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Chapter 4: Separable First-Order Equations

4.3 a. Factoring out y2 , we get
dy

dx
= (3 − sin(x)) y2 ,

which is
dy

ds
= f (x)g(y) ,

with f (x) = 3 − sin(x) and g(y) = y2 .

So the equation is separable.

4.3 c. x
dy

dx
= (x − y)2

֌
dy

dx
= (x − y)2

x
6= f (x)g(y) for any choice of f and g .

So the differential equation is not separable.

4.3 e.
dy

dx
+ 4y = 8 ֌

dy

dx
= 8 − y = 4(2 − y) = f (x)g(y)

with f (x) = 4 and g(y) = 2 − y . So the differential equation is separable.

4.3 g.
dy

dx
+ 4y = x2

֌
dy

ds
= x2 − 4y 6= f (x)g(y) for any choice of f and g .

So the differential equation is not separable.

4.4 a.
dy

dx
= x

y
֌ y

dy

dx
= x ֌

∫

y
dy

dx
dx =

∫

x dx

→֒
∫

y dy =
∫

x dx ֌
1

2
y2 = 1

2
x2 + C ֌ y2 = x2 + 2C

︸︷︷︸

c

→֒ y = ±
√

x2 + c .

4.4 c.
[

xy
dy

dx
= y2 + 9

]
[

1

x
(

y2 + 9
)

]

֌
y

y2 + 9

dy

dx
= 1

x

→֒
∫

y

y2 + 9

dy

dx
dx =

∫

1

x
dx ֌

1

2

∫

2y

y2 + 9
dy =

∫

1

x
dx

→֒ 1

2
ln

∣
∣
∣y

2 + 9

∣
∣
∣ = ln |x | + C ֌ ln

∣
∣
∣y

2 + 9

∣
∣
∣ = 2 ln |x | + 2C

→֒ y2 + 9 = ±e2 ln|x |+2C = ±e2 ln|x |e2C = ±e2C eln x2

= Ax2

→֒ y2 = Ax2 − 9 ֌ y = ±
√

Ax2 − 9 .

4.4 e.

∫

cos(y)
dy

dx
dx =

∫

sin(x) dx ֌

∫

cos(y) dy =
∫

sin(x) dx

→֒ sin(y) = − cos(x) + c ֌ y = arcsin(c − cos(x)) .
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16 Separable First-Order Equations

4.5 a. The general solution (from the solution to Exercise 4.4 a) is

y = ±
√

x2 + c .

Applying the initial condition, we have

3 = y(1) = ±
√

12 + c = ±
√

1 + c

Since 3 is positive, we must take the positive square root. For c , we then have

3 =
√

1 + c ֌ 32 = 1 + c ֌ c = 9 − 1 = 8 .

So the solution is y =
√

x2 + 8 .

4.5 c. Finding the general solution to the differential equation:

y
dy

dx
= xy2 + x = x

(

y2 + 1
)

֌
y

y2 + 1

dy

dx
= x

→֒
∫

y

y2 + 1

dy

dx
dx =

∫

x dx ֌
1

2

∫

2y

y2 + 1
dy =

∫

x dx

→֒ 1

2
ln

(

y2 + 1
)

= 1

2
x2 + C ֌ ln

(

y2 + 1
)

= x2 + c

→֒ y2 + 1 = ex2+c = ex2

ec = ex2

A

→֒ y2 = Aex2

− 1 ֌ y = ±
√

Aex2 − 1 .

Applying the initial condition:

−2 = y(0) = ±
√

Ae02 − 1 = ±
√

A − 1 .

So we take the negative square root, and then solve for A :

−2 = −
√

A − 1 ֌ 4 = A − 1 ֌ A = 5 .

So the solution is y = −
√

5ex2 − 1 .

4.6 a. 0 = dy

dx
= xy − 4x = x(y − 4) ֌ 0 = y − 4 ֌ y = 4 .

4.6 c. y
dy

dx
= xy2 − 9x ֌

dy

dx
= xy2 − 9x

y
= x · y2 − 9

y

→֒ 0 = y2 − 9 ֌ y2 = 9 ֌ y = ±
√

9 = ±3 .

