\oplus

Chapter 7: The Exact Form and General Integrating Factors

7.1 a. By definition $\phi = 3xy$ is potential function for

$$M + N\frac{dy}{dx} = 0$$

if

$$M = \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} [3xy] = 3y$$
 and $N = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} [3xy] = 3x$.

So, $\phi = 3xy$ is potential function for

$$3y + 3x\frac{dy}{dx} = 0$$

An implicit solution is given by $\phi = c$; that is,

$$3xy = c$$

Solving this for y gives the explicit solution $y = \frac{c}{3x} = \frac{C}{x}$.

7.1 c. By definition $\phi = x^2y - xy^3$ is potential function for

$$M + N\frac{dy}{dx} = 0$$

if

$$M = \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left[x^2 y - x y^3 \right] = 2xy - y^3$$

and

$$N = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[x^2 y - x y^3 \right] = x^2 - 3x y^2$$

So, $\phi = x^2 y - x y^3$ is potential function for

$$2xy - y^{3} + \left[x^{2} - 3xy^{2}\right]\frac{dy}{dx} = 0$$

An implicit solution is given by $\phi = c$; that is,

$$x^2y - xy^3 = c$$

Solving this for *y* to obtain an explicit solution is, alas, not practical.

7.2 a. By subtracting the left side of the equation from both sides, and then multiplying both sides by 2xy,

To show this equation is exact with potential function $\phi = xy^2 - x^2$, we only need to show that $\frac{\partial \phi}{\partial x} = M$ and $\frac{\partial \phi}{\partial y} = N$ where *M* and *N* are as indicated above. Checking this, we see that

$$\frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left[xy^2 - x^2 \right] = y^2 - 2x = M$$

37

 \oplus

and

$$\frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[xy^2 - x^2 \right] = 2xy = N \quad ,$$

confirming the claim.

7.2 b. Starting with the implicit solution $\phi = c$,

$$xy^2 - x^2 = c \quad \longrightarrow \quad y^2 = \frac{x^2 + c}{x} = x + \frac{c}{x} \quad \longrightarrow \quad y = \pm \sqrt{x + \frac{c}{x}}$$

7.2 c. By definition, the equation $M + N^{dy}_{dx} = 0 \psi$ is in exact form and has potential function ψ if

$$\frac{\partial \psi}{\partial x} = e^{xy^2 - x^2} \left[y^2 - 2x \right]$$
 and $\frac{\partial \psi}{\partial y} = e^{xy^2 - x^2} 2xy$.

Computing the derivatives, we get that, in fact,

$$\frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} e^{xy^2 - x^2} = e^{xy^2 - x^2} \left[y^2 - 2x \right]$$

and

$$\frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y} e^{xy^2 - x^2} = e^{xy^2 - x^2} 2xy \quad ,$$

confirming the claim.

7.4 a. Here, the potential function $\phi(x, y)$ must satisfy the pair of equations

$$\frac{\partial \phi}{\partial x} = M(x, y) = 2xy + y^2$$
 and $\frac{\partial \phi}{\partial y} = N(x, y) = 2xy + x^2$.

Integrating the first equation with respect to x yields

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int \left[2xy + y^2 \right] dx = x^2 y + xy^2 + h(y) \qquad (\star)$$

where h(y) is a yet undetermined function of y. To determine this function, plug the last formula for ϕ into the second of the initial pair of equations:

	$\frac{\partial \phi}{\partial y} = 2xy + x^2$
\hookrightarrow	$\frac{\partial}{\partial y} \left[x^2 y + x y^2 + h(y) \right] = 2xy + x^2$
\hookrightarrow	$x^2 + 2xy + h'(y) = 2xy + x^2$
\hookrightarrow	h'(y) = 0 .

Hence, since h(y) is a function of y only,

$$h(y) = \int h'(y) \, dy = \int 0 \, dy = c_1 \quad ,$$

 \oplus

and formula (\star) for ϕ becomes

$$\phi(x, y) = x^2 y + x y^2 + h(y) = x^2 y + x y^2 + c_1$$

An implicit solution to the differential equation is then given by $\phi = c_2$,

$$x^2y + xy^2 + c_1 = c_2 \quad ,$$

which can be rewritten as

$$xy^{2} + x^{2}y + C = 0$$
 (with $c = c_{1} - c_{2}$)

Solving for y via the quadratic formula then yields the explicit solution

$$y(x) = \frac{-x^2 \pm \sqrt{(x^2)^2 - 4xc}}{2x} = -\frac{x}{2} \pm \frac{1}{2}\sqrt{x^2 + \frac{C}{x}}$$
.

