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54

Choosing Sturm-Liouville Problems

We just saw examples of how the Sturm-Liouville theory can be used to create infinite series solutions

to some problems involving partial differential equations. What was not explained was how you

chose the relevant Strum-Liouville problem.

54.1 Separation of Variables, Slightly Streamlined

What we are about to describe is the basic “separation of variables” method for solving certain partial

differential equation problems. It starts by breaking down the given partial differential equation

problem to a pair of ordinary differential differential equation problems, one of which turns out

to be a Sturm-Liouville problem. This method is a cornerstone in the study of partial differential

equations, and is a major element in many introductory courses on partial differential equations.

The PDE Problem

We will assume that we have some problem in which there are two basic variables. For convenience,

we will denote these variables as t and x . Our interest is in finding the function u = u(x, t)

that satisfies some given partial differential equation along with some other “boundary and initial

conditions”. If x and t denote “position” and “time”, as is traditional, then we are typically seeking

the solution u = u(x, t) when a < x < b for some interval (a, b) and t > 0 . The “boundary

conditions for u(x, t) ” are specifications on either u or ∂u/∂x at the endpoints of the interval, x = a

and x = b , and the “initial conditions” will be specification on either u or ∂u/∂t when t = 0 .

!◮Example 54.1:

The Heat Flow Problem in the previous chapter
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!◮Example 54.2:

∂u

∂t
− x2 ∂2u

∂x2
− x

∂u

∂x
= 0 for 1 < x < eπ (54.1)

with boundary conditions

u(1, t) = 0 , u(eπ , t) = 0 (54.2)

and initial conditions

u(x, 0) = f (x) for 1 < x < eπ (54.3)

for some known function f .

For this approach to work, the boundary conditions must correspond to “Sturm-Liouville appro-

priate” boundary conditions. There are also certain restrictions on the partial differential equation.

One of those is that the partial differential equation is a second-order homogeneous partial differ-

ential equation. (Though it can be extended to deal with higher-order and nonhomogeneous partial

differential equations.)

Separable (Partial) Solutions

Let us suppose we have a suitable pde problem as just described, say, the one described in example

54.2, and we want to solve it using an eigenfunction expansion corresponding to an appropriate

Sturm-Liouville problem. That means we can write our solution as

u(x, t) =
∑

k

bk(t)φk(x) (54.4)

where the φk(x)’s are the yet unknown eigenfunctions from our yet unknown Sturm-Liouville

problem, and

bk(t) =
〈 φk(x) | u(x, t) 〉

‖φk‖2

using, of course, the inner product associated with our yet unknown Sturm-Liouville problem. For

convenience, let’s rewrite our series formula for u(x, t) as

u(x, t) =
∑

k

uk(x, t) with uk(x, t) = bk(t)φk(x) .

In our examples in the previous chapter, each uk(x, t) = bk(t)φk(x) satisfied both the boundary

condition and the partial differential equation. That is what we want in general. In a way, this briefly

reduces our problem to that of finding every

uk(x, t) = bk(t)φk(x)

satisfying both the partial differential equation and the boundary conditions of our big problem.

Because these uk’s will not, themselves, satisfy the initial conditions, we’ll just call these partial

solutions to our pde problem. To find formulas for these partial solutions, we’ll use a procedure that

“separates” our problem into two related problems — one involving bk(t) and a Sturm-Liouville

problem involving φk(t) . Because of this , we further say these are separable partial solutions.

The method for separating our problem into these two related problems is called “separation of

variables”.
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The Separation of Variables Procedure

We now consider the problem of finding every

uk(x, t) = b(t)φ(x)

satisfying our given partial differential equation and boundary conditions. We’re dropping the indices

on the b(t) and φ(x) because, frankly, they will just get in the way for now. Later, we’ll resurrect

the appropriate indices.

Here, now, are the steps in doing “separation of variables”:

1. Assume

uk(x, t) = φ(x)b(t) .

2. Identify the boundary conditions, plug uk(x, t) = φ(x)b(t) into those conditions, and

determine the corresponding boundary conditions for φ .

In our example, the boundary conditions are

u(1, t) = 0 and u(eπ , t) = 0 for 0 < t .

Replacing u(x, t) with φ(x)b(t) in the first gives

φ(1)b(t) = 0 for 0 < t .

This means that either

φ(1) = 0 or b(t) ≡ 0 .

If b(t) ≡ 0 , then we get

u(x, t) = φ(x)b(t) = φ(x) · 0 = 0 ,

which not very interesting. So, to avoid just getting the trivial solution to our

partial differential equation, we will instead require that

φ(1) = 0 .

