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Chapter 6: Simplifying Through Substitution

6.1 a. Let u = 3x + 3y + 2 . Solving for y and computing y′ , we then see that

3y = u − 3x − 2 ֌ y = u

3
− x − 2

3

and
dy

dx
= d

dx

[

u

3
− x − 2

3

]

= 1

3

du

dx
− 1 .

Substituting this into the differential equation and solving for u , we have

dy

dx
= 1

(3x + 3y + 2)2
֌

1

3

du

dx
− 1 = 1

u2

→֒ 1

3

du

dx
= 1

u2
+ 1 = 1

u2
+ u2

u2
= 1 + u2

u2

→֒ u2

1 + u2

du

dx
= 3 ֌

∫

u2

1 + u2

du

dx
dx =

∫

3 dx

→֒
∫

u2

1 + u2
du = 3x + c . (⋆)

Computing the last integral (and ignoring the arbitrary constant):

∫

u2

1 + u2
du =

∫

1 + u2 − 1

1 + u2
du

=
∫ [

1 − 1

u2 + 1

]

du = u − arctan(u) .

So equation (⋆) becomes

u − arctan(u) = 3x + c ,

which cannot be solved for u . So we now replace each u with its formula in terms of y

from the original substitution ( u = 3x + 3y + 2 ), and simplify the resulting equation as

much as practical:

3x + 3y + 2 − arctan(3x + 3y + 2) = 3x + c

→֒ arctan(3x + 3y + 2) = 3y + 2 + c = 3y + C

→֒ 3x + 3y + 2 = tan(3y + C) .

6.1 c. Using the substitution u = 4y − 8x + 3 we have

y = 1

4
[u + 8x − 3] = u

4
+ 2x − 3

4
,

dy

dx
= 1

4

du

dx
+ 2 ,

and

cos(4y − 8x + 3)
dy

dx
= 2 + 2 cos(4y − 8x + 3)

→֒ cos(u)

[

1

4

du

dx
+ 2

]

= 2 + 2 cos(u)
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→֒ 1

4
cos(u)

du

dx
+ 2 cos(u) = 2 + 2 cos(u) ֌ cos(u)

du

dx
= 8

→֒
∫

cos(u)
du

dx
dx =

∫

8 dx ֌ sin(u) = 8x + c

→֒ u = arcsin(8x + c) .

Plugging the last formula for u into the formula for y based on the original substitution

yields the final answer,

y = 1

4
[u + 8x − 3]

= 1

4
[arcsin(8x + c) + 8x − 3] = 1

4
arcsin(8x + c) + 2x − 3

4
.

6.3 a. Rewriting the differential equation:

x2 dy

dx
− xy = y2

֌
dy

dx
= y

x
+

(

y

x

)2

.

Since the equation is homogeneous, our substitution is based on u = y

x
, from which we

derive

y = xu and
dy

dx
= d

dx
[xu] = dx

dx
· u + x

du

dx
= u + x

du

dx
.

Using this with our differential equation:

dy

dx
= y

x
+

(

y

x

)2
֌ u + x

du

dx
= u + u2

֌
du

dx
= u2

x
.

Obviously, u = 0 is the only constant solution, which, in turn, also yields

y = xu = x · 0 = 0

as a constant solution to the original equation. For the other solutions:

du

dx
= u2

x
֌ u−2 du

dx
= 1

x
֌

∫

u−2 du

dx
dx =

∫

1

x
dx

→֒ −u−1 = ln |x | + c ֌ u = −1

ln |x | + c
.

This, along with our formula for y in terms of u , yields

y = xu = x

[

−1

ln |x | + c

]

= −x

ln |x | + c
,

which, along with y = 0 , describes all the solutions.

6.3 c. The substitution: u = y

x
֌ y = xu

→֒ dy

dx
= d

dx
[xu] = u + x

du

dx
.
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So,

cos
(

y

x

) [

dy

dx
− y

x

]

= 1 + sin
(

y

x

)

→֒ cos(u)
[(

u + x
du

dx

)

− u
]

= 1 + sin(u)

→֒ du

dx
= 1 + sin(u)

x cos(u)

The constant solutions of this are given by those values of u where 1 + sin(u) = 0 ; that is,

u = arcsin(−1) = 2nπ − π

2
for n = 0, ±1, ±2, . . . .