So the two constant solutions are y = 3 and y = −3 .

4.6 e. 0 = dy

dx
= ex+y2

= ex ey2

.

But there are no values of y such that ey2 = 0 . So there are no constant solutions.
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4.7 a. From the answer to Exercise 4.6 a, we know y = 4 is the only constant solution. To find

the nonconstant solutions:

dy

dx
= xy − 4x ֌

dy

dx
= x(y − 4) ֌

1

y − 4

dy

dx
= x

→֒
∫

1

y − 4

dy

dx
dx =

∫

x dx ֌ ln |y − 4| = 1

2
x2 + c

→֒ |y − 4| = exp
(

1

2
x2 + c

)

= ec exp
(

1

2
x2

)

→֒ y − 4 = ±ec exp
(

1

2
x2

)

= A exp
(

1

2
x2

)

→֒ y = 4 + A exp
(

1

2
x2

)

(with A = ±ec 6= 0 ) .

Since, the last equation reduces to the constant solution y = 4 when A = 0 , that last

equation without restrictions on A can serve as the general solution.

4.7 c.
dy

dx
= 3y2 − y2 sin(x) = y2 (3 − sin(x)) .

Constant solutions:

0 = dy

dx
= y2 (3 − sin(x)) ֌ y = 0 is the constant solution .

Other solutions:
dy

dx
= y2 (3 − sin(x)) ֌ y−2 dy

dx
= 3 − sin(x)

→֒
∫

y−2 dy

dx
dx =

∫

(3 − sin(x)) dx ֌ − y−1 = 3x + cos(x) + C

→֒ 1

y
= −3x − cos(x) + c ֌ y = 1

c − 3x − cos(x)
.

In this case, no value of c in the last line yields the constant solution y = 0 . So for the

general solution we need both

y = 1

c − 3x − cos(x)
and y = 0 .

4.7 e. Constant solutions: 0 = dy

dx
= y

x
֌ y = 0 is the constant solution .

Other solutions:
dy

dx
= y

x
֌

1

y

dy

dx
= 1

x
֌

∫

1

y

dy

dx
dx =

∫

1

x
dx

→֒ ln |y| = ln |x | + C ֌ y = ±eln|x |+C = ±eC eln|x | = Ax .

Since the last equation becomes the constant solution y = 0 when A = 0 , we can use that

equation, y(x) = Ax , for the general solution.
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18 Separable First-Order Equations

4.7 g.
(

x2 + 1
) dy

dx
= y2 + 1 ֌

dy

dx
= y2 + 1

x2 + 1
> 0 ֌ no constant solution .

Nonconstant solutions:
dy

dx
= y2 + 1

x2 + 1
֌

1

y2 + 1

dy

dx
= 1

x2 + 1

→֒
∫

1

y2 + 1

dy

dx
dx =

∫

1

x2
dx ֌ arctan(y) = arctan(x) + c .

Solving for y then yields the general solution y = tan(arctan(x) + c) .

4.7 i. There are no constant solutions since e−y > 0 for all y . So all solutions are nonconstant:

dy

dx
= e−y

֌ ey dy

dx
= 1 ֌

∫

ey dy

dx
dx =

∫

1 dx

→֒ ey = x + c ֌ y = ln(x + c) .

4.7 k. 0 = dy

dx
= 3xy3

֌ y = 0 is the constant solution .

Nonconstant solutions:

dy

dx
= 3xy3

֌ y−3 dy

dx
= 3x ֌

∫

y−3 dy

dx
dx =

∫

3x dx

→֒ − 1

2
y−2 = 3

2
x2 + C ֌ y−2 = −3x2 + c

→֒ y = ±
(

c − 3x2
)−1/2

.

This last equation does not reduce to the constant solution y = 0 for any choice of c . So,

to describe the general solution we need both

y = ±
(

c − 3x2
)−1/2

and y = 0 .

4.7 m.
dy

dx
− 3x2 y2 = −3x2

֌
dy

dx
= 3xy2 − 3x2 = 3x2

(

y2 − 1
)

.

Constant solutions:

0 = dy

dx
= 3x2

(

y2 − 1
)

֌ y2 − 1 = 0 ֌ y = ±1

→֒ y = 1 and y = −1 are the two constant solutions .

