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Chapter 23: Springs: Part II (Forced Vibrations)

2324 Kk — E _ . mg _ 0.01 x 9.8 — 49 E
A |equilibrium length — natural length| [0.12 — 0.1] sec2
232b w = JX = [ /10 (Jseo)
m 0.01
71
and vy = @0 _ ﬂ (hertz)
2 2
23.3ai. In this case,
= |0l = =8 = 2298 50 (K
Y0 |equilib. length — natural length| 0.9 —1] sec?
24
B3aii. w = J© = /20 - 08 = 702 (Jseo)
m 25
TV2 . .
233 aiii. vy = 2 _ i ~ 1.576 times per second (i.e., hertz)
27 27
23.3c. We have
_ | Fo| _ mg
" |Iyo|  lequilib. length — natural length|
SO’ P
mass — m — Kk X |equilib. length — natural length|
8
2450 x 10.85 — 1.0]
9.8 (ke)
23.4ai. Since the chicken’s flapping agrees with the natural frequency of the system, formula
(23.6) applies, which, with the given data, becomes
Fy . 3 . .
— — 27 - = — 12
y(t) 2mwotsm(a)ot) T .6)tsm(( 7 - 6)t) = sin(127¢)
23.4aii. According to the given data, the spring breaks when the amplitude A(7) = %t (found
in the above problem) reaches half the spring’s natural length of 1 meter. So we solve
A(t) = % for ¢:
LIPS N 16 _ 8t ~ 25.1 (seconds)
167 2 2
—
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23.4bi. Applying formula (23.8):

R
m (@)% — n?]
3

I
T 2[@r-6)2— (2 -3)?] cos((2m - 3)1) = ——— cos(6n1)

yp(t) = cos(nt)

23.4bii. The amplitude of the oscillations induced by the chicken flapping is only
L ~ (0.001407 meters ,
7272

which is much below the half meter required to break the spring. So the spring does not
break.

23.5a. In this case, we already know that the general solution is given by formula (23.9). Thus,

. Fo
(1) = circos(wpt) + cpsin(wgt) + —————= cos(nt)
. : ml@p? -]
and
' (1) = —ciwpsin(wor) + cawp cos(wot) + Lsin(nt)
m [(00)? = 1]
Applying the initial conditions, we get
. Fy
0= 0) = cjcos(wg0) + c¢3sin(wp0) + ———=——== cos(n0
y(0) 1 cos(wg0) 2 sin(wo m@o? — 7] (n0)
Fy
= C —|— _—
T om0 = 7]
and
. F .
0 = yn/(o) = —ciwo sin(wp0) + crwy cos(wp0) + m[(wo+2n_]72]sm(770)
= C2W(
Hence,
Fy
() = ————— , ¢ =0
! m [(@0)? = n?]
and
Fy . Fo
(t) = ———F——5cos(wpt) + Osin(wgt) + ————— cos(nt)
. m[(@)? — ] ml@n? -]
Fo

= a2 g Leos) — eosten)]

23.5b. In this case, we already know the general solution is given by formula 23.7. Applying this
formula, we get

. F .
yp(t) = cicos(wot) + czsin(wot) + 0 t sin(wot)
2maw
and
. F .
yn’(t) = —clw, sin(wpt) + crwo cos(wot) + 0 [sin(wot) + wot cos(wot)]

2ma
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Applying the initial conditions, it is clear that the equations reduce to
0= y,(00 = ¢ and 0 = y,/(0) = Ocrmp
Thus, ¢; = ¢ = 0 and the formula for y, reduces to

Fo
may

@) = 5 t sin(wot)

23.5c. Naively attempting to compute the limit by simply replacing n with wq yields

[cos(nt)—cos(wot)] = 0 R

lim y,(t) = lim Fo :

n—wo n—wo m [(a)o)2 — n2]

which is indeterminant. So we must use L’Hopital’s rule to compute the limit:

. T Fo _
2,00 = 1, e =] L)~ eostent]
d
d—Fo[cos(nt) — cos(a)ot)]
= lim
N—>
0 Em [(600)2 - ’72]
— tm Fo[ — tsin(nr) — 0]
n—wo m [0 —2n]
_ F()[ — tsin(wot) — 0] _ k . _
= 0 200] = 2mw0t sin(wot) = Y, ()



