28 Simplifying Through Substitution

Chapter 6: Simplifying Through Substitution

6.1a. Let u = 3x +3y+ 2. Solving for y and computing y’, we then see that

u 2
3 == - 3 — 2 = — — —
y u X oy 3 X 3
and
dy d [u 2] 1du
2= 2 o x -2l = 222 -1
dx dx L3 3 3dx

Substituting this into the differential equation and solving for u , we have

dy 1 1du 1
=z - s ] = —
dx (3)c—|—3y—|-2)2 3dx u?
1 du 1 1 u? 1+u?
(% —_ = — 1 = — —_— =
3dx u? * u? + u? u?
2 2
u du u du
14+ u?dx /1+u2dx * / o
u2
—> / du = 3x + ¢ . (%)
1+ u?

Computing the last integral (and ignoring the arbitrary constant):

2 2 _
/ L du = /Mdu
1+ u? 1+ u?
= /[l_uzl—}-l} du = u — arctan(u)

u — arctan(u) = 3x + ¢

So equation (x) becomes

which cannot be solved for . So we now replace each u with its formula in terms of y

from the original substitution (¥ = 3x + 3y + 2), and simplify the resulting equation as
much as practical:

3x + 3y + 2 — arctan(3x +3y+2) = 3x + ¢
—> arctan(3x +3y+2) =3y + 2 4+ ¢ = 3y + C

—> 3x + 3y + 2 = tan(3y +C)

6.1 c. Using the substitution u = 4y — 8x 4+ 3 we have

1 u 3 dy 1du
= - — = - 2 —_ — —_ = - — 2
y=gluade=3l =g+ -2 L =an o

and
cos(4y — 8x + 3) % = 2 + 2cos(dy — 8x +3)

—> cos(u) [%Z—u + 2] = 2 + 2cos(u)
X
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—> lcos(u)d—u + 2cos(u) = 2 + 2cos(u) r— cos(u)d—u = 8
4 dx dx
<> /cos(u)%dx - /de —  sin(w) = 8x + ¢

—> u = arcsin(8x + ¢)

Plugging the last formula for « into the formula for y based on the original substitution
yields the final answer,

y = i[u+8x—3]

= % [arcsin(8x + ¢) + 8x — 3] = %arcsin(8x +c) + 2x — %

6.3a. Rewriting the differential equation:

d d 2
dx dx X X

Since the equation is homogeneous, our substitution is based on u = Y , from which we
X

derive
dy d dx du du
= Xu and — = —[xu]l = —-u X— = u xX—
Y dx dx[ 1 dx + dx + dx
Using this with our differential equation:
d 2 d d 2
_y:X+(X) — w4+ x 2 -
dx X X dx dx X
Obviously, u = 0 is the only constant solution, which, in turn, also yields
y = XU = X - 0 = O
as a constant solution to the original equation. For the other solutions:
du u? _odu 1 _odu 1
D = T e u “—dx = —dx
dx X dx X dx X
1 ~1
— —u " =Inlx| +¢ > u=——+
In|x|+c¢

This, along with our formula for y in terms of u , yields

-1 —X
= XU = X = )
Y |:ln|x|—|—c:| In|x| +c¢

which, along with y = 0, describes all the solutions.

6.3 c. The substitution: u = % — Yy = Xu
dy d du

% —_— = _— = —_—

dx dx Lrul Wt xdx



Simplifying Through Substitution

30
So,
d
cos(z) [—y — X] =1+ sin(z)
x/ Ldx X X
du .
—> cos(u) [(u ~|—xd—> — u] = 1 + sin(u)
X
N d_u _ 1 + sin(u)
dx x cos(u)
The constant solutions of this are given by those values of u where 1+ sin(u) = 0; that is,
u = arcsin(—1) = 2nmw — % for n=0, £1, £2, ...
For the nonconstant solutions:
d_u _ 1 + sin(u) — cos(u) d_u _ l
dx x cos(u) 1 4 sin(u) dx X
cos(u) du 1 .
_— = — — = N
/ 3 sinGo) do dx / x dx In |1 + sin(u)| In|x| 4+ ¢
—> 1 + sin(u) = +"¥H¢ = Ax — u = arcsin(Ax — 1)
Note that the last formula for u also yields the constant solutions. So all the solutions to our
original differential equation are given by
y = xu = xarcsin(Ax — 1)
6.5a. First, observe that y = 0 is clearly a constant solution.
Here, n = 3 (from the 3y3 term). So the substitution is based on u = y!=3 = y=2 . Hence,

we also have

2 dx

1
y = fu" ) and
dx dx

Using this substitution:

1 _3 1 1.\3
dy + 3y = 3y3 — ——u7/2d—u + 3u— 2 = 3(u7/2)
dx 2 dx

— (—2u3/2> [—luf%ﬂ + 3 = 31[3/2]
2 dx
> 6= —6
dx
The integrating factor for the last differential equation is
M(X) — ef(—6)dx — e—6x
Using this with the last differential equation, above:
e [ﬂ —6u = — ] — e_6xd—u — 6e %y = —6e7
dx dx
d
—> d—[e_éxu] = —6¢ % o Oy = —/66_6xdx =™ 4o
X
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This with the original substitution then gives

_1/
y = :l:Lfl/2 = :I:(l + ce6x) :

So any solution to the original differential equation is given by the above formula for y or
y=0.