For the nonconstant solutions:

du

dx
= 1 + sin(u)

x cos(u)
֌

cos(u)

1 + sin(u)

du

dx
= 1

x

→֒
∫

cos(u)

1 + sin(u)

du

dx
dx =

∫

1

x
dx ֌ ln |1 + sin(u)| = ln |x | + c

→֒ 1 + sin(u) = ±eln|x |+c = Ax ֌ u = arcsin(Ax − 1) .

Note that the last formula for u also yields the constant solutions. So all the solutions to our

original differential equation are given by

y = xu = x arcsin(Ax − 1) .

6.5 a. First, observe that y = 0 is clearly a constant solution.

Here, n = 3 (from the 3y3 term). So the substitution is based on u = y1−3 = y−2 . Hence,

we also have

y = ±u−1/2 and
dy

dx
= d

dx

[

±u−1/2

]

= ±
[

−1

2
u−3/2

du

dx

]

.

Using this substitution:

dy

dx
+ 3y = 3y3

֌ − 1

2
u−3/2

du

dx
+ 3u−1/2 = 3

(

u−1/2

)3

→֒
(

−2u
3/2

) [

−1

2
u−3/2

du

dx
+ 3u−1/2 = 3u−3/2

]

→֒ du

dx
− 6u = −6 .

The integrating factor for the last differential equation is

µ(x) = e
∫

(−6) dx = e−6x

Using this with the last differential equation, above:

e−6x
[

du

dx
− 6u = −6

]

֌ e−6x du

dx
− 6e−6x u = −6e−6x

→֒ d

dx

[

e−6x u
]

= −6e−6x
֌ e−6x u = −

∫

6e−6x dx = e−6x + c

→֒ u = 1 + ce6x .
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This with the original substitution then gives

y = ±u−1/2 = ±
(

1 + ce6x
)−1/2

.

So any solution to the original differential equation is given by the above formula for y or

y = 0 .

6.5 c. Again, we note that y = 0 is a solution.

The substitution:

u = y1−2/3 = y
1/3 ֌ y = u3

֌
dy

dx
= 3u2 du

dx
.

Using the substitution to find the linear equation for u :

dy

dx
+ 3 cot(x)y = 6 cos(x)y

2/3

→֒ 3u2 du

dx
+ 3 cot(x)u3 = 6 cos(x)

(

u3
)2/3

→֒ du

dx
+ cot(x)u = 2 cos(x) .

The integrating factor is given by

µ(x) = e
∫

cot(x) dx = exp

(
∫

cos(x)

sin(x)
dx

)

= exp(ln |sin(x)|) = |sin(x)| .

As noted in Chapter 5, we can simply use µ = sin(x) . Doing so:

sin(x)
[

du

dx
+ cot(x)u = 2 cos(x)

]

→֒ d

dx
[sin(x)u] = 2 sin(x) cos(x)

→֒ sin(x)u =
∫

2 sin(x) cos(x) dx = sin2(x) + c

→֒ u = sin(x) + c

sin(x)

→֒ y = u3 =
(

sin(x) + c

sin(x)

)3

.

The last equation, along with y = 0 , describes all solutions to our original differential

equation.

6.7 a. This is obviously in the form

dy

dx
= formula of

y

x
.

So it is a homogeneous equation, and we use the corresponding substitution,

u = y

x
, y = xu and

dy

dx
= d

dx
[xu] = u + x

du

dx
.
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Doing so:

dy

dx
= y

x
+

(

x

y

)2

֌ u + x
du

dx
= u + u−2

→֒ u2 du

dx
= 1

x
֌

∫

u2 du

dx
dx =

∫

1

x
dx

→֒ 1

3
u3 = ln |x | + c ֌ u = (3 ln |x | + 3c)

1/3

→֒ y = xu = x (3 ln |x | + C)
1/3 .

6.7 c. Since the equation is
dy

dx
+ 2

x
y = 4y

1/2 ,

it is a Bernoulli equation with n = 1/2 . One solution is y = 0 . The others are obtained

using the substitution

u = y1−1/2 = y
1/2 .

Hence,

y = u2 ,
dy

dx
= 2u

du

dx
,

and
dy

dx
+ 2

x
y = 4y

1/2 ֌ 2u
du

dx
+ 2

x
u2 = 4

(

u2
)1/2

→֒ du

dx
+ 1

x
u = 2 .

