Homework Handout VII

A. Two $\{(u, v)\}$ coordinate systems for the plane are sketched below. On each, plot the points (0,0), (1,2) and (-1,-2). Also, sketch the curve (well as you can) u = v.

B. Let $\{(u, v)\}$ be a basis-based coordinate system for the plane based on a basis $\{\mathbf{b}_1, \mathbf{b}_2\}$ as indicated below. Assume the smallest angle between \mathbf{b}_1 and \mathbf{b}_2 is $\frac{2\pi}{3}$ and that

 $\|\mathbf{b}_1\| = 2$ and $\|\mathbf{b}_2\| = 3$.

1. What are the (u, v) coor-ĨI dinates of the points p and **q**? u = 5**2.** Plot the point $x \sim (3, -1)$. p 3. Find dist(p,q), the distance <u>u = 4</u> between points p and q. 4. Sketch the straight line l = 3 $u = 2v - 1 \ .$ 2 5. Sketch the curve $u = v^2$. \mathbf{b}_1 q \mathbf{b}_2 u =u =

C. Sketch the curve traced out by each $\boldsymbol{x}(t)$ given below.

(Assume, as appropriate, that $\{(x, y)\}\$ and $\{(\rho, \phi)\}\$ are, respectively, the standard Cartesian and polar coordinate systems for two-dimensional Euclidean space, and that $\{(x, y, z)\}\$ and $\{(r, \theta, \phi)\}\$ are, respectively, the standard Cartesian and spherical coordinate systems for three-dimensional Euclidean space. See the figures on pages 188 and 182 of AWH.)

1.
$$\mathbf{x}(t) \sim (x(t), y(t)) = (t, t^2)$$
 with $-1 \le t \le 2$
2. $\mathbf{x}(t) \sim (x(t), y(t), z(t)) = (t, \sin(t), \cos(t))$ with $0 \le t$
3. $\mathbf{x}(t) \sim (\rho(t), \phi(t)) = (t, 2\pi t)$ with $0 \le t$
4. $\mathbf{x}(t) \sim (\rho(t), \phi(t)) = (t^2, \frac{\pi}{3})$ with $-\infty \le t \le \infty$
5. $\mathbf{x}(t) \sim (\rho(t), \phi(t)) = (4, t)$ with $0 \le t \le 4\pi$
6. $\mathbf{x}(t) \sim (r(t), \theta(t), \phi(t)) = (4, \frac{\pi}{3}, t)$ with $0 \le t \le 2\pi$

- **D.** Find parameterizations for the following curves. Assume Cartesian coordinates. If an orientation is indicated, be sure your parametrization is appropriate for that orientation.
 - 1. The straight line from \boldsymbol{a} to \boldsymbol{b} where $\boldsymbol{a} \sim (0,0)$ and $\boldsymbol{b} \sim (2,3)$.
 - 2. The straight line from \boldsymbol{a} to \boldsymbol{b} where $\boldsymbol{a} \sim (2,3)$ and $\boldsymbol{b} \sim (0,0)$.
 - 3. The straight line from \boldsymbol{a} to \boldsymbol{b} where $\boldsymbol{a} \sim (2,3)$ and $\boldsymbol{b} \sim (6,10)$.
 - 4. The straight line from \boldsymbol{a} to \boldsymbol{b} where $\boldsymbol{a} \sim (2,3,8)$ and $\boldsymbol{b} \sim (6,10,0)$.
 - 5. The parabola given by $x = y^2$.
 - 6. The circle of radius 3 about the origin.
 - 7. The circle of radius 3 about the point $\boldsymbol{p} \sim (3,4)$.
- E. For each of the following two curves with Cartesion parameterizations,

$$\begin{aligned} \mathbf{x}(t) &\sim (x(t), y(t)) = (t, t^2) & \text{with} \quad -1 < t < 2 \\ \mathbf{x}(t) &\sim (x(t), y(t), z(t)) = (t, \sin(t), \cos(t)) & \text{with} \quad 0 \le t \end{aligned}$$

- 1. Sketch the curve (again).
- 2. Find $\frac{dx}{dt}$ in terms of **i**, **j**, and, if appropriate, **k**. Also, on your sketch of each curve, sketch $\frac{dx}{dt}$ at different points on the curve.
- 3. Find $\frac{ds}{dt}$, the rate at which the arclength along the curve varies as t varies $\left(\text{use your formula for } \frac{dx}{dt}\right)$. Then write out the integral that gives the length of the parametrized curve (if the integral is simple enough, evaluate it!).