7.4 c. Here, the potential function $\phi(x, y)$ must satisfy

$$\frac{\partial \phi}{\partial x} = M(x, y) = 2 - 2x$$
 and $\frac{\partial \phi}{\partial y} = N(x, y) = 3y^2$

Integrating the first equation with respect to x yields

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int [2 - 2x] dx = 2x - x^2 + h(y) \quad . \tag{(\star)}$$

Combining this formula for ϕ with the second of the initial pair of equations:

$$3y^2 = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[2x - x^2 + h(y) \right] = h'(y)$$

Hence,

$$h(y) = \int h'(y) \, dy = \int 3y^2 \, dy = y^3 + c_1$$

and formula (\star) for ϕ becomes

$$\phi(x, y) = 2x - x^{2} + h(y) = 2x - x^{2} + y^{3} + c_{1}$$

An implicit solution to the differential equation is then given by $\phi = c_2$,

$$2x - x^2 + y^3 + c_1 = c_2$$

Solving for *y* then yields the explicit solution

$$y(x) = (x^2 - 2x + C)^{1/3}$$

7.4 e. Here, the potential function $\phi(x, y)$ must satisfy

$$\frac{\partial \phi}{\partial x} = M(x, y) = 4x^3 y$$
 and $\frac{\partial \phi}{\partial y} = N(x, y) = x^4 - y^4$.

Integrating the first equation with respect to x yields

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int 4x^3 y dx = x^4 y + h(y) \quad . \tag{(*)}$$

Combining this formula for ϕ with the second of the initial pair of equations:

$$x^4 - y^4 = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[x^4 y + h(y) \right] = x^4 + h'(y)$$

Hence, $h'(y) = -y^4$,

$$h(y) = \int h'(y) \, dy = -\int y^4 \, dy = -\frac{1}{5}y^5 + c_1 \quad ,$$

and formula (\star) for ϕ becomes

$$\phi(x, y) = x^4 y + h(y) = x^4 y - \frac{1}{5} y^5 + c_1$$

An implicit solution to the differential equation is then given by $\phi = c_2$, which, after combining arbitrary constants, is

$$x^4y - \frac{1}{5}y^5 = c$$

Solving this for an explicit solution *y* is not practical.

7.4 g. Here, the potential function $\phi(x, y)$ must satisfy

$$\frac{\partial \phi}{\partial x} = M(x, y) = 1 + e^y$$
 and $\frac{\partial \phi}{\partial y} = N(x, y) = xe^y$.

Integrating the first equation with respect to x yields

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int \left[1 + e^y\right] dx = x + x e^y + h(y) \quad . \tag{(*)}$$

Combining this formula for ϕ with the second of the initial pair of equations:

$$xe^y = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[x + xe^y + h(y) \right] = xe^y + h'(y)$$
.

Hence, h'(y) = 0,

$$h(y) = \int h'(y) \, dy = \int 0 \, dy = c_1$$

and formula (\star) for ϕ becomes

$$\phi(x, y) = x + xe^{y} + h(y) = x + xe^{y} + c_{1}$$

An implicit solution to the differential equation is then given by $\phi = c_2$, which, after combining arbitrary constants, is

$$x + xe^y = c$$

Solving for y then yields the explicit solution $y(x) = \ln \left| \frac{c-x}{x} \right|$.

7.5 a. For part i: For $M + N^{dy}_{dx} = 0$ to be in exact form, we must have

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

 \oplus

Here

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[1 + y^4 \right] = 4y^3$$
 and $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[xy^3 \right] = y^3$

So $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, telling us the equation is not in exact form.

For part ii: We need to find a function $\mu = \mu(x, y)$ such that

$$\frac{\partial}{\partial y} \left[\mu M \right] = \frac{\partial}{\partial x} \left[\mu N \right]$$

For this problem, this equation is

$$\frac{\partial}{\partial y} \left[\mu \left[1 + y^4 \right] \right] = \frac{\partial}{\partial x} \left[\mu \left[x y^3 \right] \right]$$

Let us see if the integrating factor μ can be a function of x only, $\mu = \mu(x)$:

$$\longleftrightarrow \qquad \qquad \frac{d\mu}{dx}xy^3 = 3\mu(x)y^3$$

$$\hookrightarrow$$
 $\frac{d\mu}{dx} = \frac{3\mu(x)}{x}$.

