

Chapter 16: Verifying the Big Theorems and an Introduction to Differential Operators

16.2 a. By inspection:
$$L = \frac{d^2}{dx^2} + 5\frac{d}{dx} + 6$$
.

16.2 b i.
$$L[\sin(x)] = \frac{d^2}{dx^2} [\sin(x)] + 5\frac{d}{dx} [\sin(x)] + 6[\sin(x)]$$
$$= -\sin(x) + 5\cos(x) + 6\sin(x) = 5\sin(x) + 5\cos(x) .$$

16.2 b iii.
$$L[e^{-3x}] = \frac{d^2}{dx^2}[e^{-3x}] + 5\frac{d}{dx}[e^{-3x}] + 6[e^{-3x}]$$

= $9e^{-3x} + 5[-3e^{-3x}] + 6e^{-3x} = [9-15+6]e^{-3x} = 0$.

16.2 c. Since the differential equation can be written as

$$L[y] = 0$$
,

and we have

$$L[e^{-3x}] = 0 \quad ,$$

it follows that $y(x) = e^{-3x}$ is a solution to the differential equation.

16.3 a. By inspection:
$$L = \frac{d^2}{dx^2} - 5\frac{d}{dx} + 9$$
.

16.3 b i.
$$L[\sin(x)] = \frac{d^2}{dx^2} \left[\sin(x) \right] - 5\frac{d}{dx} \left[\sin(x) \right] + 9 \left[\sin(x) \right]$$
$$= -\sin(x) - 5\cos(x) + 9\sin(x) = 8\sin(x) - 5\cos(x) .$$

16.3 b iii.
$$L[e^{2x}] = \frac{d^2}{dx^2}[e^{2x}] - 5\frac{d}{dx}[e^{2x}] + 9[e^{2x}]$$
$$= 4e^{2x} - 5 \cdot 2e^{2x} + 9e^{2x} = 3e^{2x}$$

16.4 a. By inspection:
$$L = x^2 \frac{d^2}{dx^2} + 5x \frac{d}{dx} + 6$$
.

16.4 b i.
$$L[\sin(x)] = x^2 \frac{d^2}{dx^2} [\sin(x)] + 5x \frac{d}{dx} [\sin(x)] + 6[\sin(x)]$$
$$= -x^2 \sin(x) + 5x \cos(x) + 6\sin(x)$$
$$= (6 - x^2) \sin(x) + 5x \cos(x) .$$

16.4 b iii.
$$L[x^3] = x^2 \frac{d^2}{dx^2} [x^3] + 5x \frac{d}{dx} [x^3] + 6[x^3]$$

= $x^2 [3 \cdot 2x] + 5x [3x^2] + 6x^3 = 6x^3 + 15x^3 + 6x^3 = 27x^3$.

16.5 a. By inspection:
$$L = \frac{d^3}{dx^3} - \sin(x)\frac{d}{dx} + \cos(x)$$
.

16.5 b i.
$$L[\sin(x)] = \frac{d^3}{dx^3} [\sin(x)] - \sin(x) \frac{d}{dx} [\sin(x)] + \cos(x) [\sin(x)]$$

= $-\cos(x) - \sin(x)\cos(x) + \cos(x)\sin(x) = -\cos(x)$

16.5 b iii.
$$L[x^2] = \frac{d^3}{dx^3} [x^2] - \sin(x) \frac{d}{dx} [x^2] + \cos(x) [x^2]$$
$$= 0 - \sin(x) \cdot 2x + \cos(x) \cdot x^2 = x^2 \cos(x) - 2x \sin(x) .$$

16.6 a. Let ϕ be any sufficiently differentiable function. Then

$$L_2L_1[\phi] = L_2[L_1[\phi]] = L_2\left[\frac{d\phi}{dx} + x\phi\right]$$

$$= \frac{d}{dx}\left[\frac{d\phi}{dx} + x\phi\right] - x\left[\frac{d\phi}{dx} + x\phi\right]$$

$$= \frac{d^2\phi}{dx^2} + \left[\phi + x\frac{d\phi}{dx}\right] - x\frac{d\phi}{dx} - x^2\phi$$

$$= \frac{d^2\phi}{dx^2} + \left(1 - x^2\right)\phi .$$

So,
$$L_2L_1 = \frac{d^2}{dx^2} + (1 - x^2)$$
.

On the other hand,

$$L_1 L_2[\phi] = L_1 [L_2[\phi]] = L_1 \left[\frac{d\phi}{dx} - x\phi \right]$$

$$= \frac{d}{dx} \left[\frac{d\phi}{dx} - x\phi \right] + x \left[\frac{d\phi}{dx} - x\phi \right]$$

$$= \frac{d^2\phi}{dx^2} - \left[\phi + x \frac{d\phi}{dx} \right] + x \frac{d\phi}{dx} - x^2\phi$$

$$= \frac{d^2\phi}{dx^2} - \left(1 + x^2 \right) \phi .$$

So,
$$L_1L_2 = \frac{d^2}{dx^2} - (1+x^2)$$
.

