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150 Euler Equations

Chapter 20: Euler Equations

20.1 a. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

yields

0 = x2 y′′ − 5xy′ + 8y

= x2r(r − 1)xr−2 − 5xrxr−1 + 8xr

=

[

r2 − r
]

xr − 5rxr + 8xr

=

[

r2 − r − 5r + 8
]

xr =

[

r2 − 6r + 8
]

xr .

So the indicial equation is

0 = r2 − 6r + 8 ,

which factors to

0 = (r − 2)(r − 4) .

Thus, xr is a solution to the differential equation if r = 2 or r = 4 , and, consequently, the

general solution to our differential equation is

y(x) = c1x2 + c2x4 .

20.1 c. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − 2xy′

= x2r(r − 1)xr−2 − 2xrxr−1

=

[

r2 − r
]

xr − 2rxr

=

[

r2 − r − 2r
]

xr =

[

r2 − 3r
]

xr .

So the indicial equation is

0 = r2 − 3r = r(r − 3) = (r − 0)(r − 3) ,

which means r = 0 and r = 3 . Thus, two particular solutions to the differential equation

are x0 = 1 and x3 , and the general solution is

y(x) = c1 · 1 + c2x3 .

20.1 e. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − 5xy′ + 9y

= x2r(r − 1)xr−2 − 5xrxr−1 + 9xr

=

[

r2 − r − 5r + 9
]

xr =

[

r2 − 6r + 9
]

xr .
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So the indicial equation is

0 = r2 − 6r + 9 = (r − 3)2 ,

which only has r = 3 as a solution, leading to the one solution x3 to the differential equation.

As noted in Section 20.2, an appropriate second solution is obtained by either reduction of

order, or, more simply, by multiplying the first solution, x3 , by ln |x | . Thus, the general

solution to the differential equation is

y(x) = c1x3 + c2x3 ln |x | .

20.1 g. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = 4x2 y′′ + y = 4x2r(r − 1)xr−2 + xr =

[

4r2 − 4r + 1
]

xr .

So the indicial equation is

0 = 4r2 − 4r + 1 = (2r − 1)2 ,

which only has r = 1/2 as a solution. Thus, the general solution to the differential equation

is

y(x) = c1x
1/2 + c2x

1/2 ln |x | .

20.1 i. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − 5xy′ + 13y

= x2r(r − 1)xr−2 − 5xrxr−1 + 13xr

=

[

r2 − r − 5r + 13
]

xr =

[

r2 − 6r + 13
]

xr .

So the indicial equation is

0 = r2 − 6r + 13 ,

the solutions of which are

r± =
−[−6] ±

√

[−6]2 − 4 · 13

2
= 3 ± 2i .

The corresponding particular solutions (with x > 0 ) to the differential equation are then

y±(x) = xr± = x3±2i = x3x±2i

= x3eln
(

x±2i
)

= x3ei2 ln|x |

= x3 [cos(2 ln |x |) + i sin(2 ln |x |)]

= x3 cos(2 ln |x |)
︸ ︷︷ ︸

y1(x)

+ i x3 sin(2 ln |x |)
︸ ︷︷ ︸

y2(x)

.

So, in terms of real-valued functions, the general solution to the differential equation is

y(x) = c1 y1(x) + c2 y2(x) = c1x3 cos(2 ln |x |) + c2x3 sin(2 ln |x |) .
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20.1 k. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ + 5xy′ + 29y

= x2r(r − 1)xr−2 + 5xrxr−1 + 29xr

=

[

r2 − r + 5r + 29
]

xr =

[

r2 + 4r + 29
]

xr .

So the indicial equation is

0 = r2 + 4r + 29 ,

the solutions of which are

r± =
−4 ±

√

42 − 4 · 20

2
= −2 ± 5i .

The corresponding particular solutions (with x > 0 ) to the differential equation are then

y±(x) = xr± = x−2±5i = x−2x±5i

= x−2eln
(

x±5i
)

= x−2ei5 ln|x |

= x−2 [cos(5 ln |x |) + i sin(5 ln |x |)]

= x−2 cos(5 ln |x |)
︸ ︷︷ ︸

y1(x)

+ i x−2 sin(5 ln |x |)
︸ ︷︷ ︸

y2(x)

.