Nonconstant solutions:

dy

dx
= 3x2

(

y2 − 1
)

֌
1

y2 − 1

dy

dx
= 3x2

→֒
∫

1

y2 − 1

dy

dx
dx =

∫

3x2 dx = x3 + C . (⋆)
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For the remaining integral, you can use partial fractions. Begin by noting that

1

y2 − 1
= 1

(y + 1)(y − 1)
= A

y + 1
+ B

y − 1

= A(y − 1) + B(y + 1)

(y + 1)(y − 1)
= A(y − 1) + B(y + 1)

y2 − 1
.

So A and B are numbers such that

1 = A(y − 1) + B(y + 1) for all y .

Now solve for A and B , possibly by first setting y = 1 ,

1 = A(1 − 1) + B(1 + 1) ֌ B = 1

2
,

and then setting y = −1 ,

1 = A(−1 − 1) + B(−1 + 1) ֌ A = − 1

2
.

So,
1

y2 − 1
= −1/2

y + 1
+

1/2

y − 1
,

and (ignoring the arbitrary constant)
∫

1

y2 − 1

dy

dx
dx =

∫ [

1

2
· 1

y − 1
− 1

2
· 1

y + 1

]

dx

= 1

2
[ln |y − 1| − ln |y + 1|] = 1

2
ln

∣
∣
∣
∣

y − 1

y + 1

∣
∣
∣
∣

.

Combining this with equation (⋆):

1

2
ln

∣
∣
∣
∣

y − 1

y + 1

∣
∣
∣
∣

= x3 + C ֌
y − 1

y + 1
= ±e2x3+2C = Ae2x3

→֒ y − 1 = y Ae2x3

+ Ae2x3

֌ y − y Ae2x3

= 1 + Ae2x3

→֒ y
(

1 − Ae2x3
)

= 1 + Ae2x3

֌ y = 1 + Ae2x3

1 − Ae2x3
.

If A = 0 , the last equation reduces to y = 1 , but the equation does not reduce to y = −1

for any choice of A . So all the solutions are given by using both

y(x) = 1 + Ae2x3

1 − Ae2x3
and y = −1 .

4.7 o.
dy

dx
= 200y − 2y2 = 2(100 − y)y .

Constant solutions: 0 = 2(100 − y)y ֌ y = 0 and y = 100 .

Nonconstant solutions:

dy

dx
= 2(100 − y)y ֌

∫

1

(100 − y)y

dy

dx
dx =

∫

2 dx

→֒
∫

1

(100 − y)y
dy = 2x + c . (⋆)
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20 Separable First-Order Equations

Using partial fractions (see the solution to Exercise 4.7 m),

∫

1

(100 − y)y

dy

dx
dx = · · ·

= 1

100

∫ [

1

y
+ 1

100 − y

]

dy

= 1

100
[ln |y| − ln |100 − y|] = 1

100
ln

∣
∣
∣
∣

y

100 − y

∣
∣
∣
∣

.

Combined with equation (⋆), this gives

1

100
ln

∣
∣
∣
∣

y

100 − y

∣
∣
∣
∣

= 2x + c ֌
y

100 − y
= ±e100(2x+c) = Ae200x

→֒ y = 100Ae200x − y Ae200x
֌ y

(

1 + Ae200x
)

= 100Ae200x

→֒ y = 100Ae200x

1 + Ae200x
.

The last reduces to y = 0 if A = 0 , but does not reduce to y = 100 for any choice of A .

So all the solutions are given by using both

y = 100Ae200x

1 + Ae200x
and y = 100

4.8 a.
dy

dx
− 2y = −10 ֌

dy

dx
= 2y − 10 = 2(y − 5) .

Clearly, the only constant solution is y = 5 which does not satisfy the initial condition

y(0) = 8 . So we must find the nonconstant solutions:

dy

dx
= 2(y − 5) ֌

1

y − 5

dy

dx
= 2

→֒
∫

1

y − 5

dy

dx
dx =

∫

2 dx ֌ ln |y − 5| = 2x + c

→֒ y − 5 = ±e2s+c = Ae2x
֌ y = 5 + Ae2x .