Plugging u(x, t) = φ(x)b(t) in the second boundary condition gives

φ(eπ )b(t) = 0 for 0 < t .

Hence, again,

φ(eπ ) = 0 .

Thus, our φ(x) must, itself, satisfy the two boundary conditions

φ(1) = 0 and φ(eπ ) = 0 . (54.5)

3. Plug uk(x, t) = φ(x)b(t) into the partial differential equation, simplify and rearrange (using

good algebra) to get

formula of t only = formula of x only . (54.6)

Some side notes:

(a) Dividing through by φ(x)b(t) is usually a good idea.
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(b) For reasons that won’t be clear for a while, it is usually a good idea to move any ‘floating’

constants to the side with the t variable.

(c) If you can get the equation into form (54.6), then your partial differential equation is

said to be separable. Otherwise, the partial differential equation is “not separable” and

this approach leads to a disappointing dead end. For the rest of this discussion, we will

assume the equation is separable.

In our example, with uk(x, t) = φ(x)b(t) ,

∂u

∂t
− x2 ∂2u

∂x2
− x

∂u

∂x
= 0

→֒
∂

∂t
[φ(x)b(t)] − x2 ∂2

∂x2
[φ(x)b(t)] − x

∂

∂x
[φ(x)b(t)] = 0

→֒ φ(x)b′(t) − x2φ′′(x)b(t) − xφ′(x)b(t) = 0

→֒
φ(x)b′(t) − x2φ′′(x)b(t) − xφ′(x)b(t)

φ(x)b(t)
=

0

φ(x)b(t)

→֒
b′(t)

b(t)
−

x2φ′′(x) + xφ′(x)

φ(x)
= 0 .

Hence,
b′(t)

b(t)
=

x2φ′′(x) + xφ′(x)

φ(x)
.

4. “Observe” that the only way we can have

formula of t only = formula of x only

is for both sides to be equal to a single constant. Because it usually simplifies later work

slightly, we will denote this constant by “ −λ ”. This λ is the separation constant and is

totally unknown at this point (and, yes, the values for λ will also be the eigenvalues for the

Sturm-Liouville problem we’ll derive).

After making this observation:

(a) Write this fact down using the separation constant.

(b) Observe further that this gives us a pair of ordinary differential equations, each involving

λ .

(c) Write out that pair of ordinary differential equations in as simplified a form as seems

reasonable.

Continuing our example, we have

b′(t)

b(t)
=

x2φ′′(x) + xφ′(x)

φ(x)
= −λ .

That is,

b′(t)

b(t)
= −λ and

x2φ′′(x) + xφ′(x)

φ(x)
= −λ .

After a little algebra, these become

b′(t) = −λb(t) and x2φ′′(x) + xφ′(x) = −λφ(x) .
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(Keep in mind that the two ordinary differential equations are not independent of each other

— they are linked by the common value λ .)

5. Under the ordinary differential equation for φ , write out the boundary conditions obtained

for φ in step 2.

For our example, the boundary conditions for φ are given by equation set (54.5).

Placing them with the ordinary differential equation for φ gives

b′(t) = −λb(t) x2φ′′(x) + xφ′(x) = −λφ(x)

φ(1) = 0

φ(eπ ) = 0

Technically, we’re now finished with “separation of variables”. Using it, we have decomposed

our “partial differential equation with boundary conditions” into two ordinary differential equation

problems. These two problems are related to each other only through the common constant λ .

Observe that the ordinary differential equation problem with the boundary conditions is a Sturm-

Liouville problem, and that the possible eigenvalues are also the possible values for the separation

constant (if the sign on the λ is ‘wrong’, just go back to step 4 and change the sign in front of λ ).

The other ordinary differential equation will be officially called the other problem.

Continue Solving

Obviously, the next steps are to finish solving for the φk(x)’s and corresponding bk(t)’s , and to use

them to finish solving our original partial differential equation problem. We’ll continue our steps

where we left off.

6. “Solve the Sturm-Liouville problem.” More precisely, take the Sturm-Liouville problem and

find

(a) the corresponding weight function w(x) and inner product

〈 f | g 〉 =

∫ b

a

f (x)g(x)w(x) dx ,

(b) a corresponding complete orthogonal set of eigenfunctions

{φ0(x) , φ1(x) , φ2(x) , . . . } ,

and

(c) the corresponding set of eigenvalues

{ λ0 , λ1 , λ2 , . . . } .

This, of course, assumes that the Sturm-Liouville problem is either a regular Sturm-Liouville

problem, so that theorem 52.12 on page 52–31 holds, or is one of the other Sturm-Liouville

problems for which a similar theorem holds.