The integrating factor is µ(x) = e

∫

1/x dx = · · · = x .

So
du

dx
+ 1

x
u = 2 ֌ x

[

du

dx
+ 1

x
u = 2

]

→֒ d

dx
[xu] = 2x ֌ xu =

∫

2x dx = x2 + c

→֒ u = x + c

x
֌ y = u2 =

(

x + c

x

)2
.

6.7 e. The y − x factor suggests using the linear substitution u = y − x . Then

y = u + x and
dy

dx
= d

dx
[u + x] = du

dx
+ 1 .

Using this,

(y − x)
dy

dx
= 1 ֌ u

[

du

dx
+ 1

]

= 1

→֒ u
du

dx
= 1 − u ֌

du

dx
= 1 − u

u
.

Note that the derivative of u is zero if and only if u = 1 . So u = 1 is the only constant

solution to this last equation. The corresponding solution to the original equation is then

y = u + x = 1 + x .
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For the other solutions, we’ll need

∫

u

1 − u
du = −

∫

1 − u − 1

1 − u
du

= −
∫

[

1 − 1

1 − u

]

du = −u − ln |1 − u| + C .

Back to the last differential equation above:

du

dx
= 1 − u

u
֌

u

1 − u

du

dx
= 1

→֒
∫

u

1 − u

du

dx
dx =

∫

1 dx ֌ − u − ln |1 − u| = x + c

→֒ −(y − x) − ln |1 − (y − x)| = x + c

→֒ ln |1 − y + x | = −c − y .

→֒ 1 − y + x = ±e−c−y = Ae−y
֌ y = 1 + x − Ae−y .

This last equation describes all solutions since it does reduce to the solution y(x) = 1 + x

when A = 0 .

6.7 g.
(

2xy + 2x2
)

dy

dx
= x2 + 2xy + 2y2

→֒ dy

dx
= x2 + 2xy + 2y2

2xy + 2x2
=

x2

[

1 + 2
y

x
+ 2

(

y

x

)2
]

x2
[

2
y

x
+ 2

] =
1 + 2

y

x
+ 2

(

y

x

)2

2
y

x
+ 2

.

So the equation is homogeneous, and we use the substitution u = y

x
.

Hence

y = xu ,
dy

dx
= d

dx
[xu] = u + x

du

dx
,

and

dy

dx
=

1 + 2
y

x
+ 2

(

y

x

)2

2
y

x
+ 2

֌ u + x
du

dx
= 1 + 2u + 2u2

2u + 2

→֒ x
du

dx
= 1 + 2u + 2u2

2u + 2
− u = 1 + 2u + 2u2

2u + 2
− 2u2 + 2u

2u + 2
= 1

2u + 2

→֒ (2u + 2)
du

dx
= 1

x
֌

∫

(2u + 2)
du

dx
dx =

∫

1

x
dx

→֒ u2 + 2u = ln |x | + c

→֒ u2 + 2u − (ln |x | + c) = 0
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→֒ u = −2 ±
√

22 − 4[−(ln |x | + c)]
2

= −1 ±
√

ln |x | + C

→֒ y = xu = x
[

−1 ±
√

ln |x | + C
]

= −x ± x
√

ln |x | + C .

6.7 i. Clearly, the substitution u = 2x + y − 3 is in order. With this,

y = u − 2x + 3 ,
dy

dx
= d

dx
[u − 2x + 3] = du

dx
− 2 ,

and
dy

dx
= 2

√

2x + y − 3 − 2 ֌
du

dx
− 2 = 2

√
u − 2

→֒ du

dx
= 2

√
u .

Note that this last equation has one constant solution u = 0 . Corresponding to this is the

solution to the original equation

y = u − 2x + 3 = 0 − 2x + 3 = 3 − 2x .

For the other solutions, we continue the above computations:

du

dx
=

√
u ֌

∫

u−1/2
du

dx
dx =

∫

2 dx

→֒ 2u
1/2 = 2x + C ֌ u = (x + c)2

→֒ y = u − 2x + 3 = (x + c)2 − 2x + 3 .

So each solution is given by either the last formula or by y = 3 − 2x .

6.7 k. x
dy

dx
− y =

√

xy + x2

→֒ dy

dx
= y +

√

xy + x2

x
֌

dy

dx
= y

x
+

(

y

x
+ 1

)1/2
.

