\oplus

Chapter 21: Nonhomogeneous Equations in General

21.1 a. Plugging $y = e^{3x}$ into the differential equation, we get

$$g(x) = y'' + y = \left[e^{3x}\right]'' + e^{3x} = 9e^{3x} + e^{3x} = 10e^{3x}$$
.

21.1 b. Plugging $y = e^{3x}$ into the differential equation, we get

$$g(x) = x^{2}y'' - 4y = x^{2} \left[e^{3x} \right]'' - 4e^{3x}$$
$$= x^{2}9e^{3x} - 4e^{3x} = \left(9x^{2} - 4\right)e^{3x}$$

21.1 c. Plugging $y = e^{3x}$ into the differential equation, we get

$$g(x) = y^{(3)} - 4y' + 5y = \left[e^{3x}\right]^{(3)} - 4\left[e^{3x}\right]' + 5e^{3x}$$
$$= 27e^{3x} - 4 \cdot 3e^{3x} + 5e^{3x} = 20e^{3x}$$

21.3 a. Plugging y = sin(x) into the differential equation, we get

$$g(x) = y'' + y = [\sin(x)]'' + \sin(x) = -\sin(x) + \sin(x) = 0 ,$$

telling us that g cannot be a nonzero function. So the answer is "No, because y'' + y = 0 when $y(x) = \sin(x)$ ".

21.3 b.
$$y = x \sin(x) \implies y' = \sin(x) + x \cos(x)$$

$$\hookrightarrow$$
 $y'' = 2\cos(x) - x\sin(x)$

So, if $y = x \sin(x)$, then

 \hookrightarrow

$$g(x) = y'' + y = 2\cos(x) - x\sin(x) + x\sin(x) = 2\cos(x)$$

21.5 a. Plugging $y = 3e^{2x}$ into the left side of the differential equation, we get

$$y'' + 4y = [3e^{2x}]'' + 4[3e^{2x}] = 3 \cdot 2^2 e^{2x} + 12e^{2x} = 24e^{2x}$$

verifying that $y_p = 3e^{2x}$ is one solution to the given nonhomogeneous differential equation.

21.5 b. The corresponding homogeneous differential equation is

 $y'' + 4y = 0 \quad ,$

 $y_1(x)$

 $y_2(x)$

Writing out the corresponding characteristic equation, and then continuing:

$$r^{2} + 4 = 0 \implies r = \pm \sqrt{-4} = \pm 2i$$

 $y_{\pm}(x) = e^{\pm 2i} = \cos(2x) \pm \sin(2x)$.

161

 \oplus

So the general solution to the corresponding homogeneous equation is

$$y_h(x) = c_1 \cos(2x) + c_2 \sin(2x)$$

21.5 c. A general solution to any nonhomogeneous linear differential equation is constructed by adding a particular solution y_p to the general solution y_h of the corresponding homogeneous differential equation. In this case (using the y_p and y_h just found),

$$y(x) = y_p(x) + y_h(x) = 3e^{2x} + c_1\cos(2x) + c_2\sin(2x)$$

21.5 d. For the initial-value problems, we need to use the general solution just obtained,

$$y(x) = 3e^{2x} + c_1 \cos(2x) + c_2 \sin(2x) \tag{(\star)}$$

and its derivative

$$y'(x) = 6e^{2x} - 2c_1\sin(2x) + 2c_2\cos(2x)$$

evaluated at x = 0,

$$y(0) = 3e^{2 \cdot 0} + c_1 \cos(2 \cdot 0) + c_2 \sin(2 \cdot 0) = 3 + c_1$$

and

$$y'(0) = 6e^{2 \cdot 0} - 2c_1 \sin(2 \cdot 0) + 2c_2 \cos(2 \cdot 0) = 6 + 2c_2$$

21.5 d i. Using the initial conditions with the above formulas for y(0) and y'(0), and then formula (\star) for y(x):

$$6 = y(0) = 3 + c_1 \quad \text{and} \quad 6 = y'(0) = 6 + 2c_2$$

$$\hookrightarrow \quad c_1 = 6 - 3 = 3 \quad \text{and} \quad c_2 = \frac{6 - 6}{2} = 0$$

$$\hookrightarrow \quad y(x) = 3e^{2x} + 3\cos(2x) + 0\sin(2x) = 3e^{2x} + 3\cos(2x)$$

