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Chapter 15: General Solutions to Homogeneous Linear Differential Equations

15.2 a. Verifying that {y1, y2} is a fundamental solution set: We have

y1(x) = cos(2x) ֌ y1
′(x) = −2 sin(2x) ֌ y1

′′(x) = −4 cos(2x) ,

and

y2(x) = sin(2x) ֌ y2
′(x) = 2 cos(2x) ֌ y2

′′(x) = −4 sin(2x) .

Thus,

y1
′′ + 4y1 = −4 cos(2x) + 4 cos(2x) = 0 ,

and

y2
′′ + 4y2 = −4 sin(2x) + 4 sin(2x) = 0 ,

verifying that cos(2x) and sin(2x) are solutions to the given differential equation. Also, it

should be obvious that neither is a constant multiple of each other. Hence, {cos(2x) , sin(2x)}
is a fundamental set of solutions for the given differential equation.

Solving the initial-value problem: Set

y(x) = A cos(2x) + B sin(2x) . (⋆)

Applying the initial conditions and using the above derivatives, we have

2 = y(0) = A cos(2 · 0) + B sin(2 · 0) = A · 1 + B · 0 = A ,

and

6 = y′(0) = −2A sin(2 · 0) + 2B cos(2 · 0) − −2A · 0 + 2B · 1 = 2B .

So the solution to the initial-value problem is given by formula (⋆) with A = 2 and B =
6/2 = 3 ; that is,

y(x) = 2 cos(2x) + 3 sin(2x) .

15.2 c. Verifying that {y1, y2} is a fundamental solution set: We have

y1(x) = e2x
֌ y1

′(x) = 2e2x
֌ y1

′′(x) = 4e2x ,

and

y2(x) = e−3x
֌ y2

′(x) = −3e−3x
֌ y2

′′(x) = 9e−3x .

Thus,

y1
′′ + y1

′ − 6y1 = 4e2x + 2e2x − 6e2x = [4 + 2 − 6]e2x = 0 ,

and

y2
′′ + y2

′ − 6y2 = 9e3x − 3e3x − 6e3x = [9 − 3 − 6]e3x = 0 ,

verifying that e2x and e−3x are solutions to the given differential equation. Also, it should

be obvious that neither is a constant multiple of each other. Hence, {e2x , e−3x } is a funda-

mental set of solutions for the given differential equation.

Solving the initial-value problem: Set

y(x) = Ae2x + Be−3x . (⋆)
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Applying the initial conditions and using the above derivatives, we have

8 = y(0) = Ae2·0 + Be−3·0 = A · 1 + B · 1 = A + B ,

and

−9 = y′(0) = 2Ae2·0 − 3Be−3·0 − 2A · 1 − 3B · 1 = 2A − 3B ,

giving us the algebraic system

A + B = 8 and 2A − 3B = −9 ,

which can be solved many ways. For now, we’ll just solve the first equation for B = 8 − A ,

plug that into the second equation, obtaining

2A − 3(8 − A) = −9 ֌ 5A = 15 ֌ A = 15

5
= 3 ,

and then plug that result back into the formula for B . So the solution to the initial-value

problem is given by formula (⋆) with A = 3 and B = 8 − A = 8 − 3 = 5 ; that is,

y(x) = 3e2x + 4e−3x .

15.2 e. Verifying that {y1, y2} is a fundamental solution set: We have

y1(x) = x2
֌ y1

′(x) = 2x ֌ y1
′′(x) = 2 ,

and

y2(x) = x3
֌ y2

′(x) = 3x2
֌ y2

′′(x) = 6x .

Thus,

x2 y1
′′ − 4x y1

′ + 6y1 = x2[2] − 4x [2x] + 6
[

x2
]

= [2 − 8 + 6]x2 = 0 ,

and

x2 y2
′′ − 4x y2

′ + 6y2 = x2[6x] − 4x
[

3x2
]

+ 6
[

x3
]

= [6 − 12 + 6]x3 = 0 ,

verifying that x2 and x3 are solutions to the given differential equation. Also, it should be

obvious that neither is a constant multiple of each other. Hence, {x2, x3} is a fundamental

set of solutions for the given differential equation.