The last equation is a differential equation for $\mu(x)$ not involving the variable y. A solution (easily found by treating this as a separable or linear differential equation) is

$$\mu(x) = x^3$$

This is what we can use as an integrating factor.

For part iii: Multiplying the given differential equation by the integrating factor μ just found:

$$x^{3}\left[1 + y^{4} + xy^{3}\frac{dy}{dx}\right] = x^{3} \cdot 0$$

$$\Leftrightarrow \qquad x^{3}\left[1 + y^{4}\right] + x^{4}y^{3}\frac{dy}{dx} = 0 \quad .$$

Any potential function ϕ of this equation must satisfy

$$\frac{\partial \phi}{\partial x} = x^3 \left[1 + y^4 \right]$$
 and $\frac{\partial \phi}{\partial y} = x^4 y^3$. (*)

Integrating the first equation with respect to x:

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int x^3 \left[1 + y^4 \right] dx = \frac{1}{4} x^4 \left[1 + y^4 \right] + h(y) \quad .$$

Combining this result with the second equation in (\star) :

$$x^{4}y^{3} = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[\frac{1}{4}x^{4} \left[1 + y^{4} \right] + h(y) \right] = x^{4}y^{3} + h'(y)$$

$$\longleftrightarrow \qquad h'(y) = 0 \quad \rightarrowtail \quad h(y) = \int 0 \, dy = c_{1} \quad .$$

41

 \oplus

So the potential function is

$$\phi(x, y) = \frac{1}{4}x^4 \left[1 + y^4 \right] + h(y) = \frac{1}{4}x^4 \left[1 + y^4 \right] + c_1 \quad ,$$

and an implicit solution to the given differential equation is

$$\frac{1}{4}x^4 \left[1 + y^4 \right] + c_1 = c_2 \quad .$$

which we rewrite as

$$x^4 \left[1 + y^4 \right] = C \quad .$$

Solving this for y then yields $y(x) = \pm \left(Cx^{-4} - 1\right)^{1/4}$.

7.5 c. For part i: Here

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[2x^{-1}y \right] = 2x^{-1}$$

and

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[4x^2 y - 3 \right] = 8xy$$

So $\partial M_{\partial y} \neq \partial N_{\partial x}$, telling us the equation is not in exact form.

For part ii: We need to find a function $\mu = \mu(x, y)$ such that

$$\frac{\partial}{\partial y} \Big[2\mu x^{-1} y \Big] = \frac{\partial}{\partial y} [\mu M] = \frac{\partial}{\partial x} [\mu N] = \frac{\partial}{\partial x} \Big[\mu \Big[4x^2 y - 3 \Big] \Big] \quad .$$

Let us see if an integrating factor μ can be a function of x only, $\mu = \mu(x)$:

In this case, we clearly cannot cancel out the y variable, and cannot obtain a differential equation for $\mu = \mu(x)$ in terms of x and μ only. So there is not an integrating factor of x alone.

Attempting to find an integrating factor of y only, $\mu = \mu(y)$:

$$\frac{\partial}{\partial y} \left[\mu(y) \left[2x^{-1}y \right] \right] = \frac{\partial}{\partial x} \left[\mu(y) \left[4x^2y - 3 \right] \right]$$

$$\hookrightarrow \qquad \frac{d\mu}{dy} \left[2x^{-1}y \right] + \mu(y) \left[2(y)x^{-1} \right] = \mu(y) \left[8xy \right]$$

$$\hookrightarrow \qquad \qquad \frac{d\mu}{dy} \left[2x^{-1}y \right] = \mu(y) \left[8xy - 2x^{-1} \right]$$

$$\frac{d\mu}{dy} = \mu(y) \left[4x^2 - y^{-1} \right]$$

 \oplus

Since we clearly cannot obtain a differential equation for $\mu = \mu(y)$ in terms of y and μ only, there is not an integrating factor of y alone.