21.5 d ii. Using the initial conditions with the above formulas for y(0) and y'(0), and then formula (\star) for y(x):

$$-2 = y(0) = 3 + c_1 \quad \text{and} \quad 2 = y'(0) = 6 + 2c_2$$

$$\Leftrightarrow \quad c_1 = -2 = 3 = -5 \quad \text{and} \quad c_2 = \frac{2-6}{2} = -2$$

$$\Leftrightarrow \quad y(x) = 3e^{2x} - 5\cos(2x) - 2\sin(2x) \quad .$$

21.7 a. Plugging y = -4 into the left side of the differential equation, we get

$$y'' - 9y = [-4]'' - 9[-4] = 0 + 36 = 36$$

verifying that $y_p = -4$ is one solution to the given nonhomogeneous differential equation.

 \hookrightarrow

 \oplus

21.7 b. The corresponding homogeneous differential equation is

$$y'' - 9y = 0$$

Writing out and solving the characteristic equation, and then writing out the resulting general solution y_h to the homogeneous equation:

$$r^{2} - 9 = 0 \implies r = \pm \sqrt{9} = \pm 3$$

 $y_{h}(x) = c_{1}e^{3x} + c_{2}e^{-3x}$.

Adding this to the particular solution y_p just obtained above then yields the general solution to the given nonhomogeneous differential equation,

$$y(x) = y_p(x) + y_h(x) = -4 + c_1 e^{3x} + c_2 e^{-3x}$$
.

21.7 c. From the last part, we know the general solution is

$$y(x) = -4 + c_1 e^{3x} + c_2 e^{-3x} \quad . \tag{(*)}$$

Taking its derivative yields

$$y'(x) = 0 + 3c_1e^{3x} - 3c_2e^{-3x}$$

Applying the initial conditions:

$$8 = y(0) = -4 + c_1 e^{3 \cdot 0} + c_2 e^{-3 \cdot 0} = 4 + c_1 + c_2$$

and

$$6 = y'(0) = 3c_1e^{3\cdot 0} - 3c_2e^{-3\cdot 0} = 3c_1 - 3c_2 .$$

Solving for the constants and plugging back into formula (\star) for y:

$$8 = -4 + c_1 + c_2$$
 and $6 = 3c_1 - 3c_2$

 \hookrightarrow $c_1 = 12 - c_2$ and $2 = c_1 - c_2 = 12 - c_2 - c_2$

 \hookrightarrow $c_1 = 12 - c_2$ and $c_2 = \frac{12 - 2}{2} = 5$

$$\hookrightarrow$$
 $c_1 = 12 - 5 = 7$ and $c_2 = 5$

21.9 a. $y = xe^{5x} \longrightarrow y' = e^{5x} + 5xe^{5x} \longrightarrow y'' = 2 \cdot 5e^{5x} + 25xe^{5x}$. So, plugging $y = xe^{5x}$ into the left side of the differential equation yields

$$y'' - 3y' - 10y = \left[2 \cdot 5e^{5x} + 25xe^{5x}\right] - 3\left[e^{5x} + 5xe^{5x}\right] - 10xe^{5x}$$
$$= \left[10 + 25x - 3 - 15x - 10x\right]e^{5x} = 7e^{5x} \quad .$$

 \oplus

164

 \oplus

21.9 b. The corresponding homogeneous differential equation is

$$y'' - 3y' - 10y = 0$$

Writing out and solving the characteristic equation, and then writing out the resulting general solution y_h to the homogeneous equation:

$$0 = r^{2} - 3r - 10 = (r - 5)(r + 2)$$

$$\Leftrightarrow \qquad r = 5 \quad \text{and} \quad r = -2$$

$$\Leftrightarrow \qquad y_{h}(x) = c_{1}e^{5x} + c_{2}e^{-2x} \quad .$$

Adding this to the particular solution y_p just obtained above then yields the general solution to the given nonhomogeneous differential equation,

$$y(x) = y_p(x) + y_h(x) = xe^{5x} + c_1e^{5x} + c_2e^{-2x}$$
.