Solving the initial-value problem: Set

y(x) = Ax2 + Bx3 . (⋆)

Applying the initial conditions and using the above derivatives, we have

0 = y(1) = A · 12 + B · 23 = A + B ,

and

4 = y′(1) = A · 2 · 1 + B · 3 · 12 = 2A + 3B .
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So, A + B = 0 and 2A + 3B = 4

→֒ B = −A and 4 = 2A + 3B = 2A + 3(−A) = −A

→֒ B = −A = 4 and A = −4 .

So the solution to the initial-value problem is given by formula (⋆) with A = −4 and B = 4 ;

that is,

y(x) = −4x2 + 4x3 .

15.2 g. Verifying that {y1, y2} is a fundamental solution set: We have

y1(x) = x ֌ y1
′(x) = 1 ֌ y1

′′(x) = 0 ,

and

y2(x) = x ln |x | ֌ y2
′(x) = ln |x | + 1 ֌ y2

′′(x) = x−1 .

Thus,

x2 y1
′′ − x y1

′ + y1 = x2[0] − x [1] + [x]

= −x + x = 0 ,

and

x2 y2
′′ − x y2

′ + y2 = x2[x−1] − x [ln |x | + 1] + [x ln |x |]
= x − x ln |x | − x + x ln |x | = 0 ,

verifying that x and x ln |x | are solutions to the given differential equation. Also, it should

be obvious that neither is a constant multiple of each other. Hence, {x, x ln |x |} is a funda-

mental set of solutions for the given differential equation (on (0, ∞) ).

Solving the initial-value problem: Set

y(x) = Ax + Bx ln |x | . (⋆)

Applying the initial conditions and using the above derivatives, we have

5 = y(1) = A[1] + B[1 ln |1|] = A + B · 0 = A ,

and

3 = y′(1) = = A[1] + B[ln |1| + 1] = A + B · 1 = A + B .

So, A = 5 and A + B = 3

→֒ A = 5 and B = 3 − A = 3 − 5 = −2 .

So the solution to the initial-value problem is given by formula (⋆) with A = 5 and B = −2 ;

that is,

y(x) = 5x − 2x ln |x | .

15.2 i. Verifying that {y1, y2} is a fundamental solution set: We have

y1(x) = x2 − 1 ֌ y1
′(x) = 2x ֌ y1

′′(x) = 2 ,
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and

y2(x) = x + 1 ֌ y2
′(x) = 1 ֌ y2

′′(x) = 0 .

Thus,

(x + 1)2 y1
′′ − 2(x + 1)y1

′ + 2y1

= (x + 1)2 [2] − 2(x + 1) [2x] + 2
[

x2 − 1
]

=
[

2x2 + 4x + 2
]

−
[

4x2 + 4x
]

+
[

2x2 − 2
]

= [2 − 4 + 2]x2 + [4 − 4]x + [2 − 2] = 0 ,

and

(x + 1)2 y2
′′ − 2(x + 1)y2

′ + 2y2

= (x + 1)2 [0] − 2(x + 1) [1] + 2 [x + 1]

= 2(x + 1) − 2(x + 1) = 0 ,

verifying that x2 − 1 and x + 1 are solutions to the given differential equation. Also, it

should be obvious that neither is a constant multiple of each other. Hence, {x2 − 1, x + 1}
is a fundamental set of solutions for the given differential equation.

Solving the initial-value problem: Set

y(x) = A
[

x2 − 1
]

+ B [x + 1] . (⋆)

Applying the initial conditions and using the above derivatives, we have

0 = y(0) = A[02 − 1] + B[0 + 1] = −A + B ,

and

4 = y′(0) = = A[2 · 0] + B[1] = B .

So, −A + B = 0 and B = 4

→֒ A = B = 4 and B = 4 .

