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Chapter 21: Nonhomogeneous Equations in General

21.1 a. Plugging y = e3x into the differential equation, we get

g(x) = y′′ + y =
[

e3x
]′′

+ e3x = 9e3x + e3x = 10e3x .

21.1 b. Plugging y = e3x into the differential equation, we get

g(x) = x2 y′′ − 4y = x2
[

e3x
]′′

− 4e3x

= x29e3x − 4e3x =
(

9x2 − 4
)

e3x .

21.1 c. Plugging y = e3x into the differential equation, we get

g(x) = y(3) − 4y′ + 5y =
[

e3x
](3)

− 4
[

e3x
]′

+ 5e3x

= 27e3x − 4 · 3e3x + 5e3x = 20e3x .

21.3 a. Plugging y = sin(x) into the differential equation, we get

g(x) = y′′ + y = [sin(x)]′′ + sin(x) = − sin(x) + sin(x) = 0 ,

telling us that g cannot be a nonzero function. So the answer is “No, because y′′ + y = 0

when y(x) = sin(x) ”.

21.3 b. y = x sin(x)  y′ = sin(x) + x cos(x)

→֒ y′′ = 2 cos(x) − x sin(x) .

So, if y = x sin(x) , then

g(x) = y′′ + y = 2 cos(x) − x sin(x) + x sin(x) = 2 cos(x) .

21.5 a. Plugging y = 3e2x into the left side of the differential equation, we get

y′′ + 4y =
[

3e2x
]′′

+ 4
[

3e2x
]

= 3 · 22e2x + 12e2x = 24e2x ,

verifying that yp = 3e2x is one solution to the given nonhomogeneous differential equation.

21.5 b. The corresponding homogeneous differential equation is

y′′ + 4y = 0 ,

Writing out the corresponding characteristic equation, and then continuing:

r2 + 4 = 0  r = ±
√

−4 = ±2i

→֒ y±(x) = e±2i = cos(2x)
︸ ︷︷ ︸

y1(x)

± sin(2x)
︸ ︷︷ ︸

y2(x)

.
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So the general solution to the corresponding homogeneous equation is

yh(x) = c1 cos(2x) + c2 sin(2x) .

21.5 c. A general solution to any nonhomogeneous linear differential equation is constructed by

adding a particular solution yp to the general solution yh of the corresponding homogeneous

differential equation. In this case (using the yp and yh just found),

y(x) = yp(x) + yh(x) = 3e2x + c1 cos(2x) + c2 sin(2x) .

21.5 d. For the initial-value problems, we need to use the general solution just obtained,

y(x) = 3e2x + c1 cos(2x) + c2 sin(2x) (⋆)

and its derivative

y′(x) = 6e2x − 2c1 sin(2x) + 2c2 cos(2x)

evaluated at x = 0 ,

y(0) = 3e2·0 + c1 cos(2 · 0) + c2 sin(2 · 0) = 3 + c1

and

y′(0) = 6e2·0 − 2c1 sin(2 · 0) + 2c2 cos(2 · 0) = 6 + 2c2 .

21.5 d i. Using the initial conditions with the above formulas for y(0) and y′(0) , and then formula

(⋆) for y(x) :

6 = y(0) = 3 + c1 and 6 = y′(0) = 6 + 2c2

→֒ c1 = 6 − 3 = 3 and c2 = 6 − 6

2
= 0

→֒ y(x) = 3e2x + 3 cos(2x) + 0 sin(2x) = 3e2x + 3 cos(2x) .

21.5 d ii. Using the initial conditions with the above formulas for y(0) and y′(0) , and then formula

(⋆) for y(x) :

−2 = y(0) = 3 + c1 and 2 = y′(0) = 6 + 2c2

→֒ c1 = −2 = 3 = −5 and c2 = 2 − 6

2
= −2

→֒ y(x) = 3e2x − 5 cos(2x) − 2 sin(2x) .

21.7 a. Plugging y = −4 into the left side of the differential equation, we get

y′′ − 9y = [−4]′′ − 9 [−4] = 0 + 36 = 36 ,

verifying that yp = −4 is one solution to the given nonhomogeneous differential equation.
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21.7 b. The corresponding homogeneous differential equation is

y′′ − 9y = 0 .