6.5c. Again, we note that y = 0 is a solution.
The substitution:

3

1—2/3=y1/3 — oy =W —

u =y
Using the substitution to find the linear equation for u :
2
Z’—y + 3cot(x)y = 6c¢cos(x)y /3
X

2/3

—> 3u2d—u + 3c0t(x)u3 = 6c¢cos(x) <u3>
dx

—> j—u + cot(x)u = 2cos(x)
X

The integrating factor is given by

nx) = el corydx exp(f cos(x) dx) = exp(Insin(x)]) = |sin(x)|

sin(x)

As noted in Chapter 5, we can simply use @ = sin(x) . Doing so:

sin(x) [Z—Z + cot(x)u = 200s(x)]

— Z—X[Sin(x)u] = 2sin(x) cos(x)
— sin(x)u = /ZSin(x)cos(x)dx = sin®(x) + ¢
— u = sin(x) + _c
sin(x)
e \?
- y=u3=(sin(x)+ , )
sin(x)

The last equation, along with y = 0, describes all solutions to our original differential

equation.

6.7 a. This is obviously in the form

dy — formula of 2
dx X

So it is a homogeneous equation, and we use the corresponding substitution,

dy d du
= = = d _ = — = _
u . R y xXu an T 7 [xu] u + xdx
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Doing so:
2
d_y=X+<_) — u o+ 2™ =y o2
dx X y dx
— zd_u = l — /uzd—udx = /ldx
dx X dx X
1
> %Lﬁ —Inlx| + ¢ > u = Glnlx|+3¢)B
1
— y:xu:x(?aln|x|+C)/3
6.7 c¢. Since the equation is
d 2 1
Lt iy=4
dx X
it is a Bernoulli equation with n = /5. One solution is y = 0. The others are obtained
using the substitution
1 1
u=y""2=yh
Hence,
2 dy du
= A i
Y “ ’ dx udx ’
and .
/
d_y+%y=4yl/2 R 2ud_u+_2=4(u2>2
dx X dx X
> d_u + l = 2
dx X
. . . _ fl/ dx _
The integrating factoris  u(x) = e/ ¥ = = X
So d 1 d 1
_u+_u:2>—>x|:—u+—u:2]
dx X dx X
— Z—[xu]:Zx — xu:/Zxdx:x2+c
X
2 c\?
—> u=x+—>—>y=u=(x_|__)
X X
6.7e. The y —x factor suggests using the linear substitution ¥ = y — x . Then
B dy d _ du
y =u + x and dx_dx[u+x]_dx+l
Using this,
dy [du ]
— — = - — =
(y x)dx 1 u Tx + 1 1
du du 1—u
f% - = 1 — — —_— =
udx “ dx u

Note that the derivative of u is zero if and only if # = 1. So u = 1 is the only constant
solution to this last equation. The corresponding solution to the original equation is then

y=u+x =1+4+x
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For the other solutions, we’ll need
l—u-—1
/ " du = —/Ldu
l—u 1—u
1
=—/[1— ]du:—u—ln|1—u|+C
1—u
Back to the last differential equation above:
du 1—u u du
= = — — =1
dx u 1 —udx
u du
— / —dx:/ldx —  —u — In|l—u|l = x + ¢
1 —udx
— —y—x) —hjl-@-x)] =x +c
—> Inll —y+x| = —c —y
> l—y+4+x==4V =4 > y=1+1x — Ae™
This last equation describes all solutions since it does reduce to the solution y(x) =1+ x
when A =0.
6.7 NN dy _ 2 2
-/ 8 2xy 4+ 2x = = + 2xy + 2y
X
2
2 Y Y y y\?
oy Ay _ P42o+2? 7 [1+2x+2(x” _ (g
dx — 2xy+22 xz[2X +2] B 22 42
X X
So the equation is homogeneous, and we use the substitution u© = 2
X
Hence
= Xxu d—y—d—[xu]—u—i—xd—u
r = ©dx | dx dx
and 5
y y
14+2=+2(= 2
ay _ER A2 e s
dx 22 42 dx 2u+2
X
du 14 2u 4 2u? 14 2u+2u®>  2u®+2u 1
— x— = —— —u = — =
dx 2u+2 2u+2 2u+2 2u+2
d 1 d 1
> Qu+2)™ = 2 — f(2u+2)—udx = f—dx
dx X dx X
< > + 2u = Inlx| + ¢
> u> + 2u — (nlx|+¢) = 0
@



