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Chapter 24: Variation of Parameters

24.1 a. Here, y1(x) = x and y2(x) = x2 . So the solution is given by

y(x) = y1u + y2v = xu + x2v (⋆)

where u = u(x) and v = v(x) satisfy the two equations

y1u′ + y2v
′ = 0 ֌ xu′ + x2v′ = 0

and

y1
′u′ + y2

′v′ = g

a
֌ u′ + 2xv′ = 3

√
x

x2
= 3x−3/2 .

Solving for u′ and v′ :

xu′ + x2v′ = 0 and u′ + 2xv′ = 3x−3/2

→֒ u′ = −xv′ and − xv′ + 2xv′ = 3x−3/2

→֒ u′ = −xv′ and v′ = 3x−3/2

x
= 3x−5/2

→֒ u′ = −x
[

3x−5/2

]

= −3x−3/2 and v′ = 3x−5/2 .

Integrating, we get

u =
∫

u′ dx = −
∫

3x−3/2 dx = 6x−1/2 + c1 ,

and

v =
∫

v′ dx =
∫

3x−5/2 dx = −2x−3/2 + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = xu + x2v

= x
[

6x−1/2 + c1

]

+ x2
[

−2x−3/2 + c2

]

= 6x
1/2 + c1x − 2x

1/2 + c2x2 = 4
√

x + c1x + c2x2 .

24.1 c. Here, y1(x) = cos(2x) and y2(x) = sin(2x) . So the solution is given by

y(x) = y1u + y2v = cos(2x)u + sin(2x)v (⋆)

where u = u(x) and v = v(x) satisfy the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

,

which, in this case, is

cos(2x)u′ + sin(2x)v′ = 0

−2 sin(2x)u′ + 2 cos(2x)v′ = csc(2x)

1
= 1

sin(2x)

.



✐

✐

✐

✐

✐

✐

✐

✐

Worked Solutions 197

From the first equation in this system, we get

v′ = − cos(2x)

sin(2x)
u′ .

Plugging this into the second equation and continuing:

−2 sin(2x)u′ + 2 cos(2x)

[

− cos(2x)

sin(2x)
u′

]

= 1

sin(2x)

→֒ −2

[

sin(2x) + cos2(2x)

sin(2x)

]

u′ = 1

sin(2x)

→֒ −2
sin2(2x) + cos2(2x)

sin(2x)
u′ = 1

sin(2x)

→֒ −2
1

sin(2x)
u′ = 1

sin(2x)

→֒ u′ = −1

2
.

Hence, also,

v′ = − cos(2x)

sin(2x)
u′ = cos(2x)

2 sin(2x)
.

Integrating, we get

u =
∫

u′ dx = −
∫

1

2
dx = − 1

2
x + c1 ,

and

v =
∫

v′ dx =
∫

cos(2x)

2 sin(2x)
dx = 1

4
ln |sin(2x)| + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = cos(2x)u + sin(2x)v

= cos(2x)

[

− 1

2
x + c1

]

+ sin(2x)

[
1

4
ln |sin(2x)| + c2

]

= − 1

2
x cos(2x) + 1

4
sin(2x) ln |sin(2x)| + c1 cos(2x) + c2 sin(2x) .

24.1 e. Here, y1(x) = e2x and y2(x) = xe2x . So the solution is given by

y(x) = y1u + y2v = e2x u + xe2xv (⋆)

where u = u(x) and v = v(x) satisfy the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

,

which, in this case, is

e2x u′ + xe2xv′ = 0

2e2x u′ + [1 + 2x]e2xv′ =

[

24x2 + 2
]

e2x

1
=

[

24x2 + 2
]

e2x

,
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and which, after dividing out the e2x , further simplifies to

u′ + xv′ = 0

2u′ + [1 + 2x]v′ = 24x2 + 2
.