So, in terms of real-valued functions, the general solution to the differential equation is

y(x) = c1 y1(x) + c2 y2(x) = c1x−2 cos(5 ln |x |) + c2x−2 sin(5 ln |x |) .

20.1 m. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = 2x2 y′′ + 5xy′ + y

= 2x2r(r − 1)xr−2 + 5xrxr−1 + xr

=

[

2r2 − 2r + 5r + 1
]

xr =

[

2r2 + 3r + 1
]

xr .

Writing out the indicial equation, and then continuing

2r2 + 3r + 1 = 0

→֒ r =
−3 ±

√

32 − 4 · 2 · 1

2 · 2
=

−3 ± 1

4

→֒ r = −
1

2
and r = −1

→֒ y(x) = c1x−1/2 + c2x−1 .
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20.1 o. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ + xy′ = x2r(r − 1)xr−2 + xrxr−1 =

[

r2 − r + r
]

xr =

[

r2
]

xr .

Writing out the indicial equation, and then continuing

r2 = 0 ֌ r = 0

→֒ y(x) = c1x−0 + c2x0 ln |x | = c1 + c2 ln |x | .

20.1 q. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = 4x2 y′′ + 8xy′ + 5y

= 4x2r(r − 1)xr−2 + 8xrxr−1 + 5xr

=

[

4r2 + 4r + 5r
]

xr .

So the indicial equation is

0 = 4r2 + 4r + 5r ,

which means that

r =
−4 ±

√

42 − 4 · 4 · 5

2 · 4
= −

1

2
± 1i .

The corresponding particular solutions (with x > 0 ) to the differential equation are then

y±(x) = xr± = x−1/2±1i = x−1/2x±i

= x−1/2eln
(

x±i
)

= x−1/2ei ln|x |

= x−1/2 [cos(ln |x |) + i sin(ln |x |)]

= x−1/2 cos(ln |x |)
︸ ︷︷ ︸

y1(x)

+ i x−1/2 sin(ln |x |)
︸ ︷︷ ︸

y2(x)

.

So, in terms of real-valued functions, the general solution to the differential equation is

y(x) = c1 y1(x) + c2 y2(x) = c1x−1/2 cos(ln |x |) + c2x−1/2 sin(ln |x |) .

20.2 a. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − 2xy′ − 10y

= x2r(r − 1)xr−2 − 2xrxr−1 − 10xr

=

[

r2 − r − 2r − 10
]

xr =

[

r2 − 3r − 10
]

xr .
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Writing out the indicial equation, and then continuing

0 = r2 − 3r − 10 = (r − 5)(r + 2)

→֒ r = 5 and r = −2

→֒ y(x) = c1x5 + c2x−2 (⋆)

→֒ y′(x) = 5c1x4 − 2c2x−3 .

Applying the initial data:

5 = y(1) = c1 · 15 + c2 · 1−2 = c1 + c2

and

4 = y′(1) = 5c1 · 14 − 2c2 · 1−3 = 5c1 − 2c2 .

Solving for c1 and c2 , and plugging the values back into formula (⋆) for y :

5 = c1 + c2 and 4 = 5c1 − 2c2

→֒ c1 = 5 − c2 and 4 = 5[5 − c2] − 2c2 = 25 − 7c2

→֒ c1 = 5 − c2 and c2 =
4 − 25

−7
= 3

→֒ c1 = 5 − 3 = 2 and c2 =
4 − 25

−7
= 3

→֒ y(x) = 2x5 + 3x−2 .

20.2 c. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − 11xy′ + 36y

= x2r(r − 1)xr−2 − 11xrxr−1 + 36xr =

[

r2 − 12r + 36
]

xr .

Writing out the indicial equation, and then continuing

0 = r2 − 12r + 36 = (r − 6)2

→֒ r = 6 is the only root.