34 Simplifying Through Substitution

_ 2 _gr—
> y = 2EV2 42[ (nd+I _ 4 fimx+C

—> y = xu = x[—l:l:\/ln|x|+C] = —x*txy/In|x|+C

6.71i. Clearly, the substitution # = 2x + y — 3 is in order. With this,

_ dy _d . _ _ du
y =u 2x + 3 s E_dx[u 2x~|—3]_dx 2,
and 4 J
d—y=2\/2x+y—3—2 — d—”—zzzﬁ—z
X X
du
— — = 2Ju
dx

Note that this last equation has one constant solution # = 0. Corresponding to this is the
solution to the original equation

y=u—2x+3=0—-2x +3 =3 — 2x

For the other solutions, we continue the above computations:
d 1, d
—uzﬁ — fu_/2—udx=/2dx
dx dx
1
< W2 =2x +C > u= (x+c)?

— y=u—2x +3=(x+¢c)? —2x + 3

So each solution is given by either the last formula orby y =3 — 2x.

6.7 k. xd—y — y = Jxy +x2
dx

2 L
N d_y:H—WHd_y:z+<z+l>2
dx X dx X X
So the equation is homogeneous, and we use the substitution u = Y
X
Hence
= xu dy _ 4 [xu]—u—l—xdu
Y= ’ dx — dx - dx
and 1
d 1) d 1
—y=X+<X+1> — u+xl w4+ W+
dx X X dx
d 1 1
s M wrn . (%)
dx X
Note that the derivative of u is zeroif u = —1. So u = —1 is a constant solution, and the

corresponding solution to our original equation is



Worked Solutions 35

For the rest of the solutions, we divide equation (x) by (u + 1) ' and continue the process:

O o KL N [(u+1)*1/2d—”dx _ [idx
dx X dx X
1/ 1 2
>  2u4+1D"2 =kl +C — u=(51n|x|+c) —1

— y =xu = x[(%ln|x|+c)2—1] = x(%lnlxl—i—c)2 - X

So every solution is given by either the last formula for y orby y = —x.

6.7m. Clearly, the linear substitution u = x — y 4+ 3 is appropriate. Using this,

y=x —u-+3 , Z—i:j—x[x—u—l—”a’]:l—j—z,
and dy , u ,
E:(x—y+3) HI_EZM
> Z—zzl—uz

Here, the derivative of u is zero if u = %1. So this differential equation has two constant

solutions © = 1 and u = —1. Since y = x — u + 3, the corresponding solutions to the
original equation are

y=x —14+3=x+2 and y=x —(-1)+3=x+4

To find the other solutions, we divide the last differential equation above by 1 — u? and
proceed as usual, using partial fractions to rewrite (1 — u?)~! in more convenient form for

integration:
1 du 1 du
i S - = 1
1 —u?dx fl—uzdxdx /dx
—> [;dx:x—i—c —
(I +u)(l —u)
— /£[1+1]dx=x+c
2L14u 1—u
> %[ln|1+u|—ln|1—u|]=x+c
1 1 e
— ln‘1+u = 2x + 2¢ — 1+u = 2212 = Ae¥
— —u
2x
— 1+u:Aezx—uAezx>—>u:Ae !
Ae?x +1
— (x)—x—u—i—3—x+3—i—Aezx_1
= N Ae2¥ 41
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Note that the last formula for y reduces to the constant solution y = x +2 if A =0, but
does not reduce to the constant solution y = x + 4 for any value of A. So to describe all
solutions, we need both

y=x4+3+ ——— and y=x + 4
e

We need a formulaof y and maybe x, f(x, y),such thatthe differential equation reduces to
a ‘simple’ differential equation for © when we let u = f(x, y) . Because the given equation
involves both sin(y) and cos(y) , two possible choices for the substitution are obviously

u = cos(y) and u = sin(y)

Differentiating these yield, respectively,

du . dy du dy
o sm(y)dx and = cos(y)d)c R

the second of which matches exactly the left side of the given differential equation. So let’s
use the second choice,

. . d d
u = sin(y) with @ cos(y)—y
dx dx

as our substitution. Doing so, we get

d _ . d _
cos(y)—yzex—sm(y) — ey
dx dx
—> du +u=¢e"
dx
This is a simple linear equation with integrating factor u(x) = el ldx = ox

Multiplying our differential equation for u by this integrating factor and continuing:

X d_” _ 7x] — d_ X _
e[dx—i—u—e dx[eu]—l
— exu=/1dx=x+c — u = (x+c)e "

— sin(y) = (x+c)e ™ > y = arcsin((x—i—c)e_x)