F. In a previous problem, you sketched the curves

$$\mathbf{x}(t) \sim (\rho(t), \phi(t)) = (t, 2\pi t) \quad \text{with} \quad 0 \le t$$
$$\mathbf{x}(t) \sim (\rho(t), \phi(t)) = \left(t^2, \frac{\pi}{3}\right) \quad \text{with} \quad -\infty \le t \le \infty$$
$$\mathbf{x}(t) \sim (\rho(t), \phi(t)) = (4, t) \quad \text{with} \quad 0 \le t \le 4\pi$$

Go back to your sketches and add corresponding unit tangent vectors \mathbf{T} at various points on each curve.

G. In this problem, we are using Cartesian coordinates for a three-dimensional Euclidean space, and assuming that we have an object whose position at time t is

$$oldsymbol{x}(t) \sim (R\cos(\omega t), R\sin(\omega t), 0)$$

where R and ω are constants. Note that this describes circular motion with radius R and angular frequency ω about the origin O. Also let **r** be the corresponding positions vector,

$$\mathbf{r}(t) = \overrightarrow{\mathbf{Ox}}(t)$$

Evaluate the following in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} :

- **1.** Evaluate $\mathbf{v} = \frac{d\mathbf{x}}{dt}$ and $\mathbf{a} = \frac{d^2\mathbf{x}}{dt^2}$ in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .
- **2.** Evaluate $\mathbf{r} \times \mathbf{v}$ in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .
- 3. Verify that $\mathbf{a} = -\omega^2 \mathbf{r}$.
- *H.* Three different coordinate systems for either the Euclidean plane or the upper half plane are described on the sheet *Three Coordinate Systems for the Plane*. For convenience, each is denoted as a " $\{(u, v)\}$ system" instead of a " $\{(x^{1'}, x^{2'})\}$ system". For each:

Pick a couple of values for (u, v) coordinates and then, for each choice:

- 1. Plot the point with those (u, v)-coordinates (for the last one, you'll first have to sketch the coordinate curves yourself).
- 2. Sketch $\overrightarrow{\boldsymbol{\varepsilon}_u}$ and $\overrightarrow{\boldsymbol{\varepsilon}_v}$ at that location (remember: $\overrightarrow{\boldsymbol{\varepsilon}_u}$ points in the direction of *increasing* u, not constant u). (Use the Cartesian system for the "true lengths.")
- 3. Sketch \mathbf{e}_u and \mathbf{e}_v at that location.
- 4. Try to determine (educated guess) whether the scaling factors h_u and h_v are greater than, less than, or equal to one at this point. (Use the Cartesian system for the "true lengths.")

- *I.* Again, consider the three different coordinate systems for the Euclidean plane or the upper half plane described on the sheet *Three Coordinate Systems for the Plane*. For each:
 - 1. Recall the points you plotted in a previous exercise, and determine the corresponding (x, y) coordinates.
 - 2. Find the set of change of coordinate formulas relating the $\{(u, v)\}$ system to the standard Cartesian $\{(x, y)\}$ system.
 - 3. Find all the following:
 - **a.** $\overrightarrow{\varepsilon_u}$ and $\overrightarrow{\varepsilon_v}$ (expressed in terms of the $\{(u, v)\}$ system, but with **i** and **j**.)
 - **b.** the scaling factors h_u and h_v , along with the corresponding \mathbf{e}_u and \mathbf{e}_v . (Express \mathbf{e}_u and \mathbf{e}_v in terms of the $\{(u, v)\}$ system, but with \mathbf{i} and \mathbf{j} .)
 - c. the components of the metric g_{uu} , g_{vv} , g_{uv} and g_{uv} .
 - 4. Decide whether the $\{(u, v)\}$ system is orthogonal.
- *J.* Suppose we have <u>two</u> Cartesian coordinate systems with corresponding orthonormal basis for some Euclidean space,

$$\{(x^1, x^2, \dots, x^N)\}$$
 with $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N\}$ (and origin \mathcal{O})

and

$$\{(x^{1\prime}, x^{2\prime}, \dots, x^{N\prime})\}$$
 with $\mathcal{B}' = \{\mathbf{e}'_1, \mathbf{e}'_2, \dots, \mathbf{e}'_N\}$ (and origin \mathcal{O}).