Finally, let us attempt to find an integrating factor of the form $\mu = \mu(x, y) = x^{\alpha} y^{\beta}$:

$$\frac{\partial}{\partial y} \left[\mu \left[2x^{-1}y \right] \right] = \frac{\partial}{\partial x} \left[\mu \left[4x^2y - 3 \right] \right]$$

$$\hookrightarrow \qquad \frac{\partial}{\partial y} \left[x^{\alpha}y^{\beta} \left[2x^{-1}y \right] \right] = \frac{\partial}{\partial x} \left[x^{\alpha}y^{\beta} \left[4x^2y - 3 \right] \right]$$

$$\hookrightarrow \qquad \frac{\partial}{\partial y} \left[2x^{\alpha-1}y^{\beta+1} \right] = \frac{\partial}{\partial x} \left[4x^{\alpha+2}y^{\beta+1} - 3x^{\alpha}y^{\beta} \right]$$

$$\hookrightarrow \qquad 2(\beta+1)x^{\alpha-1}y^{\beta} = 4(\alpha+2)x^{\alpha+1}y^{\beta+1} - 3\alpha x^{\alpha-1}y^{\beta} \quad .$$

Combining like terms yields

$$[2(\beta+1)+3\alpha] x^{\alpha-1} y^{\beta} - 4(\alpha+2) x^{\alpha+1} y^{\beta+1} = 0 ,$$

which requires that

$$2(\beta + 1) + 3\alpha = 0$$
 and $-4(\alpha + 2) = 0$,

and from which it follows that

$$\alpha = -2$$
 and $\beta = -1 - \frac{3}{2}\alpha = -1 - \frac{3}{2}(-2) = 2$.

So,

$$\mu = \mu(x, y) = x^{\alpha} y^{\beta} = x^{-2} y^2$$

For part iii: Multiplying the given differential equation by the integrating factor μ just found:

$$x^{-2}y^{2}\left[2x^{-1}y + [4x^{2}y - 3]\frac{dy}{dx}\right] = x^{-2}y^{2} \cdot 0$$

$$\Rightarrow \qquad 2x^{-3}y^{3} + [4y^{3} - 3x^{-2}y^{2}]\frac{dy}{dx} = 0 \quad .$$

Any potential function ϕ of this equation must satisfy

$$\frac{\partial \phi}{\partial x} = 2x^{-3}y^3$$
 and $\frac{\partial \phi}{\partial y} = 4y^3 - 3x^{-2}y^2$. (*)

Integrating the first with respect to *x* :

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int 2x^{-3}y^3 dx = -x^{-2}y^3 + h(y)$$

Combining this result with the second equation in (\star) :

$$4y^{3} - 3x^{-2}y^{2} = \frac{\partial\phi}{\partial y} = \frac{\partial}{\partial y} \left[-x^{-2}y^{3} + h(y) \right]$$

$$\hookrightarrow \qquad 4y^3 - 3x^{-2}y^2 = -3x^{-2}y^2 + h'(y)$$

$$\hookrightarrow \qquad h'(y) = 4y^3 \quad \rightarrowtail \quad h(y) = \int 4y^3 \, dy = y^4 + c_1 \quad .$$

43

 \oplus

So the potential function is

$$\phi(x, y) = -x^{-2}y^3 + h(y) = -x^{-2}y^3 + h(y) = -x^{-2}y^3 + y^4 + c_1$$

and an implicit solution to the given differential equation is

$$-x^{-2}y^3 + y^4 + c_1 = c_2$$

which we rewrite as

$$y^4 - x^{-2}y^3 = c ,$$

but will not attempt to solve for y.

7.5 e. For part i: Here

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[3y + 3y^2 \right] = 3 + 6y$$

and

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[2x + 4xy \right] = 2 + 4y$$

So $\partial M/\partial y \neq \partial N/\partial x$, telling us the equation is not in exact form.

For part ii: We need to find a function $\mu = \mu(x, y)$ such that

$$\frac{\partial}{\partial y} \left[\mu \left[3y + 3y^2 \right] \right] = \frac{\partial}{\partial y} \left[\mu M \right] = \frac{\partial}{\partial x} \left[\mu N \right] = \frac{\partial}{\partial x} \left[\mu \left[2x + 4xy \right] \right] .$$

Let us see if an integrating factor μ can be a function of x only, $\mu = \mu(x)$:

The last equation is a differential equation for $\mu(x)$ not involving the variable y. A solution (easily found by treating this as a separable or linear differential equation) is

$$\mu(x) = x^{1/2}$$

This is what we can use as an integrating factor.