→֒ y(x) = c1x6 + c2x6 ln |x | (⋆)

→֒ y′(x) = 6c1x5 + c2

[

6x5 ln |x | + x5
]

.
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Applying the initial data:

1

2
= y(1) = c1 · 16 + c2 · 16 ln |1| = c1

and

2 = y′(0) = 6c1 · 15 + c2

[

6 · 15 ln |1| + 15
]

= 6c1 + c2 .

Solving for c1 and c2 , and plugging the values back into formula (⋆) for y :

1

2
= c1 and 2 = 6c1 + c2

→֒ c1 =
1

2
and c2 = 2 − 6c1 = 2 − 6

[
1

2

]

= −1

→֒ y(x) =
1

2
x6 − x6 ln |x | .

20.2 e. Letting y(x) = xr
֌ y′(x) = rxr−1

֌ y′′(x) = r(r − 1)xr−2 ,

the differential equation becomes

0 = x2 y′′ − xy′ + 2y

= x2r(r − 1)xr−2 − xrxr−1 + 2xr =

[

r2 − 2r + 2
]

xr .

Writing out the indicial equation, and then continuing

0 = r2 − 2r + 2

→֒ r =
−[−2] ±

√

[−2]2 − 4 · 2

2
= 1 ± i

→֒ y±(x) = x1±i = · · · = x cos(ln |x |) ± x sin(ln |x |)

→֒ y(x) = c1x cos(ln |x |) + c2x sin(ln |x |) . (⋆)

Computing the derivative:

y′(x) =
d

dx
[c1x cos(ln |x |) + c2x sin(ln |x |)]

= c1

[

cos(ln |x |) − x sin(ln |x |) x−1
]

+ c2

[

sin(ln |x |) + x cos(ln |x |) x−1
]

= c1 [cos(ln |x |) − sin(ln |x |)] + c2 [sin(ln |x |) + cos(ln |x |)] .

Applying the initial data:

3 = y(1) = c11 cos(ln |1|) + c21 sin(ln |1|) = c1

and

0 = y′(1) = c1 [cos(ln |1|) − sin(ln |1|)] + c2 [sin(ln |1|) + cos(ln |1|)]

= c1 + c2 .

Clearly c1 = 3 and c2 = −c1 = −3 . Plugging these values back into formula (⋆) for y

then yields

y(x) = 3x cos(ln |x |) − 3x sin(ln |x |)
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20.4 a. Assuming y = xr and taking three derivatives, we get

y′ = rxr−1
֌ y′′ = r(r − 1)xr−2

֌ y′′′ = r(r − 1)(r − 2)xr−3 .

Plugging these into the differential equation:

0 = x3 y′′′ + 2x2 y′′ − 4xy′ + 4y

= x3r(r − 1)(r − 2)xr−3 + 2x2r(r − 1)xr−2 − 4xrxr−1 + 4xr

=

[

r3 − 3r2 + 2r
]

xr + 2
[

r2 − r
]

xr − 4[r]xr + 4xr

=

[

r3 − r2 − 4r + 4
]

xr .

So the indicial equation is the third-degree polynomial equation

r3 − r2 − 4r + 4
︸ ︷︷ ︸

p(x)

= 0 .

To find the solutions, we’ll first test to see if r = 1 is one root of p(r) :

p(1) = 13 − 12 − 4 · 1 + 4 = 1 − 1 − 4 + 4 = 0 .

Hence, r = 1 is a root, and r − 1 is a factor. Dividing out this factor:

r2 − 4

r − 1
)

r3 − r2 − 4r + 4

− r3 + r2

− 4r + 4

4r − 4

0

.

This means we can factor our indicial equation as follows:

0 = r3 − r2 − 4r + 4

= (r − 1)
(

r2 − 4
)

= (r − 1)(r − 2)(r + 2) .

Thus, the solutions the indicial equation are the three distinct values

r = 1 , r = 2 and r = −2 ,

and the corresponding general solution to the third-order differential equation is

y(x) = c1x + c2x2 + c3x−2 .