16.6 c. Let ϕ be any sufficiently differentiable function. Then

$$L_2L_1[\phi] = L_2[L_1[\phi]] = L_2\left[x\frac{d\phi}{dx} + 3\phi\right]$$

$$= \frac{d}{dx}\left[x\frac{d\phi}{dx} + 3\phi\right] + 2x\left[x\frac{d\phi}{dx} + 3\phi\right]$$

$$= \left[\frac{d\phi}{dx} + x\frac{d^2\phi}{dx^2}\right] + 3\frac{d\phi}{dx} + 2x^2\frac{d\phi}{dx} + 6x\phi$$

$$= x\frac{d^2\phi}{dx^2} + \left(4 + 2x^2\right)\frac{d\phi}{dx} + 6x\phi .$$

So,
$$L_2L_1 = x\frac{d^2}{dx^2} + (4+2x^2)\frac{d}{dx} + 6x$$
.

On the other hand,

$$L_1L_2[\phi] = L_1 [L_2[\phi]] = L_1 \left[\frac{d\phi}{dx} + 2x\phi \right]$$

$$= x \frac{d}{dx} \left[\frac{d\phi}{dx} + 2x\phi \right] + 3 \left[\frac{d\phi}{dx} + 2x\phi \right]$$

$$= x \frac{d^2\phi}{dx^2} + x \left[2\phi + 2x \frac{d\phi}{dx} \right] + 3 \frac{d\phi}{dx} + 6x\phi$$

$$= x \frac{d^2\phi}{dx^2} + \left(3 + 2x^2 \right) \frac{d\phi}{dx} + 8x\phi .$$

So,
$$L_1L_2 = x\frac{d^2}{dx^2} + (3+2x^2)\frac{d}{dx} + 8x$$
.

16.6 e. Let ϕ be any sufficiently differentiable function. Then

$$L_2L_1[\phi] = L_2[L_1[\phi]] = L_2\left[\frac{d^2\phi}{dx^2}\right] = x^3\frac{d^2\phi}{dx^2}$$
.

So,
$$L_2L_1 = x^3 \frac{d^2}{dx^2}$$
.

On the other hand,

$$L_1L_2[\phi] = L_1[L_1[\phi]] = L_2[x^3\phi]$$

$$= \frac{d^2}{dx^2}[x^3\phi]$$

$$= \frac{d}{dx}\left[\frac{d}{dx}[x^3\phi]\right]$$

$$= \frac{d}{dx}\left[3x^2\phi + x^3\frac{d\phi}{dx}\right]$$

$$= \left[6x\phi + 3x^2\frac{d\phi}{dx}\right] + \left[3x^2\frac{d\phi}{dx} + x^3\frac{d^2\phi}{dx^2}\right]$$

$$= x^3\frac{d^2\phi}{dx^2} + 6x^2\frac{d\phi}{dx} + 6x\phi .$$

So,
$$L_1L_2 = x^3 \frac{d^2}{dx^2} + 6x^2 \frac{d}{dx} + 6x$$
.

16.7 a. For any sufficiently differentiable function ϕ ,

$$\left(\frac{d}{dx} + 2\right) \left(\frac{d}{dx} + 3\right) [\phi] = \left(\frac{d}{dx} + 2\right) \left[\frac{d\phi}{dx} + 3\phi\right]$$

$$= \frac{d}{dx} \left[\frac{d\phi}{dx} + 3\phi\right] + 2 \left[\frac{d\phi}{dx} + 3\phi\right]$$

$$= \frac{d^2\phi}{dx^2} + 3\frac{d\phi}{dx} + 2\frac{d\phi}{dx} + 6\phi$$

$$= \frac{d^2\phi}{dx^2} + 5\frac{d\phi}{dx} + 6\phi .$$

So,

$$\left(\frac{d}{dx} + 2\right)\left(\frac{d}{dx} + 3\right) = \frac{d^2}{dx^2} + 5\frac{d}{dx} + 6 \quad .$$

16.7 c. For any sufficiently differentiable function ϕ .

$$\left(x\frac{d}{dx} + 4\right) \left(\frac{d}{dx} + \frac{1}{x}\right) [\phi] = \left(x\frac{d}{dx} + 4\right) \left[\frac{d\phi}{dx} + \frac{1}{x}\phi\right]$$

$$= x\frac{d}{dx} \left[\frac{d\phi}{dx} + \frac{1}{x}\phi\right] + 4\left[\frac{d\phi}{dx} + \frac{1}{x}\phi\right]$$

$$= x\frac{d^2\phi}{dx^2} + x\left[\frac{-1}{x^2}\phi + \frac{1}{x}\frac{d\phi}{dx}\right] + 4\frac{d\phi}{dx} + \frac{4}{x}\phi$$

$$= x\frac{d^2\phi}{dx^2} + 5\frac{d\phi}{dx} + \frac{3}{x}\phi .$$

So,

$$\left(x\frac{d}{dx}+4\right)\left(\frac{d}{dx}+\frac{1}{x}\right) = x\frac{d^2}{dx^2} + 5\frac{d}{dx} + \frac{3}{x} .$$