So the equation is homogeneous, and we use the substitution u = y

x
.

Hence

y = xu ,
dy

dx
= d

dx
[xu] = u + x

du

dx
,

and
dy

dx
= y

x
+

(

y

x
+ 1

)1/2
֌ u + x

du

dx
= u + (u + 1)

1/2

→֒ du

dx
= 1

x
· (u + 1)

1/2 . (⋆)

Note that the derivative of u is zero if u = −1 . So u = −1 is a constant solution, and the

corresponding solution to our original equation is

y = xu = x(−1) = −x .
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For the rest of the solutions, we divide equation (⋆) by (u + 1)
1/2 and continue the process:

(u + 1)−
1/2

du

dx
= 1

x
֌

∫

(u + 1)−
1/2

du

dx
dx =

∫

1

x
dx

→֒ 2(u + 1)
1/2 = ln |x | + C ֌ u =

(

1

2
ln |x | + c

)2

− 1

→֒ y = xu = x

[

(

1

2
ln |x | + c

)2
− 1

]

= x
(

1

2
ln |x | + c

)2
− x .

So every solution is given by either the last formula for y or by y = −x .

6.7 m. Clearly, the linear substitution u = x − y + 3 is appropriate. Using this,

y = x − u + 3 ,
dy

dx
= d

dx
[x − u + 3] = 1 − du

dx
,

and
dy

dx
= (x − y + 3)2

֌ 1 − du

dx
= u2

→֒ du

dx
= 1 − u2 .

Here, the derivative of u is zero if u = ±1 . So this differential equation has two constant

solutions u = 1 and u = −1 . Since y = x − u + 3 , the corresponding solutions to the

original equation are

y = x − 1 + 3 = x + 2 and y = x − (−1) + 3 = x + 4 .

To find the other solutions, we divide the last differential equation above by 1 − u2 and

proceed as usual, using partial fractions to rewrite (1 − u2)−1 in more convenient form for

integration:

1

1 − u2

du

dx
= 1 ֌

∫

1

1 − u2

du

dx
dx =

∫

1 dx

→֒
∫

1

(1 + u)(1 − u)
dx = x + c ֌ · · ·

→֒
∫

1

2

[

1

1 + u
+ 1

1 − u

]

dx = x + c

→֒ 1

2
[ln |1 + u| − ln |1 − u|] = x + c

→֒ ln

∣

∣

∣

1 + u

1 − u

∣

∣

∣
= 2x + 2c ֌

1 + u

1 − u
= ±e2s+2c = Ae2x

→֒ 1 + u = Ae2x − u Ae2x
֌ u = Ae2x − 1

Ae2x + 1

→֒ y(x) = x − u + 3 = x + 3 + Ae2x − 1

Ae2x + 1
.
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Note that the last formula for y reduces to the constant solution y = x + 2 if A = 0 , but

does not reduce to the constant solution y = x + 4 for any value of A . So to describe all

solutions, we need both

y = x + 3 + Ae2x − 1

Ae2x + 1
and y = x + 4 .

6.7 o. We need a formula of y and maybe x , f (x, y) , such that the differential equation reduces to

a ‘simple’ differential equation for u when we let u = f (x, y) . Because the given equation

involves both sin(y) and cos(y) , two possible choices for the substitution are obviously

u = cos(y) and u = sin(y) .

Differentiating these yield, respectively,

du

dx
= − sin(y)

dy

dx
and

du

dx
= cos(y)

dy

dx
,

the second of which matches exactly the left side of the given differential equation. So let’s

use the second choice,

u = sin(y) with
du

dx
= cos(y)

dy

dx

as our substitution. Doing so, we get

cos(y)
dy

dx
= e−x − sin(y) ֌

du

dx
= e−x − u

→֒ du

dx
+ u = e−x .

This is a simple linear equation with integrating factor µ(x) = e
∫

1 dx = ex .

Multiplying our differential equation for u by this integrating factor and continuing:

ex
[

du

dx
+ u = e−x

]

֌
d

dx

[

ex u
]

= 1

→֒ ex u =
∫

1 dx = x + c ֌ u = (x + c)e−x

→֒ sin(y) = (x + c)e−x
֌ y = arcsin

(

(x + c)e−x
)

.