Writing out and solving the characteristic equation, and then writing out the resulting general

solution yh to the homogeneous equation:

r2 − 9 = 0  r = ±
√

9 = ±3

→֒ yh(x) = c1e3x + c2e−3x .

Adding this to the particular solution yp just obtained above then yields the general solution

to the given nonhomogeneous differential equation,

y(x) = yp(x) + yh(x) = −4 + c1e3x + c2e−3x .

21.7 c. From the last part, we know the general solution is

y(x) = −4 + c1e3x + c2e−3x . (⋆)

Taking its derivative yields

y′(x) = 0 + 3c1e3x − 3c2e−3x .

Applying the initial conditions:

8 = y(0) = −4 + c1e3·0 + c2e−3·0 = 4 + c1 + c2

and

6 = y′(0) = 3c1e3·0 − 3c2e−3·0 = 3c1 − 3c2 .

Solving for the constants and plugging back into formula (⋆) for y :

8 = −4 + c1 + c2 and 6 = 3c1 − 3c2

→֒ c1 = 12 − c2 and 2 = c1 − c2 = 12 − c2 − c2

→֒ c1 = 12 − c2 and c2 = 12 − 2

2
= 5

→֒ c1 = 12 − 5 = 7 and c2 = 5

→֒ y(x) = −4 + 7e3x + 5e−3x .

21.9 a. y = xe5x
 y′ = e5x + 5xe5x

 y′′ = 2 · 5e5x + 25xe5x .

So, plugging y = xe5x into the left side of the differential equation yields

y′′ − 3y′ − 10y =
[

2 · 5e5x + 25xe5x
]

− 3
[

e5x + 5xe5x
]

− 10xe5x

= [10 + 25x − 3 − 15x − 10x] e5x = 7e5x .
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21.9 b. The corresponding homogeneous differential equation is

y′′ − 3y′ − 10y = 0 .

Writing out and solving the characteristic equation, and then writing out the resulting general

solution yh to the homogeneous equation:

0 = r2 − 3r − 10 = (r − 5)(r + 2)

→֒ r = 5 and r = −2

→֒ yh(x) = c1e5x + c2e−2x .

Adding this to the particular solution yp just obtained above then yields the general solution

to the given nonhomogeneous differential equation,

y(x) = yp(x) + yh(x) = xe5x + c1e5x + c2e−2x .

21.9 c. From the last part, we know the general solution is

y(x) = xe5x + c1e5x + c2e−2x . (⋆)

Taking its derivative yields

y′(x) = e5x + 5xe5x + 5c1e5x − 2c2e−2x .

Applying the initial conditions:

12 = y(0) = 0e5·0 + c1e5·0 + c2e−2·0 = c1 + c2

and

−2 = y′(0) = e5·0 + 5 · 0e5·0 + 5c1e5·0 − 2c2e−2·0 = 1 + 5c1 − 2c2 .

Solving for the constants and then plugging them back into formula (⋆) for y :

12 = c1 + c2 and − 2 = 1 + 5c1 − 2c2

→֒ c1 = 12 − c2 and − 3 = 5[12 − c2] − 2c2 = 60 − 7c2

→֒ c1 = 12 − c2 and c2 = 60 + 3

7
= 9

→֒ c1 = 12 − 9 = 3 and c2 = 9

→֒ y(x) = xe5x + 3e5x + 9e−2x .

21.11 a. y = 5x + 2  y′ = 5  y′′ = 0 .

So, plugging y = 5x + 2 into the left side of the differential equation yields

x2 y′′ − 4xy′ + 6y = x2[0] − 4x[5] + 6[5x + 2]

= −20x + 30x + 12 = 10x + 12 .
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21.11 b. The corresponding homogeneous differential equation is

x2 y′′ − 4xy′ + 6y = 0 .

This is an Euler equation. To solve it, we must first find and solve the corresponding indicial

equation obtained by plugging y = xr into the homogeneous differential equation:

0 = x2
[

xr
]′′ − 4x

[

xr
]′ + 6xr

= x2r(r − 1)xr−2 − 4xrxr−1 + 6xr

=
[

r2 − r − 4r + 6
]

x2 =
[

r2 − 5r + 6
]

x2 .

