Homework Handout V

- A. Let \mathcal{V} be a two-dimensional traditional vector space with standard basis $\mathcal{A} = \{i, j\}$. Using this basis for \mathcal{V} , do the following (unless otherwise indicated, view \mathcal{V} as both the "input space" and the "output space").¹
 - 1. Find the matrix for the "magnification by 2" operator given by $\mathcal{M}_2(\mathbf{v}) = 2\mathbf{v}$.
 - 2. Find the matrix for the projection onto the **i** vector, $\overrightarrow{pr}_{i}(v_{1}\mathbf{i} + v_{2}\mathbf{j}) = v_{1}\mathbf{i}$.
 - 3. Find the matrix for the vector projection onto \mathbf{a} , $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$, where $\mathbf{a} = 2\mathbf{i} + 1\mathbf{j}$. Then use the matrix to find $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$ when $\mathbf{v} = 5\mathbf{i} 4\mathbf{j}$.
 - 4. Find the matrix for the linear operator \mathcal{L} such that $\mathcal{L}(\mathbf{i}) = 2\mathbf{i} 4\mathbf{j}$ and $\mathcal{L}(\mathbf{j}) = 3\mathbf{i} 5\mathbf{j}$. Then use the matrix to find $\mathcal{L}(\mathbf{v})$ when $\mathbf{v} = 5\mathbf{i} 4\mathbf{j}$
 - 5. Find the matrix for \mathcal{R}_{θ} , the rotation of every vector counterclockwise by a fixed angle θ . Then use the matrix to find $\mathcal{R}_{\theta}(\mathbf{v})$ when $\theta = \frac{\pi}{6}$ and $\mathbf{v} = 5\mathbf{i} 4\mathbf{j}$
 - 6. Find the matrix for the rotation of every vector clockwise by a fixed angle θ .
 - 7. Find the matrix for the dot product with $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$, $\mathcal{D}_{\mathbf{a}}(\mathbf{v}) = \mathbf{a} \cdot \mathbf{v}$. (In this case, the "target space" is the space of all real numbers \mathbb{R} . Use $\{1\}$ as the basis for \mathbb{R} .)
- **B.** Let \mathcal{V} be a three-dimensional traditional vector space with standard basis $\mathcal{A} = \{i, j, k\}$. Using this basis for \mathcal{V} , do the following (unless otherwise indicated, view \mathcal{V} as both the "input space" and the "output space").
 - 1. Find the matrix for the "magnification by 2" operator given by $\mathcal{M}_2(\mathbf{v}) = 2 \mathbf{v}$.
 - 2. Find the matrix for the vector projection onto \mathbf{a} , $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$, where $\mathbf{a} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$. Then use the matrix to find $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$ when $\mathbf{v} = 5\mathbf{i} - 7\mathbf{j} + 9\mathbf{k}$.
 - 3. Find the matrix for the projection onto the plane spanned by the **i** and **j** vectors, $\overrightarrow{pr}_{\{i,j\}}(v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}) = v_1\mathbf{i} + v_2\mathbf{j}$.
 - 4. Find the matrix for R_{k,θ}, the rotation of every vector about k by a fixed angle θ. (This means that vectors parallel to k do not move, while the vectors in the plane spanned by {i, j} are rotated — as in a previous exercise by the angle θ in the direction the fingers of your right hand would curl if your thumb points in the direction of k.) (Compare with the above two-dimensional "clockwise rotation" problem.)

Then use the matrix to find $\mathcal{R}_{\mathbf{k},\theta}(\mathbf{v})$ when $\theta = \frac{\pi}{6}$ and $\mathbf{v} = 5\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$.

¹Be intelligent. Where posssible, find the matrix for the operation using the "boxed formula" or its slightly simplified version for the case where $\mathcal{V} = \mathcal{W}$ (in the notes **Elementary Linear Transform Theory**).

