phi'' + 8\phi' + 3x\phi = 0$
 - $2. \phi'' + 4x\phi' + 3\lambda x\phi = 0$
 - 3. Legendre's equation: $(1-x^2)\phi'' 2x\phi' + \lambda\phi = 0$
 - 4. Bessel's equation: $x^2\phi'' + x\phi' + [\mu x^2 \lambda]\phi = 0$

Homework Handout VIII page 4

J. Five sets of boundary conditions are given below for an eigen-problem on a finite interval (a, b) whose ode is in the form

$$\frac{d}{dx} \left[p(x) \frac{d\phi}{dx} \right] + q(x) \phi = -\lambda w(x) \phi .$$

Verify that each set is "Sturm-Liouville appropriate" by verifying that the right-hand side of the appropriate Green's formula vanishes when u(x) and v(x) satisfy the given conditions. Unless otherwise indicated, assume all functions and their derivatives exist and are finite at x=a and x=b.

- 1. $\phi'(a) = 0$ and $\phi'(b) = 0$
- **2.** $\phi(a) = 0$ and $2\phi(b) + 3\phi'(b) = 0$
- 3. Any pair of "regular" boundary conditions at a and b; i.e.,

$$A\phi(a) + B\phi'(a) = 0$$
 and $C\phi(b) + D\phi'(b) = 0$

where A, B, C, and D are constants with A or B (or both) being nonzero, and C or D (or both) being nonzero.

- **4.** $\phi(a) = \phi(b)$ and $\phi'(a) = \phi'(b)$ assuming also that p(a) = p(b)
- 5. $\phi(a)$ is bounded and $\phi'(b) = 0$ assuming also that p(x) = x a
- **K.** (classical Fourier series) Let f(x) be a piecewise smooth function on (0, L). For each of the following three Sturm-Liouville problems,
 - i. Find all eigenvalues and corresponding eigenfunctions, along with the formula for computing the eigenfunction expansion (general Fourier series) of f using these eigenfunctions. In each case, you should get one of the classical Fourier series (sine, cosine, trigonometric) for f(x) on (0, L).
 - ii. Then compute the eigenfunction expansion (Fourier series) for each of the following choices of f(x) on (0, L):

$$f(x) = 1$$
 , $f(x) = x$, $f(x) = \sin^2\left(\frac{2\pi}{L}x\right)$

and
$$f(x) = \begin{cases} x &, 0 \le x \le \frac{L}{2} \\ L - x &, \frac{L}{2} \le x \le L \end{cases}$$

(Note: You've already done some of this in a previous problem in Handout VI.)

- 1. $\phi'' = -\lambda \phi$ with bc's $\phi(0) = 0$ and $\phi(L) = 0$ (sine series).
- 2. $\phi'' = -\lambda \phi$ with be's $\phi'(0) = 0$ and $\phi'(L) = 0$ (cosine series).
- 3. $\phi'' = -\lambda \phi$ with bc's $\phi(0) = \phi(L)$ and $\phi'(0) = \phi'(L)$ (full trig. series).