20.4 c. Assuming y = xr and taking three derivatives, we get

y′ = rxr−1
֌ y′′ = r(r − 1)xr−2

֌ y′′′ = r(r − 1)(r − 2)xr−3 ,

which, when plugged into the differential equation yields

0 = x3 y′′′ − 5x2 y′′ + 14xy′ − 18y

= x3r(r − 1)(r − 2)xr−3 − 5x2r(r − 1)xr−2 + 14xrxr−1 − 18xr
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=

[

r3 − 3r2 + 2r
]

xr − 5
[

r2 − r
]

xr + 14[r]xr − 18xr

=

[

r3 − 8r2 + 21r − 18
]

xr .

So the indicial equation is the third-degree polynomial equation

r3 − 8r2 + 21r − 18
︸ ︷︷ ︸

p(x)

= 0 .

To find the solutions, we’ll compute p(r) for different values of r until we find a value such

that p(r) = 0 :

p(1) = 13 − 8 · 12 + 21 · 1 − 18 = 1 − 8 + 21 − 18 = −4 6= 0 ,

p(2) = 23 − 8 · 22 + 21 · 2 − 18 = 8 − 32 + 42 − 18 = 0 .

Hence, r = 2 is a root, and r − 2 is a factor. Dividing out this factor:

r2 − 6r + 9

r − 2
)

r3 − 8r2 + 21r − 18

− r3 + 2r2

− 6r2 + 21r

6r2 − 12r

9r − 18

− 9r + 18

0

.

This means we can factor our indicial equation as follows:

0 = r3 − 8r2 + 21r − 18

= (r − 2)
(

r2 − −6r + 9
)

= (r − 2)(r − 3)2 .

Thus, the solutions the indicial equation are r = 2 (with multiplicity 1 ) and r = 3 (with

multiplicity 2 ), and the corresponding general solution to the third-order differential equation

is

y(x) = c1x2 + c2x3 + c3x3 ln |x | .

20.4 e. Assuming y = xr and taking four derivatives, we get

y′ = rxr−1
֌ y′′ = r(r − 1)xr−2

→֒ y′′′ = r(r − 1)(r − 2) ֌ y(4) = r(r − 1)(r − 2)(r − 3)xr−4 .

which, when plugged into the differential equation yields

0 = x4 y(4) + 6x3 y′′′ + 15x2 y′′ + 9xy′ + 16y

= x4r(r − 1)(r − 2)(r − 3)xr−4 + 6x3r(r − 1)(r − 2)xr−3

+ 15x2r(r − 1)xr−2 + 9xrxr−1 + 16xr
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=

[

r4 − 6r3 + 11r2 − 6r
]

xr + 6
[

r3 − 3r2 + 2r
]

xr

+ 15
[

r2 − r
]

xr + 9[r]xr + 16xr

=

[

r4 + 0r3 + 8r2 + 0r + 16
]

xr .

So the indicial equation is

0 = r4 + 8r2 + 16 =

(

r2 + 4
)2

,

which has solutions

r = ±2i with multiplicity 2 ,

and the four corresponding real-valued solutions to our Euler equation are

cos(2 ln |x |) , sin(2 ln |x |) , cos(2 ln |x |) ln |x | and sin(2 ln |x |) ln |x | .

The general solution, then, is

y = c1 cos(2 ln |x |) + c2 sin(2 ln |x |)

+ c4 cos(2 ln |x |) ln |x | + c4 sin(2 ln |x |) ln |x | .

20.4 g. Assuming y = xr and taking four derivatives, we get

y′ = rxr−1
֌ y′′ = r(r − 1)xr−2

→֒ y′′′ = r(r − 1)(r − 2) ֌ y(4) = r(r − 1)(r − 2)(r − 3)xr−4 .

which, when plugged into the differential equation yields

0 = x4 y(4) + 2x3 y′′′ + x2 y′′ − xy′ + y

= x4r(r − 1)(r − 2)(r − 3)xr−4 + 2x3r(r − 1)(r − 2)xr−3

+ x2r(r − 1)xr−2 − xrxr−1 + xr

=

[

r4 − 6r3 + 11r2 − 6r
]

xr + 2
[

r3 − 3r2 + 2r
]

xr +

[

r2 − r
]

xr

− [r]xr + xr

=

[

r4 − 4r3 + 6r2 − 4r + 1
]

xr

So the indicial equation is the fourth-degree polynomial equation

r4 − 4r3 + 6r2 − 4r + 1
︸ ︷︷ ︸

p(x)

= 0 .