- 5. Find the matrix for $\mathcal{R}_{\mathbf{i},\theta}$, the rotation of every vector about \mathbf{i} by a fixed angle θ . Then use the matrix to find $\mathcal{R}_{\mathbf{i},\theta}(\mathbf{v})$ when $\theta = \frac{\pi}{4}$ and $\mathbf{v} = 5\mathbf{i} 4\mathbf{j} + 3\mathbf{k}$.
- 6. (optional) Find the matrix for $\mathcal{R}_{\mathbf{j},\theta}$, the rotation of every vector about \mathbf{j} by a fixed angle θ .
- 7. Find the matrix for the dot product with a = 2i + 3j + 4k, D_a(v) = a · v. (In this case, the "target space" is the space of all real numbers R. Use {1} as the basis for R.)
- 8. Find the matrix for the cross product with $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\mathcal{K}_{\mathbf{a}}(\mathbf{v}) = \mathbf{a} \times \mathbf{v}$. Then use the matrix to find $\mathcal{K}_{\mathbf{a}}(\mathbf{v})$ when $\mathbf{v} = 5\mathbf{i} 7\mathbf{j} + 9\mathbf{k}$.
- **C.** Let \mathcal{P}^3 be the vector space of all third-degree polynomials. Remember, this is the set of every function p of the form

$$p(z) = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \alpha_3 z^3$$

where the α_k 's are complex constants. For the following, use the basis

$$\mathcal{B} = \left\{ 1 \, , \, z \, , \, z^2 \, , \, z^3 \, \right\}$$

and the inner product

$$\langle p | q \rangle = \int_0^1 p^*(x) q(x) dx$$
 .

- 1. Let \mathcal{D} be the basic differential operator $\mathcal{D}(p(z)) = p'(z)$. Verify that this is a linear operator on \mathcal{P}^3 (with \mathcal{P}^3 also being the target space), and find the matrix **D** for this operator.
- 2. Let \mathcal{J} be the integral operator

$$\mathcal{J}(p(z)) \,=\, \int_0^1 p(x)\,\sqrt{x}\,\,dx$$

Verify that this is a linear operator on \mathcal{P}^3 (with \mathbb{C} being the target space), and find the matrix J for this operator.

3. (optional) Let \mathcal{J} be the integral operator just defined. Find a single polynomial r(z) in \mathcal{P}^3 such that

$$\mathcal{J}(p(z)) = \langle r | p \rangle$$
 for every $p \in \mathcal{P}^3$

D. The theory we developed does not just apply to finite-dimensional vector spaces. We can apply it to linear operators on an infinite-dimensional vector space just as well, provided this space has a basis. Of course, the matrices may have infinitely many rows or columns. Keeping this in mind, Let \mathcal{P} be the space of all polynomials. This space has basiss

$$\mathcal{B} = \{1, z, z^2, z^3, \dots\}$$
.

Using this basis,

- 1. Find the matrix **D** for the basic differential operator $\mathcal{D}(p(z)) = p'(z)$.
- *2.* Verify that

$$\mathcal{J}(p(z)) = \int_0^1 p(x) \sqrt{x} \, dx$$

is a linear operator on \mathcal{P} (with \mathbb{C} being the target space), and find the matrix J for this operator.

E. Let \mathcal{V} be the vector space of all functions on the interval (0, 1) that can be written as linear combinations of the complex exponentials in the set

$$\mathcal{B} = \left\{ \mathbf{b}_n = e^{i2\pi nx} : n \text{ is any integer} \right\}$$

Note that \mathcal{B} is a basis for this space. For this space, use the "energy norm" inner productt

$$\left< \, f \, | \, g \, \right> \, = \, \int_0^1 \! f^*(x) \, g(x) \, dx$$

- 1. If you have not already done so, verify that \mathcal{B} is orthogonal with respect to this inner product.
- 2. Find the entries in the $\infty \times \infty$ matrix for the basic second-order differential operator $\Delta(f) = f''$.