Solving for u′ and v′ :

u′ + xv′ = 0 and 2u′ + [1 + 2x]v′ = 24x2 + 2

→֒ u′ = −xv′ and 2[−xv′] + [1 + 2x]v′ = 24x2 + 2

→֒ u′ = −xv′ and v′ = 24x2 + 2

→֒ u′ = −x[24x2 + 2] = −24x3 − 2x and v′ = 24x2 + 2 .

Integrating, we get

u =
∫

u′ dx = −
∫ [

24x3 + 2x
]

dx = −6x4 − x2 + c1 ,

and

v =
∫

v′ dx =
∫ [

24x2 + 2
]

dx = 8x3 + 2x + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = e2x
[

−6x4 − x2 + c1

]

+ xe2x
[

8x3 + 2x + c2

]

=
[

2x4 + x2 + c1x + c2x
]

e2x .

24.1 g. The solution is given by

y(x) = y1u + y2v = xu + x−1v (⋆)

where u = u(x) and v = v(x) satisfy

y1u′ + y2v
′ = 0 ֌ xu′ + x−1v′ = 0

and

y1
′u′ + y2

′v′ = g

a
֌ u′ − x−2v′ =

√
x

x2
= x−3/2 .

Solving for u′ and v′ :

xu′ + x−1v′ = 0 and u′ − x−2v′ = x−3/2

→֒ u′ = −x−2v′ and − x−2v′ − x−2v′ = x−3/2

→֒ u′ = −x−2v′ and v′ = − 1

2
x2 · x−3/2 = − 1

2
x

1/2

→֒ u′ = −x−2
[

− 1

2
x

1/2

]

= 1

2
x−3/2 and v′ = = − 1

2
x

1/2 .
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Integrating, we get

u =
∫

u′ dx =
∫

1

2
x−3/2 dx = −x−1/2 + c1 ,

and

v =
∫

v′ dx = −
∫

1

2
x

1/2 dx = − 1

3
x

3/2 + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = x
[

−x−1/2 + c1

]

+ x−1
[

− 1

3
x

3/2 + c2

]

= − 4

3
x

1/2 + c1x + c2x2 = c1x + c2x2 − 4

3

√
x .

24.1 i. The solution is given by

y(x) = y1u + y2v = x2u + x2 ln |x | v (⋆)

where u = u(x) and v = v(x) satisfy the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

,

which, in this case, is

x2u′ + x2 ln |x | v′ = 0

2xu′ + [2x ln |x | + x] v′ = x2

x2
= 1

.

From the first equation in this system, we get

u′ = − ln |x | v′ .

Plugging this into the second equation and continuing:

2x[− ln |x |] + [2x ln |x | + x] v′ = 1

→֒ xv′ = 1

→֒ v′ = 1

x
.

Hence, also,

u′ = − ln |x | v′ = −x−1 ln |x | .

Integrating (using integration by parts to compute the integral for u ), we get

u =
∫

u′ dx = −
∫

x−1 ln |x | dx = − 1

2
(ln |x |)2 + c1 ,

and

v =
∫

v′ dx =
∫

1

x
dx = ln |x | + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = x2
[

− 1

2
(ln |x |)2 + c1

]

+ x2 ln |x | [ln |x | + c2]

= 1

2
x2(ln |x |)2 + c1x2 + c2x2 ln |x | .
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24.1 k. The solution is given by

y(x) = y1u + y2v = x2u + x−1v (⋆)

where u = u(x) and v = v(x) satisfy the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

,

which, in this case, is

x2u′ + x−1v′ = 0

2xu′ − x−2v′ = 1

x2(x − 2)

.

From the first equation in this system, we get

u′ = −x−3v′ .

Plugging this into the second equation and continuing:

2x
[

−x−3v′
]

− x−2v′ = 1

x2(x − 2)

→֒ −3x−2v′ = 1

x2(x − 2)

→֒ v′ = − 1

3(x − 2)
.

Hence, also,

u′ = −x−3v′ = 1

3x3(x − 2)
,

which can be expanded via a partial fractions to

u′ = 1

3x3(x − 2)
= A

x3
+ B

x2
+ C

x
+ D

x − 2

= · · ·

= −1/6

x3
+ −1/12

x2
+ −1/24

x
+ 1/24

x − 2
.