Fortunately, it’s easy to see that

p(1) = 14 − 4 · 13 + 6 · 12 − 4 · 1 + 1 = 0 ,
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telling us that r = 1 is a root, and r − 1 is a factor. Dividing out this factor,

r3 − 3r2 + 3r − 1

r − 1
)

r4 − 4r3 + 6r2 − 4r + 1

− r4 + r3

− 3r3 + 6r2

3r3 − 3r2

3r2 − 4r

− 3r2 + 3r

− r + 1

r − 1

0

,

we find that

p(r) = r4 − 4r3 + 6r2 − 4r + 1 = (r − 1)
(

r3 − 3r2 + 3r − 1
︸ ︷︷ ︸

q(r)

)

.

It is even more easy to see that

q(1) = 13 − 3 · 12 + 3 · 1 − 1 = 0 .

So r − 1 is also a factor of q(r) . Dividing out that factor,

r2 − 2r + 1

r − 1
)

r3 − 3r2 + 3r − 1

− r3 + r2

− 2r2 + 3r

2r2 − 2r

r − 1

− r + 1

0

,

and we see that our indicial equation factors as follows:

0 = r4 − 4r3 + 6r2 − 4r + 1

= (r − 1)
(

r3 − 3r2 + 3r − 1
)

= (r − 1)(r − 1)
(

r2 − 2r + 1
)

= (r − 1)(r − 1)(r − 1)(r − 1) = (r − 1)4 .

Thus,

y(x) = c1x + c2x ln |x | + c3x(ln |x |)2 + c4x(ln |x |)3 .

20.6 a. Letting y = xr
֌ y′ = rxr−1

֌ y′′ = r(r − 1)xr−2 ,

the differential equation becomes

0 = αx2 y′′ + βxy′ + γ y

= αx2r(r − 1)xr−2 + βxrxr−1 + γ xr
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=

[

αr2 − αr + βr + γ

]

xr

=

[

αr2r + (β − α)r + γ
]

xr .

So the indicial equation is

αr2r + (β − α)r + γ = 0 . (⋆)

20.6 b. Let y(x) = Y (t) where x = et and t = ln |x | .

We will need to convert the derivatives in the given Euler equation to corresponding derivatives

of Y . For convenience, let us first observe that

dt

dx
=

d ln |x |

dx
=

1

x
= e−t .

Using this and the chain rule, we then have

dy

dx
=

d

dx
Y (t) =

dt

dx

d

dt
Y (t) = e−t dY

dt

and

d2 y

dx2
=

d

dx

[
dy

dx

]

=
dt

dx

d

dt

[

e−t dY

dt

]

= e−t

[

−e−t dY

dt
+ e−t d2Y

dt2

]

= e−2t

[

d2Y

dt2
−

dY

dt

]

.

Note that

xy′ = x
dy

dx
= et · e−t dY

dt
=

dY

dt

and

x2 y′′ = x2 d2x

dy2
=

(

et
)2

e−2t

[

d2Y

dt2
−

dY

dt

]

=
d2Y

dt2
−

dY

dt
.

Applying the above to the given generic Euler equation gives us

0 = αx2 y′′ + βxy′ + γ y

= α

[

d2Y

dt2
−

dY

dt

]

+ β
dY

dt
+ γ Y (t) ,

which, after a trivial bit of algebra, becomes

α
d2Y

dt2
+ (β − α)

dY

dt
+ γ Y = 0 ,

a second-order, constant cofficient differential equation with characteristic equation

αr2 + (β − α)r + γ = 0 . (⋆⋆)

20.6 c. Just observe that equation (⋆), the indicial equation for the Euler equation, and equation (⋆⋆),

the characteristic equation for the corresponding constant coefficient equation, are identical.