1. Verify the following equations:

$$a. \mathbf{e}'_{i} = \sum_{k=1}^{N} \frac{\partial x^{k}}{\partial x^{i\prime}} \mathbf{e}_{k} \qquad b. \mathbf{e}_{j} = \sum_{k=1}^{N} \frac{\partial x^{k\prime}}{\partial x^{j}} \mathbf{e}'_{k}$$
$$c. \langle \mathbf{e}'_{i} | \mathbf{e}_{j} \rangle = \frac{\partial x^{j}}{\partial x^{i\prime}} = \frac{\partial x^{i\prime}}{\partial x^{j}}$$
$$d. \mathbf{e}'_{i} = \sum_{k=1}^{N} \frac{\partial x^{i\prime}}{\partial x^{k}} \mathbf{e}_{k} \qquad e. \mathbf{e}_{j} = \sum_{k=1}^{N} \frac{\partial x^{j}}{\partial x^{k\prime}} \mathbf{e}'_{k}$$

2. Find (in terms of partial derivatives) the unitary matrix U such that $|v\rangle_{\mathcal{B}'} = U|v\rangle_{\mathcal{B}}$.

K. Assume we have two *orthogonal* coordinate systems (with associated scaling factors and bases),

 $\{(x^1, \ldots, x^n)\}$, $\{h_1, \ldots, h_n\}$, $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$

and

$$\{(x^{1\prime}, \ldots, x^{n\prime})\}$$
, $\{h_1', \ldots, h_n'\}$, $\{\mathbf{e}_1', \ldots, \mathbf{e}_n'\}$

Using the "orthogonality", show that

$$\frac{h_j}{h_k'}\frac{\partial x^j}{\partial x^{k'}} = \mathbf{e}_k' \cdot \mathbf{e}_j = \frac{h_k'}{h_j}\frac{\partial x^{k'}}{\partial x^j}$$

L. A parabolic coordinate system $\{(u, v)\}$ on the "right-half" of the Euclidean plane is related to a Cartesian system $\{(x, z)\}$ by

$$x = uv$$
 and $z = \frac{v^2 - u^2}{2}$ for $u \ge 0$ and $v \ge 0$

1. By solving for z in terms of, first, x and u, and then in terms of x and v, verify that the constant u coordinate curves are given by

$$z = \frac{1}{2} \left(\frac{x^2}{u^2} - u^2 \right) \qquad \text{for} \quad u > 0$$

and that the constant v coordinate curves are given by

$$z = \frac{1}{2} \left(v^2 - \frac{x^2}{v^2} \right)$$
 for $v > 0$

Describe these curves geometrically (i.e., straight lines, circles, ellipses, ...) (Hint: It's parabolic system). What are the u = 0 and the v = 0 coordinate curves?

2. The five coordinate curves corresponding to

u = .5, 1, 2, 3 and 4,

along with the five coordinate curves corresponding to

$$v = .5, 1, 2, 3$$
 and 4

have been sketched (using Maple) below. Identity each curve with the corresponding value of either u or v. Also, plot the point (u, v) = (1, 3). (Strictly speaking, the curves should only be in the right-half plane.)

- **3.** Find all the following for this coordinate system (and sketch the vectors at different points):
 - **a.** $\overrightarrow{\boldsymbol{\varepsilon}_u}$ and $\overrightarrow{\boldsymbol{\varepsilon}_v}$ (expressed in terms of the $\{(u, v)\}$ system, but with i and k.)
 - **b.** the scaling factors h_u and h_v , along with the corresponding \mathbf{e}_u and \mathbf{e}_v . (Express \mathbf{e}_u and \mathbf{e}_v in terms of the $\{(u, v)\}$ system, but with **i** and **k**.)
 - c. the components of the metric g_{uu} , g_{vv} , g_{uv} and g_{uv} .
- 4. Decide whether this parabolic system is orthogonal.
- *M*. Let us convert the two-dimensional system in the last problem to a three-dimensional system by rotating it about the *Z*-axis. Letting θ be the standard polar angle in the *XY*-plane, we have the coordinate system $\{(u, v, \theta)\}$ which is related to the standard Cartesian system $\{(x, y, z)\}$ by

$$x = uv\cos(\theta)$$
 and $y = uv\sin(\theta)$ and $z = \frac{v^2 - u^2}{2}$

As before $u \ge 0$ and $v \ge 0$.