So the solution to the initial-value problem is given by formula (⋆) with A = 4 and B = 4 ;

that is,

y(x) = 4
[

x2 − 1
]

+ 4 [x + 1] = 4x2 − 4 + 4x + 4 = 4x2 + 4x .

15.3 a. The equation is

ay′′ + by′ + cy = 0 with a = x2 , b = −4x and c = 6 .

Each coefficient is continuous on (−∞, ∞) , but the first, a is 0 if and only if x = 0 . So

the interval must not contain x − 0 , and the largest such interval that also contains x0 = 1

is (0, ∞) .
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15.3 b. In this case,

y(x) = c1x2 + c2x3 and y′(x) = 2c1x + 3c2x2 .

Applying the initial conditions, we get

0 = y(0) = c1 · 02 + c2 · 03 = 0 ,

and

−4 = y′(0) = 2c1 · 0 + 3c2 · 02 = 0 .

So, no matter what c1 and c2 are, y = c1x2 + c2x3 and its derivative will always be 0

when x = 0 , and, hence c1 and c2 cannot be chosen so that y(0) or y′(0) is nonzero.

Theorem 15.3 requires that the point x0 at which initial values are given be in an interval

(α, β) over which the coefficients of the differential equation are continuous with the first

one (the a = x2 , here) never being zero. Hence, the theorem requires that the coefficients

be continuous and a 6= 0 at the point x0 at which initial values are given. As noted in the

first part of this exercise, while the coefficients are continuous at x = 0 , the first coefficient

is zero at x = 0 . So Theorem 15.3 does not apply here.

15.5 a. Verifying that {y1, y2, y3} is a fundamental solution set: We have

y1(x) = 1 ֌ y1
′(x) = 0 ֌ y1

′′(x) = 0 ֌ y1
′′′(x) = 0 ,

and

y2(x) = cos(2x) ֌ y2
′(x) = −2 sin(2x)

→֒ y2
′′(x) = −4 cos(2x) ֌ y2

′′′(x) = 8 sin(2x) ,

and

y3(x) = sin(2x) ֌ y3
′(x) = 2 cos(2x)

→֒ y3
′′(x) = −4 sin(2x) ֌ y3

′′′(x) = −8 cos(2x) .

Thus,

y1
′′′ + 4y1

′ = 0 + 4 · 0 = 0 ,

y2
′′′ + 4y2

′ = 8 sin(2x) + 4[−2 sin(2x)] = [8 − 8] sin(2x) = 0 ,

and

y3
′′′ + 4y3

′ = −8 cos(2x) + 4[2 cos(2x)] = [−8 + 8] cos(2x) = 0 ,

verifying that 1 , cos(2x) and sin(2x) are solutions to the given differential equation. To

confirm that they form a fundamental set of solutions for this third-order equation, we must

show that they form a linearly independent set. To do that, first form the corresponding

Wronskian,

W (x) =

∣

∣

∣

∣

∣

∣

∣

y1 y2 y3

y1
′ y2

′ y3
′

y1
′′ y2

′′ y3
′′

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 cos(2x) sin(2x)

0 −2 sin(2x) 2 cos(2x)

0 −4 cos(2x) −4 sin(2x)

∣

∣

∣

∣

∣

∣

∣

.
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Plugging in a convenient value for x , say x = π/4 so that 2x = π/2 , we have

W
(

π

4

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 cos
(

π

2

)

sin
(

π

2

)

0 −2 sin
(

π

2

)

2 cos
(

π

2

)

0 −4 cos
(

π

2

)

−4 sin
(

π

2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 0 1

0 −2 0

0 0 −4

∣

∣

∣

∣

∣

∣

∣

= 8 6= 0 .

Since the Wronskian is nonzero at one point, Theorem 15.6 assures us that

{1, cos(2x) , sin(2x)}

is linearly independent and is a fundamental set of solutions for this differential equation.