16.7 e. For any sufficiently differentiable function ϕ ,

$$\left(\frac{d}{dx} + \frac{1}{x}\right) \left(\frac{d}{dx} + 4x\right) [\phi] = \left(\frac{d}{dx} + \frac{1}{x}\right) \left[\frac{d\phi}{dx} + 4x\phi\right]$$

$$= \frac{d}{dx} \left[\frac{d\phi}{dx} + 4x\phi\right] + \frac{1}{x} \left[\frac{d\phi}{dx} + 4x\phi\right]$$

$$= \frac{d^2\phi}{dx^2} + \left[4\phi + 4x\frac{d\phi}{dx}\right] + \frac{1}{x}\frac{d\phi}{dx} + 4\phi$$

$$= \frac{d^2\phi}{dx^2} + \left(4x + \frac{1}{x}\right)\frac{d\phi}{dx} + 8\phi .$$

So,

$$\left(\frac{d}{dx} + \frac{1}{x}\right)\left(\frac{d}{dx} + 4x\right) = \frac{d^2}{dx^2} + \left(4x + \frac{1}{x}\right)\frac{d}{dx} + 4 .$$

16.7 g. For any sufficiently differentiable function ϕ .

$$\begin{split} \left(\frac{d}{dx} + x^2\right) \left(\frac{d^2}{dx^2} + \frac{d}{dx}\right) [\phi] &= \left(\frac{d}{dx} + x^2\right) \left[\frac{d^2\phi}{dx^2} + \frac{d\phi}{dx}\right] \\ &= \frac{d}{dx} \left[\frac{d^2\phi}{dx^2} + \frac{d\phi}{dx}\right] + x^2 \left[\frac{d^2\phi}{dx^2} + \frac{d\phi}{dx}\right] \\ &= \frac{d^3\phi}{dx^3} + \frac{d^2\phi}{dx^2} + x^2 \frac{d^2\phi}{dx^2} + x^2 \frac{d\phi}{dx} \\ &= \frac{d^3\phi}{dx^3} + \left(1 + x^2\right) \frac{d^2\phi}{dx^2} + x^2 \frac{d\phi}{dx} \end{split} \; .$$

So,

$$\left(\frac{d}{dx} + x^2\right) \left(\frac{d^2}{dx^2} + \frac{d}{dx}\right) = \frac{d^3}{dx^3} + \left(1 + x^2\right) \frac{d^2}{dx^2} + x^2 \frac{d}{dx}$$

16.9. *Verifying the factorization:* For any sufficiently differentiable function ϕ ,

$$\left(\frac{d}{dx} - x\right) \left(\frac{d}{dx} + 2x\right) [\phi] = \left(\frac{d}{dx} - x\right) \left[\frac{d\phi}{dx} + 2x\phi\right]$$

$$= \frac{d}{dx} \left[\frac{d\phi}{dx} + 2x\phi\right] - x \left[\frac{d\phi}{dx} + 2x\phi\right]$$

$$= \frac{d^2\phi}{dx^2} + \left[2\phi + 2x\frac{d\phi}{dx}\right] - x\frac{d\phi}{dx} - 2x^2\phi$$

$$= \frac{d^2\phi}{dx^2} + x\frac{d\phi}{dx} + \left(2 - 2x^2\right)\phi .$$

So,

$$\frac{d^2}{dx^2} + x\frac{d}{dx} + \left(2 - 2x^2\right) = \left(\frac{d}{dx} - x\right)\left(\frac{d}{dx} + 2x\right) .$$

Finding the solution: From the factoring above, we know the differential equation can be written as

$$\left(\frac{d}{dx} - x\right) \left(\frac{d}{dx} + 2x\right) [y] = 0 \quad ,$$

and from Theorem 16.6 on page 312 of the text, we know that any solution y to

$$\left(\frac{d}{dx} + 2x\right)[y] = 0$$

also satisfies the previous equation. Rewriting the last equation in the more traditional form

$$\frac{dy}{dx} + 2xy = 0$$

we see that we have a simple first-order linear and separable differential equation. Using the integrating factor

$$\mu = \mu(x) = e^{\int 2x \, dx} = e^{x^2}$$

we have

$$e^{x^2} \left[\frac{dy}{dx} + 2xy \right] = e^{x^2} \cdot 0$$

$$\rightarrow \frac{d}{dx} \left[e^{x^2} y \right] = 0$$

$$\hookrightarrow$$
 $e^{x^2}y = c$

$$y = y(x) = c^{-x^2} .$$