F. Let \mathcal{V} be a two-dimensional traditional vector space with standard basis $\mathcal{A} = \{\mathbf{i}, \mathbf{j}\}$, and let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be the orthonormal basis given by

$$\mathbf{b}_1 = \frac{1}{\sqrt{5}} [2\mathbf{i} + \mathbf{j}]$$
 and $\mathbf{b}_2 = \frac{1}{\sqrt{5}} [\mathbf{i} - 2\mathbf{j}]$

Go ahead and compute M_{AB} and M_{BA} for use in the finding the matrix with respect to B for each of the following linear transforms:

- 1. The "magnification by 2" operator given by $\mathcal{M}_2(\mathbf{v}) = 2\mathbf{v}$. (You found the corresponding matrix with respect to \mathcal{A} in problem A1.)
- **2.** The operator \mathcal{L} for which $\mathbf{L}_{\mathcal{A}} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$.
- 3. The vector projection onto \mathbf{a} , $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$, where $\mathbf{a} = 2\mathbf{i} + 1\mathbf{j}$. (You found the corresponding matrix with respect to \mathcal{A} in problem $\mathcal{A3}$.) (You should get a particularly simple matrix. Why?)
- 4. The linear operator \mathcal{L} given in problem A4.
- 5. The "counterclockwise rotation by angle θ " operator \mathcal{R}_{θ} given in problem A4.
- **G.** Let \mathcal{V} be a three-dimensional traditional vector space with standard basis $\mathcal{A} = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$, and let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be given by

$$\mathbf{b}_1 = \frac{1}{\sqrt{5}} [\mathbf{i} + 2\mathbf{j}]$$
, $\mathbf{b}_2 = \frac{1}{\sqrt{6}} [2\mathbf{i} - \mathbf{j} + \mathbf{k}]$.

and

$$\mathbf{b}_3 = \mathbf{b}_1 \times \mathbf{b}_2 = \frac{1}{\sqrt{30}} [2\mathbf{i} - \mathbf{j} - 5\mathbf{k}]$$

In problem F in Homework Handout IV, you verified that \mathcal{B} is orthonormal, and you computed (I hope) $\mathbf{M}_{\mathcal{A}\mathcal{B}}$ and $\mathbf{M}_{\mathcal{B}\mathcal{A}}$. Using this, find the matrix with respect to \mathcal{B} for each of the following linear transforms:

- 1. The vector projection onto \mathbf{a} , $\overrightarrow{pr}_{\mathbf{a}}(\mathbf{v})$, where $\mathbf{a} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$. (You found the corresponding matrix with respect to \mathcal{A} in problem B2.) (You should get a particularly simple matrix. Why?)
- 2. The cross product with $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\mathcal{K}_{\mathbf{a}}(\mathbf{v}) = \mathbf{a} \times \mathbf{v}$. (You found the corresponding matrix with respect to \mathcal{A} in problem **B8**.)

- *H*. Let \mathcal{V} , \mathcal{A} and \mathcal{B} be the vector space and orthonormal basis from the previous problem. In the following problems, finding the matrix of the given operator with respect to \mathcal{B} should be 'easy'. Use this fact and the change of basis formulas to also find the matrix with respect to \mathcal{A} for the given operator.
 - 1. The projection onto the plane spanned by the \mathbf{b}_1 and \mathbf{b}_2 vectors, $\overrightarrow{\mathrm{pr}}_{\{\mathbf{b}_1,\mathbf{b}_2\}}(v_1\mathbf{b}_1 + v_2\mathbf{b}_2 + v_3\mathbf{b}_3) = v_1\mathbf{b}_1 + v_2\mathbf{b}_2$. Find the matrix of this operator first with respect to \mathcal{B} and then with respect to \mathcal{A} .
 - 2. The cross product with \mathbf{b}_3 , $\mathcal{K}_{\mathbf{b}_3}(\mathbf{v}) = \mathbf{b}_3 \times \mathbf{v}$. Find the matrix of this operator first with respect to \mathcal{B} and then with respect to \mathcal{A} .
- *I*. Here we are considering traditional vectors in 3dimensional space with standard basis

$$\mathcal{A} = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$$

Let ϕ be some angle, let \mathbf{b}_3 be some unit vector, and let \mathcal{R} be the linear transformation which is the rotation through angle ϕ about \mathbf{b}_3 .