For part iii: Multiplying the given differential equation by the integrating factor μ just found:

$$x^{1/2} \left[3y + 3y^{2} + [2x + 4xy] \frac{dy}{dx} \right] = x^{1/2} \cdot 0$$

$$\Rightarrow \qquad 3x^{1/2} \left[y + y^{2} \right] + 2x^{3/2} [1 + 2y] \frac{dy}{dx} = 0 \quad .$$

44

 \oplus

Any potential function ϕ of this equation must satisfy

$$\frac{\partial \phi}{\partial x} = 3x^{1/2} \left[y + y^2 \right]$$
 and $\frac{\partial \phi}{\partial y} = 2x^{3/2} \left[1 + 2y \right]$ (*)

Integrating the first equation with respect to x:

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int 3x^{1/2} \left[y + y^2 \right] dx = 2x^{3/2} \left[y + y^2 \right] + h(y)$$

Combining this result with the second equation in (\star) :

$$2x^{3/2}[1+2y] = \frac{\partial\phi}{\partial y} = \frac{\partial}{\partial y} \left[2x^{3/2}\left[y+y^2\right]+h(y)\right]$$
$$2x^{3/2}[1+2y] = 2x^{3/2}[1+2y] + h'(y)$$

 \hookrightarrow

$$\Rightarrow \qquad h'(y) = 0 \implies h(y) = \int 0 \, dy = c_1 \quad .$$

So the potential function is

$$\phi(x, y) = 2x^{3/2} \left[y + y^2 \right] + h(y) = 2x^{3/2} \left[y + y^2 \right] + c_1 \quad ,$$

and an implicit solution to the given differential equation is

$$-2x^{3/2}\left[y+y^2\right] + c_1 = c_2$$

which we rewrite as

$$2y^2 + 2y + cx^{-3/2} = 0$$

so that we can solve for y using the quadratic formula,

$$y(x) = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2cx^{-3/2}}}{2 \cdot 2} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{1 + Cx^{-3/2}}$$

7.5 g. For part i:

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[2y^3 \right] = 6y^2$$

and

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[4x^3y^3 - 3xy^2 \right] = 12x^2y^3 - 3y^2$$

So $\partial M/\partial y \neq \partial N/\partial x$, telling us the equation is not in exact form.

For part ii: We need to find a function $\mu = \mu(x, y)$ such that

$$\frac{\partial}{\partial y} \Big[2\mu y^3 \Big] = \frac{\partial}{\partial y} [\mu M] = \frac{\partial}{\partial x} [\mu N] = \frac{\partial}{\partial x} \Big[\mu \Big[4x^3 y^3 - 3x y^2 \Big] \Big]$$

Let us see if an integrating factor μ can be a function of x only, $\mu = \mu(x)$:

45

0

 \oplus

$$\hookrightarrow \qquad \frac{d\mu}{dx} \left[4x^3y^3 - 3xy^2 \right] = -\mu(x) \left[4x^2y^3 - 3y^2 - 6y^2 \right]$$

$$\hookrightarrow \qquad \frac{d\mu}{dx} \left[4x^3y^3 - 3xy^2 \right] = -3\mu(x) \left[4x^2y^3 - 3y^2 \right]$$

$$\hookrightarrow \qquad \qquad \frac{d\mu}{dx} = -3\mu(x) \quad .$$

The last equation does not contain the variable y, and is a simple differential equation for $\mu(x)$. A solution (easily found by treating this as a separable or linear differential equation) is

$$\mu(x) = x^{-3}$$

This is what we can use as an integrating factor.

For part iii: Multiplying the given differential equation by the integrating factor μ just found:

$$x^{-3} \left[2y^3 + \left[4x^3y^3 - 3xy^2 \right] \frac{dy}{dx} \right] = x^{-3}$$

$$\hookrightarrow \qquad 2x^{-3}y^3 + \left[4y^3 - 3x^{-2}y^2 \right] \frac{dy}{dx} = 0 \quad .$$

Any potential function ϕ of this equation must satisfy

$$\frac{\partial \phi}{\partial x} = 2x^{-3}y^3$$
 and $\frac{\partial \phi}{\partial y} = 4y^3 - 3x^{-2}y^2$. (*)

Integrating the first equation with respect to x:

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx = \int 2x^{-3}y^3 dx = -x^{-2}y^3 + h(y) \quad .$$

Combining this result with the second equation in (\star) :

$$4y^{3} - 3x^{-2}y^{2} = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left[-x^{-2}y^{3} + h(y) \right]$$
$$4y^{3} - 3x^{-2}y^{2} = -3x^{-2}y^{2} + h'(y)$$

 \hookrightarrow

$$\hookrightarrow \qquad h'(y) = 4y^3 \quad \rightarrowtail \quad h(y) = \int 4y^3 \, dy = y^4 + c_1 \quad .$$

So the potential function is

$$\phi(x, y) = -x^{-2}y^3 + h(y) = -x^{-2}y^3 + y^4 + c_1$$

and an implicit solution to the given differential equation is

$$-x^{-2}y^3 + y^4 + c_1 = c_2 \quad ,$$

which we rewrite as

$$y^4 - x^{-2}y^3 = c ,$$

but will not attempt to solve for y.