Integrating, we get

u =
∫

u′ dx =
∫ [

−1/6

x3
+ −1/12

x2
+ −1/24

x
+ 1/24

x − 2

]

dx

= 1

12
x−2 + 1

12
x−1 − 1

24
ln |x | + 1

24
ln |x − 2| + c1

and

v =
∫

v′ dx =
∫

−1

3(x − 2)
dx = − 1

3
ln |x − 2| + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = x2
[

1

12
x−2 + 1

12
x−1 − 1

24
ln |x | + 1

24
ln |x − 2| + c1

]

+ x−1
[

− 1

3
ln |x − 2|

]

= 1

12
[x + 1] − 1

24
x2 ln |x | + 1

24
x2 ln |x − 2| + c1x2

− 1

3
x−1 ln |x − 2| + c2x−1 .
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24.1 m. The solution is given by

y(x) = y1u + y2v = x−1u + x−1e−2xv (⋆)

where u = u(x) and v = v(x) satisfy the system

y1u′ + y2v
′ = 0

y1
′u′ + y2

′v′ = g

a

,

which, in this case, is

x−1u′ + x−1e−2xv′ = 0

−x−2u′ −
[

x−2 + 2x−1
]

e−2xv′ = 8e−2x

x
= 8x−1e2x

,

and which further simplifies to

u′ + e−2xv′ = 0

u′ + [1 + 2x] e−2xv′ = −8xe2x
.

From the first equation in this system, we get

u′ = −e−2xv′ .

Plugging this into the second equation and continuing:

[

−e−2xv′
]

+ [1 + 2x] e−2xv′ = −8xe2x

→֒ 2xe−2xv′ = −8xe2x

→֒ v′ = −4e4x .

Hence, also,

u′ = −e−2xv′ = −e−2x
[

−4e4x
]

= 4e2x .

Integrating, we get

u =
∫

u′ dx =
∫

4e2x dx = 2e2x + c1 ,

and

v =
∫

v′ dx = −
∫

4e4x dx = −e4x + c2 .

Plugging back into formula (⋆) for y then yields

y(x) = x−1
[

2e2x + c1

]

+ x−1e−2x
[

−e4x + c2

]

= x−1e2x + c1x−1 + c2x−1e−2x .

24.2 a. First, we must find yh , the general solution to the corresponding homogeneous equation,

x2 y′′ − 2xy′ − 4y = 0 .
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Since this is an Euler equation, we try a solution of the form y(x) = xr :

0 = x2 y′′ − 2xy′ − 4y

= x2
[

xr
]′′ − 2x

[

xr
]′ − 4

[

xr
]

= x2
[

r(r − 1)xr−2
]

− 2x
[

rxr−1
]

− 4
[

xr
]

= xr [r(r − 1) − 2r − 4] = xr
[

r2 − 3r − 4
]

.

So,

0 = r2 − 3r − 4 = (r + 1)(r − 4)

→֒ r = −1 and r = 4

→֒ yh(x) = c1x−1 + c2x4 .

Thus, to solve the given nonhomogeneous differential equation using variation of param-

eters, we set

y(x) = x−1u + x4v (⋆)

where u and v satisfy

x−1u′ + x4v′ = 0

and

−x−2u′ + 4x3v′ = 10/x

x2
= 10x−3 ,

which we can write more simply as the system

u′ + x5v′ = 0

−u′ + 4x5v′ = 10x−1
.

Adding these two equations together and solving:

−5x5v′ = −10x−1
֌ v′ = 2x−6 .

This with the first equation in the system then yields

u′ = −x5v′ = −x5
[

2x−6
]

= −2x−1 .

Integrating:

u(x) =
∫

u′ dx = −
∫

2x−1 dx = −2 ln |x | + c1 ,

and

v(x) =
∫

v′ dx =
∫

2x−6 dx = − 2

5
x−5 + c2 .