- 1. What do the u = constant surfaces look like? What do the v = constant surfaces look like? What do the $\theta = \text{constant surfaces look like}$?
- **2.** Find all the following for this coordinate system (and attempt to sketch the vectors at different points):
 - **a.** $\overrightarrow{\varepsilon_u}$, $\overrightarrow{\varepsilon_v}$ and $\overrightarrow{\varepsilon_{\theta}}$ (expressed in terms of the $\{(u, v, \theta)\}$ system, with **i**, **j** and **k**.)
 - **b.** the scaling factors h_u , h_v and h_{θ} , along with the corresponding \mathbf{e}_u , \mathbf{e}_v and \mathbf{e}_{θ} . (Express \mathbf{e}_u , \mathbf{e}_v and \mathbf{e}_{θ} in terms of the $\{(u, v, \theta)\}$ system, with \mathbf{i} , \mathbf{j} and \mathbf{k} .)

c. the components of the metric g_{uu} , g_{vv} , $g_{\theta\theta}$, g_{uv} , ...

- 3. Decide whether this "polar parabolic" system is orthogonal.
- *N*. Let *a* be any fixed positive number, and consider the two-dimensional coordinate system $\{(u, v)\}$ on the Euclidean plane related to a Cartesian system $\{(x, y)\}$ by

$$x = a \cosh(u) \cos(v)$$
 and $y = a \sinh(u) \sin(v)$

for u > 0 and $0 \le v < 2\pi$.

1. Verify that these coordinates satisfy

$$rac{x^2}{a^2 \cosh^2(u)} + rac{y^2}{a^2 \sinh^2(u)} = 1$$
 and $rac{x^2}{a^2 \cos^2(v)} - rac{y^2}{a^2 \sin^2(v)} = 1$,

and observe that the u = constant curves are ellipses, and the v = constant curves are hyperbolas. (This is said to be an elliptic system because of the constant-u curves.)

2

2

- **2.** Find all the following for this coordinate system (and sketch the vectors at different points):
 - **a.** $\overrightarrow{\boldsymbol{\varepsilon}_u}$ and $\overrightarrow{\boldsymbol{\varepsilon}_v}$ (expressed in terms of the $\{(u, v)\}$ system, but with **i** and **j**.)
 - **b.** the scaling factors h_u and h_v , along with the corresponding \mathbf{e}_u and \mathbf{e}_v . (Express \mathbf{e}_u and \mathbf{e}_v in terms of the $\{(u, v)\}$ system, but with \mathbf{i} and \mathbf{j} .)
 - c. the components of the metric g_{uu} , g_{vv} , g_{uv} and g_{uv} .
- 3. Decide whether this parabolic system is orthogonal.
- **0.** We can obtain the "oblate spheroidal" coordinate system for three-dimensional Euclidean space by replacing the y in the last problem with z, and then "rotating" the coordinate system described in the last problem about the Z-axis. The change of coordinate formulas are

$$x = a \cosh(u) \cos(v) \cos(\theta)$$
, $y = a \cosh(u) \cos(v) \sin(\theta)$

and

$$z = a \sinh(u) \sin(v)$$

,

with u > 0 and $0 \le v < 2\pi$.

- 1. What do the u = constant surfaces look like? What do the v = constant surfaces look like? What do the $\theta = \text{constant surfaces look like}$?
- **2.** Find all the following for this coordinate system (and attempt to sketch the vectors at different points):
 - **a.** $\overrightarrow{\varepsilon_u}$, $\overrightarrow{\varepsilon_v}$ and $\overrightarrow{\varepsilon_{\theta}}$ (expressed in terms of the $\{(u, v, \theta)\}$ system, with **i**, **j** and **k**.)
 - **b.** the scaling factors h_u , h_v and h_{θ} , along with the corresponding \mathbf{e}_u , \mathbf{e}_v and \mathbf{e}_{θ} . (Express \mathbf{e}_u , \mathbf{e}_v and \mathbf{e}_{θ} in terms of the $\{(u, v, \theta)\}$ system, with \mathbf{i} , \mathbf{j} and \mathbf{k} .)
 - c. the components of the metric g_{uu} , g_{vv} , $g_{\theta\theta}$, g_{uv} , ...
- 3. Decide whether this system is orthogonal.