 \oplus

7.5 i. For part i: Here

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[6 + 12x^2 y^2 \right] = 24x^2 y$$

and

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[7x^3y + xy^{-1} \right] = 21x^2y + y^{-1}$$

So $\partial M/\partial y \neq \partial N/\partial x$, telling us the equation is not in exact form.

For part ii: We need to find a function $\mu = \mu(x, y)$ such that

$$\frac{\partial}{\partial y} \left[\mu \left[6 + 12x^2 y^2 \right] \right] = \frac{\partial}{\partial y} \left[\mu M \right] = \frac{\partial}{\partial x} \left[\mu N \right] = \frac{\partial}{\partial x} \left[\mu \left[7x^3 y + xy^{-1} \right] \right] .$$

Let us see if an integrating factor μ can be a function of x only, $\mu = \mu(x)$:

In this case, we clearly cannot cancel out the y variable, and cannot obtain a differential equation for $\mu = \mu(x)$ in terms of x and μ only. So there is not an integrating factor of x alone.

Attempting to find an integrating factor of y only, $\mu = \mu(y)$:

$$\frac{\partial}{\partial y} \left[\mu(y) \left[6 + 12x^2 y^2 \right] \right] = \frac{\partial}{\partial x} \left[\mu(y) \left[7x^3 y + xy^{-1} \right] \right]$$

$$\hookrightarrow \quad \frac{d\mu}{dy} \left[6 + 12x^2 y^2 \right] + \mu(y) \left[24x^2 y \right] = \mu(y) \left[21x^2 y + y^{-1} \right]$$

$$\hookrightarrow \qquad \qquad \frac{d\mu}{dy} \left[6 + 12x^2 y^2 \right] = \mu(y) \left[y^{-1} - 3x^2 y \right] \quad .$$

Since we clearly cannot obtain a differential equation for $\mu = \mu(y)$ in terms of y and μ only, there is not an integrating factor of y alone.

Finally, let's attempt to find an integrating factor of the form $\mu = x^{\alpha} y^{\beta}$:

$$\frac{\partial}{\partial y} \Big[\mu \Big[6 + 12x^2 y^2 \Big] \Big] = \frac{\partial}{\partial x} \Big[\mu \Big[7x^3 y + xy^{-1} \Big] \Big]$$

$$\hookrightarrow \quad \frac{\partial}{\partial y} \Big[x^{\alpha} y^{\beta} \Big[6 + 12x^2 y^2 \Big] \Big] = \frac{\partial}{\partial x} \Big[x^{\alpha} y^{\beta} \Big[7x^3 y + xy^{-1} \Big] \Big]$$

$$\hookrightarrow \quad \frac{\partial}{\partial y} \Big[6x^{\alpha} y^{\beta} + 12x^{\alpha+2} y^{\beta+2} \Big] = \frac{\partial}{\partial x} \Big[7x^{\alpha+3} y^{\beta+1} + x^{\alpha+1} y^{\beta-1} \Big]$$

$$\hookrightarrow \quad 6\beta x^{\alpha} y^{\beta-1} + 12(\beta+2)x^{\alpha+2} y^{\beta+1}$$

$$= 7(\alpha+3)x^{\alpha+2} y^{\beta+1} + (\alpha+1)x^{\alpha} y^{\beta-1}$$

47

 \oplus

Combining like terms yields

$$[\alpha - 6\beta + 1] x^{\alpha} y^{\beta - 1} + [7\alpha - 12\beta - 3] x^{\alpha + 2} y^{\beta + 1} = 0$$

which requires that

 $\alpha - 6\beta + 1 = 0$ and $7\alpha - 12\beta - 3 = 0$.