Plugging back into formula (⋆) for y :

y(x) = x−1 [−2 ln |x | + c1] + x4
[

− 2

5
x−5 + c2

]

= −2x−1 ln |x | +
[

c1 − 2

5

]

x−1 + c2x4

= −2x−1 ln |x | + Ax−1 + Bx4 . (⋆⋆)
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This is the general solution to the differential equation. Computing it’s derivative, we get

y′(x) = 2x−2 ln |x | − 2x−2 − Ax−2 + 4Bx3 .

Applying the initial conditions:

3 = y(1) = −2x−1 ln |1| + A · 1−1 + B · 14 = A + B

and

−15 = y′(1) = 2 · 1−2 ln |x | − 2 · 1−2 − A · 1−2 + 4B · 13

= −2 − A + 4B .

That is,

A + B = 3 and − A + 4B = −13 .

Solving this simple system yields A = 5 and B = −2 , which, plugged back into formula

(⋆⋆) for y gives our final answer:

y(x) = −2x−1 ln |x | + 5x−1 − 2x4 .

24.3 a. Here, y1(x) = 1 , y2(x) = e2x and y3(x) = e−2x . So the solution is given by

y(x) = y1u + y2v + y3w = 1 · u + e2xv + e−2xw (⋆)

where u = u(x) , v = v(x) and w = w(x) satisfy the system

y1u′ + y2v
′ + y3w

′ = 0

y1
′u′ + y2

′v′ + y3
′w′ = 0

y1
′′u′ + y2

′′v′ + y3
′′w′ = g

a

,

which, in this case, is

1u′ + e2xv′ + e−2xw′ = 0

0u′ + 2e2xv′ − 2e−2xw′ = 0

0u′ + 4e2xv′ + 4e−2xw′ = 30e3x

1
= 30e3x

,

and which, after dividing out common factors in each equation, reduces to

u′ + e2xv′ + e−2xw′ = 0 (S1)

e2xv′ − e−2xw′ = 0 . (S2)

e2xv′ + e−2xw′ = 15

2
e3x (S3)

This is easily solved by adding or subtracting the equations. In particular, subtracting (S3)

from (S1) yields

u′ = − 15

2
e3x ,

adding (S2) and (S3) together gives

2e2xv′ = 15

2
e3x

֌ v′ = 15

4
ex ,
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and subtracting (S2) from (S3) gives

2e−2xw′ = 15

2
e3x

֌ w′ = 15

4
e5x .

Integrating, we obtain

u(x) =
∫

u′ dx = −
∫

15

2
e3x dx = − 5

2
e3x + c1 ,

v(x) =
∫

v′ dx =
∫

15

4
ex dx = 15

4
ex + c2

and

w(x) =
∫

w′ dx = −
∫

15

4
e5x dx = 3

4
e5x + c3 .

The final answer is then given by plugging these back into formula (⋆) for y :

y(x) = u + e2xv + e−2xw

=
[

− 5

2
e3x + c1

]

+ e2x
[

15

4
ex + c2

]

+ e−2x
[

3

4
e5x + c3

]

=
[

− 5

2
+ 15

4
+ 3

4

]

e3x + c1 + c2e2x + c3e−2x

= 2e3x + c1 + c2e2x + c3e−2x .

24.4 a. Here, y1(x) = x , y2(x) = x2 and y3(x) = x3 . So the solution is given by

y(x) = y1u + y2v + y3w = xu + x2v + x3w

where u = u(x) , v = v(x) and w = w(x) satisfy the system

y1u′ + y2v
′ + y3w

′ = 0

y1
′u′ + y2

′v′ + y3
′w′ = 0

y1
′′u′ + y2

′′v′ + y3
′′w′ = g

a

,

which, in this case, is

xu′ + x2v′ + x3w′ = 0

1u′ + 2xv′ + 3x2w′ = 0

0u′ + 2v′ + 6xw′ = e−x

x3
= x−3e−x

.