Solving the initial-value problem: Set

y(x) = A · 1 + B cos(2x) + C sin(2x) . (⋆)

Applying the initial conditions and using the above derivatives, we have

3 = y(0) = A · 1 + B cos(2 · 0) + C sin(2 · 0) = A + B ,

8 = y′(0) = A · 0 + B[−2 sin(2 · 0)] + C[2 cos(2 · 0) = 2C .

and

4 = y′′(0) = A · 0 + B[−4 cos(2 · 0)] + C[−2 sin(2 · 0)] = −4B .

So, the solution to the initial-value problem is (⋆) with

C = 8

2
= 4 , B = 4

−4
= −1

and

A = 3 − B = 3 − (−1) = 4 .

That is,

y(x) = 4 − cos(2x) + 4 sin(2x)

15.5 c. Verifying that {y1, y2, y3, y4} is a fundamental solution set: We have

y1(x) = cos(x) ֌ y1
′(x) = − sin(x)

→֒ y1
′′(x) = − cos(x) ֌ y1

′′′(x) = sin(x)

→֒ y1
(4)(x) = cos(x) ,

and

y2(x) = sin(x) ֌ y2
′(x) = cos(x)

→֒ y2
′′(x) = − sin(x) y2

′′′(x) = − cos(x)

→֒ y2
(4)(x) = sin(x) .



✐

✐

✐

✐

✐

✐

✐

✐

114 General Solutions to Homogeneous Linear Differential Equations

and

y3(x) = cosh(x) ֌ y3
′(x) = sinh(x)

→֒ y3
′′(x) = cosh(x) ֌ y3

′′′(x) = sinh(x)

→֒ y3
(4)(x) = cosh(x) ,

and

y4(x) = sinh(x) ֌ y4
′(x) = cosh(x)

→֒ y4
′′(x) = sinh(x) ֌ y4

′′′(x) = cosh(x)

→֒ y4
(4)(x) = sinh(x) .

Thus,

y1
(4) − y1 = cos(x) − cos(x) = 0 ,

y2
(4) − y2 = sin(x) − sin(x) = 0 ,

y3
(4) − y3 = cosh(x) − cosh(x) = 0 ,

and

y4
(4) − y4 = sinh(x) − sinh(x) = 0 ,

verifying that these four functions are solutions to the given differential equation. To confirm

that they form a fundamental set of solutions for this fourth-order equation, we must show

that they form a linearly independent set. To do that, first form the corresponding Wronskian,

W (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 y3 y4

y1
′ y2

′ y3
′ y4

′

y1
′′ y2

′′ y3
′′ y4

′′

y1
′′′ y2

′′′ y3
′′′ y4

′′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(x) sin(x) cosh(x) sinh(x)

− sin(x) cos(x) sinh(x) cosh(x)

− cos(x) − sin(x) cosh(x) sinh(x)

sin(x) − cos(x) sinh(x) cosh(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Plugging in a convenient value for x , say x = 0 , we have

W (0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(0) sin(0) cosh(0) sinh(0)

− sin(0) cos(0) sinh(0) cosh(0)

− cos(0) − sin(0) cosh(0) sinh(0)

sin(0) − cos(0) sinh(0) cosh(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 0

0 1 0 1

−1 0 1 0

0 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 ·

∣

∣

∣

∣

∣

∣

∣

1 0 1

0 1 0

−1 0 1

∣

∣

∣

∣

∣

∣

∣

+ 1 ·

∣

∣

∣

∣

∣

∣

∣

0 1 1

−1 0 0

0 −1 1

∣

∣

∣

∣

∣

∣

∣

= 1 · 2 + 1 · 2 6= 0 .
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Since the Wronskian is nonzero at one point, Theorem 15.6 assures us that

{cos(x), sin(x), cosh(x), sinh(x)}

is a fundamental set of solutions for this differential equation.

Solving the initial-value problem: Set

y(x) = A cos(x) + B sin(x) + C cosh(x) + sinh(x) . (⋆)

Applying the initial conditions and using the above derivatives, we have

0 = y(0) = A cos(0) + B sin(0) + C cosh(0) + sinh(0) = A + C ,

4 = y′(0) = −A sin(0) + B cos(0) + C sinh(0) + D cosh(0) = B + D ,

0 = y′′(0) = −A cos(0) − B sin(0) + C cosh(0) + sinh(0) = −A + C

and

0 = y′′′(0) = A sin(0) − B cos(0) + C sinh(0) + D cosh(0) = −B + D .