21.9 c. From the last part, we know the general solution is

$$y(x) = xe^{5x} + c_1e^{5x} + c_2e^{-2x}$$
 . (*)

Taking its derivative yields

$$y'(x) = e^{5x} + 5xe^{5x} + 5c_1e^{5x} - 2c_2e^{-2x}$$

Applying the initial conditions:

$$12 = y(0) = 0e^{5 \cdot 0} + c_1 e^{5 \cdot 0} + c_2 e^{-2 \cdot 0} = c_1 + c_2$$

and

$$-2 = y'(0) = e^{5 \cdot 0} + 5 \cdot 0e^{5 \cdot 0} + 5c_1e^{5 \cdot 0} - 2c_2e^{-2 \cdot 0} = 1 + 5c_1 - 2c_2$$

Solving for the constants and then plugging them back into formula (\star) for y:

 $12 = c_1 + c_2 \quad \text{and} \quad -2 = 1 + 5c_1 - 2c_2$ $\hookrightarrow \quad c_1 = 12 - c_2 \quad \text{and} \quad -3 = 5[12 - c_2] - 2c_2 = 60 - 7c_2$ $\hookrightarrow \quad c_1 = 12 - c_2 \quad \text{and} \quad c_2 = \frac{60 + 3}{7} = 9$ $\hookrightarrow \quad c_1 = 12 - 9 = 3 \quad \text{and} \quad c_2 = 9$ $\hookrightarrow \quad y(x) = xe^{5x} + 3e^{5x} + 9e^{-2x} \quad .$

21.11 a. $y = 5x + 2 \implies y' = 5 \implies y'' = 0$. So, plugging y = 5x + 2 into the left side of the differential equation yields

$$x^{2}y'' - 4xy' + 6y = x^{2}[0] - 4x[5] + 6[5x + 2]$$

= -20x + 30x + 12 = 10x + 12

$$\oplus$$

 \oplus

21.11 b. The corresponding homogeneous differential equation is

$$x^2y'' - 4xy' + 6y = 0 \quad .$$

This is an Euler equation. To solve it, we must first find and solve the corresponding indicial equation obtained by plugging $y = x^r$ into the homogeneous differential equation:

$$0 = x^{2} [x^{r}]'' - 4x [x^{r}]' + 6x^{r}$$

= $x^{2}r(r-1)x^{r-2} - 4xrx^{r-1} + 6x^{r}$
= $[r^{2} - r - 4r + 6]x^{2} = [r^{2} - 5r + 6]x^{2}$

Dividing out x^r leaves the indicial equation. Writing that equation down and continuing until we obtain the solution y_h to the homogeneous differential equation:

$$0 = r^{2} - 5r + 6 = (r - 2)(r - 3)$$

$$(\rightarrow) \qquad r = 2 \quad \text{and} \quad r = 3$$

$$(\rightarrow) \qquad y_{h}(x) = c_{1}x^{2} + c_{2}x^{3} \quad .$$

Adding this to the particular solution y_p just obtained above then yields the general solution to the given nonhomogeneous differential equation,

$$y(x) = y_p(x) + y_h(x) = 5x + 2 + c_1x^2 + c_2x^3$$

21.11 c. From the last part, we know the general solution is

$$y(x) = 5x + 2 + c_1 x^2 + c_2 x^3 \quad . \tag{(\star)}$$

Taking its derivative yields

$$y'(x) = 5 + 2c_1x + 3c_2x^2$$

Applying the initial conditions:

$$6 = y(1) = 5 \cdot 1 + 2 + c_1 \cdot 1^2 + c_2 \cdot 1^3 = 7 + c_1 + c_2$$

and

$$8 = y'(1) = 5 + 2c_1 \cdot 1 + 3c_2 \cdot 1^2 = 5 + 2c_1 + 3c_2 .$$

Solving for the constants and then plugging them back into formula (\star) for y:

 $6 = 7 + c_1 + c_2$ and $8 = 5 + 2c_1 + 3c_2$

 \hookrightarrow $c_1 = -1 - c_2$ and $3 = 2[-1 - c_2] + 3c_2 = -2 + c_2$

- \hookrightarrow $c_1 = -1 c_2$ and $c_2 = 3 + 2 = 5$
- \hookrightarrow $c_1 = -1 5 = -6$ and $c_2 = 5$

$$\hookrightarrow \qquad \qquad y(x) = 5x + 2 - 5x^2 + 5x^3 \quad .$$

165

Nonhomogeneous Equations in General

 \oplus

21.13 a. Being a little more explicit than necessary:

$$y'' - 3y' - 10y = e^{4x} = -\frac{1}{6} \left[-6e^{4x} \right]$$
$$= -\frac{1}{6} g_2(x)$$
$$= -\frac{1}{6} \left[y_1'' - 3y_1' - 10y_1 \right]$$
$$= \left[-\frac{1}{6} y_1 \right]'' - 3 \left[-\frac{1}{6} y_1 \right]' - 10 \left[-\frac{1}{6} y_1 \right]$$

So, one solution is

$$y_p(x) = -\frac{1}{6}y_1 = -\frac{1}{6}e^{4x}$$

21.13 b. We have: $y'' - 3y' - 10y = e^{5x} = \frac{1}{7} \left[7e^{5x} \right] = \frac{1}{7}g_2(x)$. So, by the principle of superposition, one solution is

$$y_p(x) = \frac{1}{7}y_2 = \frac{1}{7}xe^{5x}$$
.

21.13 c. $y'' - 3y' - 10y = -18e^{4x} + 14e^{5x}$ $= 3\left[-6e^{4x}\right] + 2\left[7e^{5x}\right]$ $= 3g_1(x) + 2g_2(x) \quad .$

So, by the principle of superposition, one solution is

$$y_p(x) = 3y_1 + 2y_2 = 3e^{4x} + 2xe^{5x}$$

21.13 d. Directly applying the principle of superposition:

$$y'' - 3y' - 10y = 35e^{5x} + 12e^{4x} = 5\left[\underbrace{7e^{5x}}_{g_2(x)}\right] - 2\left[\underbrace{-6e^{4x}}_{g_1(x)}\right]$$
$$\longleftrightarrow \qquad y_p(x) = 5y_2(x) - 2y_1(x) = 5xe^{5x} - 2e^{4x} \quad .$$

21.15 a i. With $y = x^2$,

$$g(x) = x^{2}y'' - 7xy' + 15y = x^{2} [x^{2}]'' - 7x [x^{2}]' + 15x^{2}$$
$$= x^{2} [2] - 7x [2x] + 15x^{2} = 3x^{2} .$$

21.15 a ii. With y = x,

$$g(x) = x^{2}y'' - 7xy' + 15y = x^{2}[x]'' - 7x[x]' + 15x$$
$$= x^{2}[0] - 7x[1] + 15x = 8x$$

166

 \oplus

 \oplus

 \oplus

21.15 a iii. With y = 1,

$$g(x) = x^{2}y'' - 7xy' + 15y = x^{2}[1]'' - 7x[1]' + 15[1]$$

$$= x^{2}[0] - 7x[0] + 15 = 15 .$$
21.15 b.

$$x^{2}y'' - 7xy' + 15y = x^{2} = \frac{1}{3}[3x^{2}]$$

$$\hookrightarrow \qquad y_{p}(x) = \frac{1}{3}[x^{2}] = \frac{1}{3}x^{2} .$$
21.15 c.

$$x^{2}y'' - 7xy' + 15y = 4x^{2} + 2x + 3 = \frac{4}{3}[3x^{2}] + \frac{1}{4}[8x] + \frac{1}{5}[15]$$

$$\Rightarrow y_p(x) = \frac{4}{3} \left[x^2 \right] + \frac{1}{4} \left[x \right] + \frac{1}{5} \left[1 \right] = \frac{4}{3} x^2 + \frac{1}{4} x + \frac{1}{5} .$$

167

 \oplus

 \oplus