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Chapter 23: Springs: Part II (Forced Vibrations)

23.2 a. κ =
∣

∣

∣

∣

F0

y0

∣

∣

∣

∣

= mg

|equilibrium length − natural length|
= 0.01 × 9.8

|0.12 − 0.1|
= 4.9

(

kg

sec2

)

.

23.2 b. ω0 =
√

κ

m
=

√

4.9

0.01
= 7

√
10 (/sec) ,

and ν0 = ω0

2π
= 7

√
10

2π
(hertz) .

23.3 a i. In this case,

κ =
∣

∣

∣

∣

F0

y0

∣

∣

∣

∣

= mg

|equilib. length − natural length|
= 25 × 9.8

|0.9 − 1|
= 2450

(

kg

sec2

)

.

23.3 a ii. ω0 =
√

κ

m
=

√

2450

25
=

√
98 = 7

√
2 (/sec) .

23.3 a iii. ν0 = ω0

2π
= 7

√
2

2π
≈ 1.576 times per second (i.e., hertz) .

23.3 c. We have

κ =
∣

∣

∣

∣

F0

y0

∣

∣

∣

∣

= mg

|equilib. length − natural length|
.

So,

mass = m = κ × |equilib. length − natural length|
g

= 2450 × |0.85 − 1.0|
9.8

= 37.5 (kg) .

23.4 a i. Since the chicken’s flapping agrees with the natural frequency of the system, formula

(23.6) applies, which, with the given data, becomes

y(t) = F0

2mω0
t sin(ω0t) = 3

2 · 2(2π · 6)
t sin((2π · 6)t) = t

16π
sin(12π t) .

23.4 a ii. According to the given data, the spring breaks when the amplitude A(t) = 1

16π
t (found

in the above problem) reaches half the spring’s natural length of 1 meter. So we solve

A(t) = 1

2
for t :

1

16π
t = 1

2
֌ t = 16π

2
= 8π ≈ 25.1 (seconds) .
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23.4 b i. Applying formula (23.8):

yp(t) = F0

m
[

(ω0)2 − η2
] cos(ηt)

= 3

2
[

(2π · 6)2 − (2π · 3)2
] cos((2π · 3)t) = 1

72π2
cos(6π t) .

23.4 b ii. The amplitude of the oscillations induced by the chicken flapping is only

1

72π2
≈ 0.001407 meters ,

which is much below the half meter required to break the spring. So the spring does not

break.

23.5 a. In this case, we already know that the general solution is given by formula (23.9). Thus,

yη(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

m
[

(ω0)2 − η2
] cos(ηt)

and

yη
′(t) = −c1ω0 sin(ω0t) + c2ω0 cos(ω0t) + F0η

m
[

(ω0)2 − η2
] sin(ηt) .

Applying the initial conditions, we get

0 = yη(0) = c1 cos(ω00) + c2 sin(ω00) + F0

m
[

(ω0)2 − η2
] cos(η0)

= c1 + F0

m
[

(ω0)2 − η2
]

and

0 = yη
′(0) = −c1ω0 sin(ω00) + c2ω0 cos(ω00) + F0η

m
[

(ω0)2 − η2
] sin(η0)

= c2ω0 .

Hence,

c1 = − F0

m
[

(ω0)2 − η2
] , c2 = 0

and

yη(t) = − F0

m
[

(ω0)2 − η2
] cos(ω0t) + 0 sin(ω0t) + F0

m
[

(ω0)2 − η2
] cos(ηt)

= F0

m
[

(ω0)2 − η2
]

[

cos(ηt) − cos(ω0t)
]

.

23.5 b. In this case, we already know the general solution is given by formula 23.7. Applying this

formula, we get

yη(t) = c1 cos(ω0t) + c2 sin(ω0t) + F0

2mω0
t sin(ω0t)

and

yη
′(t) = −c1ωo sin(ω0t) + c2ω0 cos(ω0t) + F0

2mω0
[sin(ω0t) + ω0t cos(ω0t)] .



✐

✐

✐

✐

✐

✐

✐

✐

Worked Solutions 195

Applying the initial conditions, it is clear that the equations reduce to

0 = yη(0) = c1 and 0 = yη
′(0) = 0c2ω0 .

Thus, c1 = c2 = 0 and the formula for yη reduces to

yη(t) = F0

2mω0
t sin(ω0t) .

23.5 c. Naively attempting to compute the limit by simply replacing η with ω0 yields

lim
η→ω0

yη(t) = lim
η→ω0

F0

m
[

(ω0)2 − η2
]

[

cos(ηt) − cos(ω0t)
]

= 0

0
,

which is indeterminant. So we must use L’Hôpital’s rule to compute the limit:

lim
η→ω0

yη(t) = lim
η→ω0

F0

m
[

(ω0)2 − η2
]

[

cos(ηt) − cos(ω0t)
]

= lim
η→ω0

d

dη
F0

[

cos(ηt) − cos(ω0t)
]

d

dη
m

[

(ω0)2 − η2
]

= lim
η→ω0

F0

[

− t sin(ηt) − 0
]

m [0 − 2η]

=
F0

[

− t sin(ω0t) − 0
]

m
[

0 − 2ω0

] = F0

2mω0
t sin(ω0t) = yω0

(t) .