Solving for A and C is easy:

0 = A + C and 0 = −A + C

→֒ C = −A and 0 = −A + C = −A − A = −2A

→֒ C = −A = − 0

−2
= 0 and A = 0

−2
= 0 .

For B and D :

4 = B + D and 0 = −B + D

→֒ 4 = B + D and D = B

→֒ 4 = B + B = 2B and D = B

→֒ B = 4

2
= 2 and D = B = 2 .

Plugging these values into (⋆) then gives the solution,

y(x) = 0 cos(x) + 2 sin(x) + 0 cosh(x) + 2 sinh(x)

= 2 sin(x) + 2 sinh(x) .

15.6 a. Setting y = er x
֌ y′ = rer x

֌ y′′ = r2er x ,

we have

0 = y′′ − 4y = r2er x − 4er x =
[

r2 − 4
]

er x .

Since er x 6= 0 for all x , it follows that

0 = r2 − 4 .
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But

0 = r2 − 4 ֌ r2 = 4 ֌ r = ±
√

4 = ±2 .

So er x is a solution to the differential equation if r = 2 or r = −2 . That is, {e2x , e−2x }
is a pair of solutions to the given second-order homogeneous linear differential equation.

Clearly, neither is a constant multiple of each other. So, in fact, this is a fundamental set of

solutions, and

y(x) = c1e2x + c2e−2x (⋆)

is a general solution to the differential equation.

For the initial-value problem: We have

y(x) = c1e2x + c2e−2x
֌ y′(x) = 2c1e2x − 2c2e−2x .

Applying the initial conditions:

1 = y(0) = c1e2·0 + c2e−2·0 = c1 + c2 ,

and

0 = y′(0) = 2c1e2·0 − 2c2e−2·0 = 2c1 − 2c2 .

So,

1 = c1 + c2 and 0 = 2c1 − 2c2

→֒ 1 = c1 + c2 and c2 = c1

→֒ 1 = c1 + c2 = c1 + c1 = 2c1 and c2 = c1

→֒ c1 = 1

2
and c2 = c1 = 1

2
.

Plugging these values into (⋆) then gives the solution,

y(x) = 1

2
e2x + 1

2
e−2x .

15.6 c. Setting y = er x
֌ y′ = rer x

֌ y′′ = r2er x ,

we have

0 = y′′ − 10y′ + 9y = r2er x − 10rer x + 9er x =
[

r2 − 10r + 9
]

er x .

Dividing out er x and factoring1 gives

0 = r2 − 10r + 9 = (r − 1)(r − 9)

→֒ r = 1 or r = 9 .

So er x is a solution to the differential equation if r = 1 or r = 9 . That is, {e1x , e9x }
is a pair of solutions to the given second-order homogeneous linear differential equation.

1 Or you can use the quadratic formula to find r .
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Clearly, neither is a constant multiple of each other. So, in fact, this is a fundamental set of

solutions, and

y(x) = c1ex + c2e9x (⋆)

is a general solution to the differential equation.

For the initial-value problem: We have

y(x) = c1ex + c2e9x
֌ y′(x) = c1e2x + 9c2e9x .

Applying the initial conditions:

8 = y(0) = c1e0 + c2e·0 = c1 + c2 ,

and

−24 = y′(0) = c1e0 + 9c2e9·0 = c1 + 9c2 .

So,

8 = c1 + c2 and − 24 = c1 + 9c2

→֒ c2 = 8 − c1 and − 24 = c1 + 9[8 − c1] = 72 − 8c1

→֒ c2 = 8 − c1 and c1 = 72 + 24

8
= 12

→֒ c2 = 8 − 12 = −4 and c1 = 12 .