Dividing out xr leaves the indicial equation. Writing that equation down and continuing

until we obtain the solution yh to the homogeneous differential equation:

0 = r2 − 5r + 6 = (r − 2)(r − 3)

→֒ r = 2 and r = 3

→֒ yh(x) = c1x2 + c2x3 .

Adding this to the particular solution yp just obtained above then yields the general solution

to the given nonhomogeneous differential equation,

y(x) = yp(x) + yh(x) = 5x + 2 + c1x2 + c2x3 .

21.11 c. From the last part, we know the general solution is

y(x) = 5x + 2 + c1x2 + c2x3 . (⋆)

Taking its derivative yields

y′(x) = 5 + 2c1x + 3c2x2 .

Applying the initial conditions:

6 = y(1) = 5 · 1 + 2 + c1 · 12 + c2 · 13 = 7 + c1 + c2

and

8 = y′(1) = 5 + 2c1 · 1 + 3c2 · 12 = 5 + 2c1 + 3c2 .

Solving for the constants and then plugging them back into formula (⋆) for y :

6 = 7 + c1 + c2 and 8 = 5 + 2c1 + 3c2

→֒ c1 = −1 − c2 and 3 = 2[−1 − c2] + 3c2 = −2 + c2

→֒ c1 = −1 − c2 and c2 = 3 + 2 = 5

→֒ c1 = −1 − 5 = −6 and c2 = 5

→֒ y(x) = 5x + 2 − 5x2 + 5x3 .
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21.13 a. Being a little more explicit than necessary:

y′′ − 3y′ − 10y = e4x = − 1

6

[

−6e4x
]

= − 1

6
g2(x)

= − 1

6

[

y1
′′ − 3y1

′ − 10y1

]

=
[

− 1

6
y1

]′′
− 3

[

− 1

6
y1

]′
− 10

[

− 1

6
y1

]

So, one solution is

yp(x) = − 1

6
y1 = − 1

6
e4x .

21.13 b. We have: y′′ − 3y′ − 10y = e5x = 1

7

[

7e5x
]

= 1

7
g2(x) .

So, by the principle of superposition, one solution is

yp(x) = 1

7
y2 = 1

7
xe5x .

21.13 c. y′′ − 3y′ − 10y = −18e4x + 14e5x

= 3
[

−6e4x
]

+ 2
[

7e5x
]

= 3g1(x) + 2g2(x) .

So, by the principle of superposition, one solution is

yp(x) = 3y1 + 2y2 = 3e4x + 2xe5x .

21.13 d. Directly applying the principle of superposition:

y′′ − 3y′ − 10y = 35e5x + 12e4x = 5
[

7e5x
︸︷︷︸

g2(x)

]

− 2
[

−6e4x

︸ ︷︷ ︸

g1(x)

]

→֒ yp(x) = 5y2(x) − 2y1(x) = 5xe5x − 2e4x .

21.15 a i. With y = x2 ,

g(x) = x2 y′′ − 7xy′ + 15y = x2
[

x2
]′′

− 7x
[

x2
]′

+ 15x2

= x2 [2] − 7x [2x] + 15x2 = 3x2 .

21.15 a ii. With y = x ,

g(x) = x2 y′′ − 7xy′ + 15y = x2 [x]′′ − 7x [x]′ + 15x

= x2 [0] − 7x [1] + 15x = 8x .
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21.15 a iii. With y = 1 ,

g(x) = x2 y′′ − 7xy′ + 15y = x2 [1]′′ − 7x [1]′ + 15[1]

= x2 [0] − 7x [0] + 15 = 15 .

21.15 b. x2 y′′ − 7xy′ + 15y = x2 = 1

3

[

3x2
]

→֒ yp(x) = 1

3

[

x2
]

= 1

3
x2 .

21.15 c. x2 y′′ − 7xy′ + 15y = 4x2 + 2x + 3 = 4

3

[

3x2
]

+ 1

4
[8x] + 1

5
[15]

→֒ yp(x) = 4

3

[

x2
]

+ 1

4
[x] + 1

5
[1] = 4

3
x2 + 1

4
x + 1

5
.