Applying the initial condition:

8 = y(0) = 5 + Ae2·0 = 5 + A ֌ A = 8 − 5 = 3 .

So the solution to the initial-value problem is y = 5 + 3e2x .

4.8 c.
dy

dx
= 2x − 1 + 2xy − y ֌

dy

dx
= (2x − 1) + (2x − 1)y

→֒ dy

dx
= (2x − 1)(1 + y) .

In this case, the derivative is zero if y = −1 . So y = −1 is the constant solution.

Moreover, this constant solution satisfies the initial condition y(0) = −1 . So the constant

solution y = −1 is the solution to the initial-value problem.
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4.8 e. x
dy

dx
= y2 − y ֌

dy

dx
= y(y − 1)

x
.

Clearly, the only constant solutions are y = 0 and y = 1 , neither of which satisfies the

initial condition y(1) = 2 . So we must find the nonconstant solutions:

dy

dx
= y(y − 1)

x
֌

1

y(y − 1)

dy

dx
= 1

x

→֒
∫

1

y(y − 1)

dy

dx
dx =

∫

1

x
dx = ln |x | + c . (⋆)

Using partial fractions (see the solution to Exercise 4.7 m), we find that

1

y(y − 1)
= · · · = 1

y − 1
− 1

y
.

So, continuing from equation (⋆), we have

ln |y − 1| − ln |y| = ln |x | + c

→֒ ln

∣
∣
∣
∣

y − 1

y

∣
∣
∣
∣

= ln |x | + c ֌
y − 1

y
= ±eln|x |+c = Ax

→֒ 1 − 1

y
= Ax ֌

1

y
= 1 − Ax ֌ y = 1

1 − Ax
.

Applying the initial condition:

2 = y(1) = 1

1 − A · 1
֌ 1 − A = 1

2
֌ A = 1

2
.

So, y = 1

1 − 1

2
x

= 2

2 − x
.

4.8 g.
(

y2 − 1
) dy

dx
= 4xy ֌

dy

dx
= 4x · y

y2 − 1
.

The only constant solution is y = 0 , which does not satisfy the initial condition y(0) = 1 .

So we must find the nonconstant solutions:

(

y2 − 1
) dy

dx
= 4xy ֌

y2 − 1

y

dy

dx
= 4x

→֒
∫

y2 − 1

y

dy

dx
dx =

∫

4x dx ֌

∫ [

y − 1

y

]

dy =
∫

4x dx

→֒ 1

2
y2 − ln |y| = 2x2 + c ֌ y2 − 2 ln |y| = 4x2 + 2c .

Getting an explicit solution here is not practical. So we will apply the initial condition

y(0) = 1 to the last equation:

12 − 2 ln |1| = 4 · 22 + 2c ֌ 1 − 0 = 16 + 2c ֌ 2c = −15 .

So the (implicit) solution is y2 − 2 ln |y| = 4x2 − 15 .

4.10 a. From the answer to Exercise 4.8 a we know the solution is y(x) = 5 + 3e2x which is valid

for all values of x . So the interval is (−∞, ∞) .
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22 Separable First-Order Equations

4.10 c. From the answer to Exercise 4.8 e, we know the solution is

y = 2

2 − x
,

which is continuous everywhere except at x = 2 where it ‘blows up’. And since the initial

condition is given at x = 1 < 2 , the interval over which this solution is valid is (−∞, 2) .

4.10 e. From the answer to Exercise 4.7 k, we know all the solutions to the differential equation

are given by

y(x) = ±
(

c − 3x2
)−1/2

and y = 0 .

Obviously, y = 0 does not satisfy the initial condition. So we apply the initial condition

with the nonconstant solution formula:

1

2
= y(0) = ±

(

c − 3 · 02
)−1/2 = ± 1

√
c

֌ c = 4 ,

and

y = +
(

4 − 3x2
)−1/2 = 1

√

4 − 3x2
.

This is valid over the largest interval containing 0 and with 4 − 3x2 > 0 . But

4 − 3x2 > 0 ֌ x2 <
4

3
֌ −

√

4

3
< x < + 2

√
3

.

So the interval is

(

− 2
√

3
,

2
√

3

)

.