24.4 c. Here, y1(x) = e3x , y2(x) = e−3x , y3(x) = cos(3x) and y4(x) = sin(3x) . So

y(x) = e3x u1 + e−3x u2 + cos(3x)u3 + sin(3x)u4

where
y1u1

′ + y2u2
′ + y3u3

′ + y4u4
′ = 0

y1
′u1

′ + y2
′u2

′ + y3
′u3

′ + y4
′u4

′ = 0

y1
′′u1

′ + y2
′′u2

′ + y3
′′u3

′ + y4
′′u4

′ = 0

y1
′′′u1

′ + y2
′′′u2

′ + y3
′′′u3

′ + y4
′′′u4

′ = g

a

,
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which, in this case, is

e3x u1
′ + e−3x u2

′ + cos(3x)u3
′ + sin(3x)u4

′ = 0

3e3x u1
′ − 3e−3x u2

′ − 3 sin(3x)u3
′ + 3 cos(3x)u4

′ = 0

9e3x u1
′ + 9e−3x u2

′ − 9 cos(3x)u3
′ − 9 sin(3x)u4

′ = 0

27e3x u1
′ − 27e−3x u2

′ + 27 sin(3x)u3
′ − 27 cos(3x)u4

′ = sinh(x)

1

.

Dividing out common factors in each equation, this reduces to

e3x u1
′ + e−3x u2

′ + cos(3x)u3
′ + sin(3x)u4

′ = 0

e3x u1
′ − e−3x u2

′ − sin(3x)u3
′ + cos(3x)u4

′ = 0

e3x u1
′ + e−3x u2

′ − cos(3x)u3
′ − sin(3x)u4

′ = 0

e3x u1
′ − e−3x u2

′ + sin(3x)u3
′ − cos(3x)u4

′ = 1

27
sinh(x)

.

24.6. Recall that, for any sufficiently continuous function g ,
∫ x0

x0

g(s) ds = 0 and
d

dx

∫ x

x0

g(s) ds = g(x) .

Letting x = x0 in formula (24.15) yields

yp(x0) = −y1(x0)

∫ x0

x0

y2(s) f (s)

W (s)
ds + y2(x0)

∫ x0

x0

y1(s) f (s)

W (s)
ds

= −y1(x0) · 0 + y2(x0) · 0 = 0 ,

verifying the claim that yp(x0) = 0 .

Differentiating formula (24.15) yields

yp
′(x) = d

dx

[

−y1(x)

∫ x

x0

y2(s) f (s)

W (s)
ds + y2(x)

∫ x

x0

y1(s) f (s)

W (s)
ds

]

= −y1
′(x)

∫ x

x0

y2(s) f (s)

W (s)
ds − y1(x)

d

dx

∫ x

x0

y2(s) f (s)

W (s)
ds

+ y2
′(x)

∫ x

x0

y1(s) f (s)

W (s)
ds + y2(x)

d

dx

∫ x

x0

y1(s) f (s)

W (s)
ds

= −y1
′(x)

∫ x

x0

y2(s) f (s)

W (s)
ds − y1(x)

y2(x) f (x)

W (x)

+ y2
′(x)

∫ x

x0

y1(s) f (s)

W (s)
ds + y2(x)

y1(x) f (x)

W (x)

= −y1
′(x)

∫ x

x0

y2(s) f (s)

W (s)
ds + y2

′(x)

∫ x

x0

y1(s) f (s)

W (s)
ds

− [y1(x)y2(x) − y2(x)y1(x)
︸ ︷︷ ︸

0

] f (x)

W (x)

= −y1
′(x)

∫ x

x0

y2(s) f (s)

W (s)
ds + y2

′(x)

∫ x

x0

y1(s) f (s)

W (s)
ds .
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Thus,

yp
′(x0) = −y1

′(x0)

∫ x0

x0

y2(s) f (s)

W (s)
ds + y2

′(x0)

∫ x0

x0

y1(s) f (s)

W (s)
ds

= −y1
′(x0) · 0 + y2

′(x0) · 0 = 0 ,

confirming that yp
′(x0) = 0 .