Plugging these values into (⋆) then gives the solution,

y(x) = 12ex − 4e9x .

15.7 a. Setting y = er x
֌ y′ = rer x

֌ y′′ = r2er x
֌ y′′′ = r3er x ,

we have

0 = y′′′ − 9y′ = r3er x − 9rer x =
[

r3 − 9r
]

er x .

Dividing out er x and factoring gives

0 = r3 − 9r = r
(

r2 − 9
)

= r(r − 3)(r + 3)

→֒ r = 0 or r = 3 or 4 = −3 .

So er x is a solution to the differential equation if r = 0 , r = 3 or r = −3 . That is,

{e0x = 1, e3x , e−3x } is a set of three solutions to the given third-order homogeneous linear

differential equation. The corresponding Wronskian is

W (x) =

∣

∣

∣

∣

∣

∣

∣

y1 y2 y3

y1
′ y2

′ y3
′

y1
′′ y2

′′ y3
′′

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 e3x e−3x

0 3e3x −3e−3x

0 9e3x 9e−3x

∣

∣

∣

∣

∣

∣

∣

.

Plugging in a convenient value for x , say x = 0 so that e±3x = 1 , we have

W (0) =

∣

∣

∣

∣

∣

∣

∣

1 1 1

0 3 −3

0 9 9

∣

∣

∣

∣

∣

∣

∣

= 1 · [(3)(9) − (−3)(9)] = 36 6= 0 .
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Since the Wronskian is nonzero at one point, Theorem 15.6 assures us that {1, e3x , e−3x } is

a fundamental set of solutions for this differential equation, and the corresponding general

solution is

y(x) = c1 + c2e3x + c3e−3x .

15.9 a i. If {y1, y2} was a linearly dependent pair on the entire real line, then there would be a

single constant c such that y2(x) = cy1(x) at every point x where y1(x) 6= 0 , which in

turn, means that there would be a single constant c such that, whenever y(x) 6= 0 ,

y2(x)

y1(x)
= c

But then

c = y2(x)

y1(x)
=















x2

−x2
if x < 0

3x2

x2
if 0 < x















=

{

−1 if x < 0

3 if 0 < x
.

So there isn’t a single such constant c . Hence, {y1, y2} is not linearly dependent on the

entire real line.

15.9 a ii. If x < 0 ,

W (x) =
∣

∣

∣

∣

y1 y2

y1
′ y2

′

∣

∣

∣

∣

=
∣

∣

∣

∣

−x2 x2

−2x 2x

∣

∣

∣

∣

= (−x2)(2x) − (x2)(−2x) = −2x3 + 2x3 = 0 .

If 0 < x ,

W (x) =
∣

∣

∣

∣

y1 y2

y1
′ y2

′

∣

∣

∣

∣

=
∣

∣

∣

∣

x2 3x2

2x 6x

∣

∣

∣

∣

= (x2)(6x) − (3x2)(2x) = 6x3 − 6x3 = 0 .

If x = 0 , then the derivatives would have to be computed using the basic limit definition

(they do exist). However, no matter what they end up being,

W (0) =
∣

∣

∣

∣

y1(0) y2(0)

y1
′(x) y2

′(x)

∣

∣

∣

∣

=
∣

∣

∣

∣

0 0

y1
′(x) y2

′(x)

∣

∣

∣

∣

= 0 .

15.9 b. For that theorem to apply, {y1, y2} must be a pair of solutions to some differential equation

of the form

ay′′ + by′ + cy = 0

where a , b and c are continuous functions on (−∞, ∞) and with a never being zero on

that interval. Obviously, {y1, y2} is not a pair of solutions to any such differential equation.
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15.9 c. From the first part of this exercise, we know

y2(x) = (−1)y1(x) for x < 0 ,

telling us that {y1, y2} is linearly dependent on (−∞, 0) or any subinterval of (−∞, 0) .

Also, we have

y2(x) = (3)y1(x) for x < 0 ,

telling us that {y1, y2} is linearly dependent on (0, ∞) or any subinterval of (0, ∞) .