(See the figure, in which $\mathbf{w} = \mathcal{R}(\mathbf{v})$.)

Using
$$\phi = \frac{\pi}{6}$$
 and $\mathbf{b}_3 = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$:

- *I*. Find an orthonormal basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ for which $\mathbf{R}_{\mathcal{B}}$, the matrix for \mathcal{R} with respect to \mathcal{B} , is relatively simple and easily computed (hint: I gave you \mathbf{b}_3). Express each \mathbf{b}_k in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k} , and compute that matrix $\mathbf{R}_{\mathcal{B}}$.
- 2. Finding and using the appropriate unitary matrices, compute the matrix $\mathbf{R}_{\mathcal{A}}$ for \mathcal{R} with respect to the standard basis $\mathcal{A} = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$.
- 3. Find $\mathbf{w} = \mathcal{R}(\mathbf{v})$ where $\mathbf{v} = 1\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

- page 6
- **K.** (optional) "Linear functionals" and the "Riesz theorem":
 - 1. Let \mathcal{V} and \mathcal{W} be two vector spaces, and let $\mathcal{L}[\mathcal{V}, \mathcal{W}]$ denote the collection of all linear operators from \mathcal{V} into \mathcal{W} . Verify that $\mathcal{L}[\mathcal{V}, \mathcal{W}]$ is, itself, a vector space (with the "vectors" being the linear operators).²
 - A *linear functional* on a vector space V is simply a linear operator from V into C. In the terms given just above, a linear functional on V is one of the linear operators in L[V, C]. The space of all linear functionals on V (i.e., the space L[V, C]) is often called the *dual space of* V.
 - *a*. Let **g** be any fixed vector in \mathcal{V} and define the operator $\Gamma_{\mathbf{g}}$ by $\Gamma_{\mathbf{g}}(\mathbf{v}) = \langle \mathbf{g} | \mathbf{v} \rangle$. Show that $\Gamma_{\mathbf{g}}$ is a linear functional on \mathcal{V} .

Now assume \mathcal{V} is finite dimensional with orthonormal basis $\mathcal{B} = \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N \}$. Let Γ be any linear functional on \mathcal{V} and do the following:

- **b.** Determine the size of the matrix **G** for Γ , and give the formula for finding its entries.
- c. Show that there is a vector \mathbf{g} in \mathcal{V} such that

 $\Gamma(\mathbf{v}) = \langle \mathbf{g} | \mathbf{v} \rangle$ for each \mathbf{v} in \mathcal{V} .

(The Riesz theorem for finite-dimensional vector spaces is that, for each linear functional Γ on a finite-dimensional vector space \mathcal{V} with inner product, there is a corresponding vector \mathbf{g} in \mathcal{V} such that the above equation holds. You've just proven it! This theorem can be generalized to some (but not all) cases where \mathcal{V} is infinite dimensional. The cases where it can be generalized can be rather significant.)

L. (optional – assumes you've at least read the previous problem) Consider \mathcal{P} , the space of all polynomials with the energy norm inner product given in problem D, along with the integral operator \mathcal{J} defined by

$$\mathcal{J}(p(z)) = \int_0^1 p(x) \sqrt{x} \, dx \quad .$$

- **d.** Verify that \mathcal{J} is a linear functional on \mathcal{P} .
- e. Verify that there is no polynomial r such that

$$\mathcal{J}(p(z)) = \langle r | p \rangle$$
 for every $p \in \mathcal{P}^3$

(Hence, the Riesz theorem does not hold for \mathcal{P} .)

²Linear operators on this space are called *tensors*. They can be represented by "matrices of matrices".