Solving for α and β :

$$\alpha - 6\beta + 1 = 0 \quad \text{and} \quad 7\alpha - 12\beta - 3 = 0$$

$$\leftrightarrow \qquad \alpha = 6\beta - 1 \quad \text{and} \quad 7(6\beta - 1) - 12\beta = 3$$

$$\leftrightarrow \qquad \alpha = 6\beta - 1 \quad \text{and} \quad \beta = \frac{3+7}{7\cdot 6-12} = \frac{1}{3}$$

$$\leftrightarrow \qquad \alpha = 6 \cdot \frac{1}{3} - 1 = 1 \quad \text{and} \quad \beta = \frac{1}{3} \quad .$$

So,

$$\mu = x^{\alpha} y^{\beta} = x y^{1/3}$$

For part iii: Multiplying the given differential equation by the integrating factor μ just found:

$$xy^{1/3} \left[6 + 12x^2y^2 + \left[7x^3y + \frac{x}{y} \right] \frac{dy}{dx} \right] = xy^{1/3} \cdot 0$$

$$\longleftrightarrow \qquad 6xy^{1/3} + 12x^3y^{7/3} + \left[7x^4y^{4/3} + x^2y^{-2/3} \right] \frac{dy}{dx} = 0 \quad .$$

Any potential function ϕ of this equation must satisfy

$$\frac{\partial \phi}{\partial x} = 6xy^{1/3} + 12x^3y^{7/3}$$
 and $\frac{\partial \phi}{\partial y} = 7x^4y^{4/3} + x^2y^{-2/3}$. (*)

Integrating the first equation with respect to *x* :

$$\phi(x, y) = \int \frac{\partial \phi}{\partial x} dx$$

= $\int \left[6xy^{1/3} + 12x^3y^{7/3} \right] dx = 3x^2y^{1/3} + 3x^4y^{7/3} + h(y)$

Combining this result with the second equation in (\star) :

$$7x^{4}y^{4/3} + x^{2}y^{-2/3} = \frac{\partial\phi}{\partial y} = \frac{\partial}{\partial y} \left[3x^{2}y^{1/3} + 3x^{4}y^{7/3} + h(y) \right]$$

$$\Rightarrow \qquad 7x^{4}y^{4/3} + x^{2}y^{-2/3} = x^{2}y^{-2/3} + 7x^{4}y^{4/3} + h'(y)$$

$$\Rightarrow \qquad h'(y) = 0 \implies h(y) = \int 0 \, dy = c_1 \quad .$$

So the potential function is

$$\phi(x, y) = 3x^2y^{1/3} + 3x^4y^{7/3} + h(y) = 3x^2y^{1/3} + 3x^4y^{7/3} + c_1 ,$$

 \oplus

and an implicit solution to the given differential equation is

$$3x^2y^{1/3} + 3x^4y^{7/3} + c_1 = c_2 \quad ,$$

which we rewrite as

$$x^2 y^{1/3} + x^4 y^{7/3} = c \quad .$$

but will not attempt to solve for y.

7.6 a. If

$$\mu = \mu(x) = e^{\int P(x) dx}$$
 with $P = P(x) = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$

then

$$\frac{\partial}{\partial y} \left[\mu M \right] = \frac{\partial}{\partial y} \left[e^{\int P(x) \, dx} M(x, y) \right] = e^{\int P(x) \, dx} \frac{\partial M}{\partial y} = \mu \frac{\partial M}{\partial y}$$

and

$$\begin{split} \frac{\partial}{\partial x} \left[\mu N \right] &= \frac{\partial}{\partial x} \left[e^{\int P(x) \, dx} N(x, y) \right] \\ &= \left[e^{\int P(x) \, dx} P(x) \right] N(x, y) \, + \, e^{\int P(x) \, dx} \frac{\partial N}{\partial x} \\ &= e^{\int P(x) \, dx} \left[PN + \frac{\partial N}{\partial x} \right] \\ &= \mu \left[\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) N + \frac{\partial N}{\partial x} \right] \\ &= \mu \left[\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) + \frac{\partial N}{\partial x} \right] = \mu \frac{\partial M}{\partial y} \quad . \end{split}$$

Thus,

$$\frac{\partial}{\partial y} \left[\mu M \right] = \frac{\partial}{\partial x} \left[\mu N \right]$$

which, according to the complete test for exactness (Theorem 7.4 on page 137 of the text), ensures that the given μ is an integrating factor for the given equation.

49

 \oplus

 \oplus

 \oplus