In our example, the Sturm-Liouville problem is

x2φ′′(x) + xφ′(x) = −λφ(x)

with

φ(1) = 0 and φ(eπ ) = 0 .
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The equation just happens the same one in exercise 52.7 c on page 52–34. The

Sturm-Liouville form for this equation is

d

dx

[

x
dφ

dx

]

= −λ
1

x
φ ,

(as you derived in exercise 52.7 c). The associated weight function is

w(x) =
1

x
= x−1

and the corresponding inner product is given by

〈 f | g 〉 =

∫ eπ

1

f (x)g(x)x−1 dx .

This is a regular Sturm-Liouville problem. So we know there is a complete

orthogonal set of eigenfunctions

{φ1(x) , φ2(x) , φ3(x) , . . . }

with the corresponding set of eigenvalues

{ λ1 , λ2 , λ3 , . . . } .

In fact, if you look at the answers to exercise 52.9 b on page 52–35, you will see

that all the eigenvalues are given by

λk = k2 for k = 1, 2, 3, . . .

and for the corresponding φk’s , we can use

φk(x) = sin(k ln |x |) for k = 1, 2, 3, . . .

7. Now solve the other problem for each λk , obtaining the corresponding bk(t)’s .

In our example, the other problem is

b′(t) = −λb(t) .

No matter what real value λ is, the general solution to this differential equation

is

b(t) = Be−λt

where B is an arbitrary constant. So, for each λk found above,

bk(t) = Bke−λk t = Bke−k2t

where Bk is an arbitrary constant.

8. For each eigenvalue λk , write out the corresponding separable solution to the partial differ-

ential equation,

uk(x, t) = φk(x)bk(t) ,

combining arbitrary constants as appropriate. (It’s also a good idea to state the range for the

indexing.)
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For our example,

uk(x, t) = φk(x)bk(t) = Bke−k2t sin(k ln |x |) for k = 1, 2, 3, . . . .

9. Write out

u(x, t) =
∑

k

φk(x)bk(t)

Since each uk(x, t) = φk(x)bk(t) satisfies the partial differential equation and boundary

conditions, so will the entire series. All that remains is to determine the remaining constant

in each φk(x)bk(t) so that the series also satisfies the given initial conditions. Use the fact

that the φk’s form a complete orthogonal set with respect to the weight function found above.

For our example,

u(x, t) =

∞
∑

k=1

Bke−k2t sin(k ln |x |) .

Using this with the give initial condition:

f (x) = u(x, 0) =

∞
∑

k=1

Bke−k2·0 sin(k ln |x |) ,

which simplifies to

f (x) =

∞
∑

k=1

Bk sin(k ln |x |)

Since the right side must be the eigenfunction expansion of f , we must have

Bk =
〈 φk | f 〉

‖φk‖
=

∫ eπ

1 sin(k ln |x |) f (x)x−1 dx
∫ eπ

1
|sin(k ln |x |)|2 x−1 dx

.

With a little work, you can show the integral on the bottom equals π/2 , and, hence,

Bk =
2

π

∫ eπ

1

f (x) sin(k ln |x |) x−1 dx .

10. Finally, summarize the results derived and write out the final series formula for u(x, t) .

For our example,

u(x, t) =

∞
∑

k=1

Bke−k2t sin(k ln |x |)

where

Bk =
2

π

∫ eπ

1

f (x) sin(k ln |x |) x−1 dx .

Additional Exercises

54.1. Consider the partial differential equation problem

∂2u

∂t2
− 9

∂2u

∂x2
= 0 for 0 < x < 1
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with boundary conditions

u(0, t) = 0 and u(1, t) = 0 ,

and initial conditions

u(x, 0) = f (x) and
∂u

∂t

∣

∣

∣

t=0
= 0 .

Using the separation of variables method as appropriate:

a. Find the appropriate Sturm-Liouville problem.

b. Find the corresponding “other problem” (for the bk(t)’s ).

c. What is the appropriate inner product 〈 f | g 〉 for the eigenfunctions in the associated

Sturm-Liouville problem.

54.2. Consider the partial differential equation problem

∂u

∂t
− x2 ∂2u

∂x2
− 3

∂u

∂x
= 0 for 1 < x < eπ

with boundary conditions

u(1, t) = 0 and u(eπ , t) = 0 ,

and initial condition

u(x, 0) = f (x) .

Using the separation of variables method as appropriate:

a. Find the appropriate Sturm-Liouville problem.

b. Find the corresponding “other problem” (for the bk(t)’s ).

c. What is the appropriate inner product 〈 f | g 〉 for the eigenfunctions in the associated

Sturm-Liouville problem.

54.3. Consider the partial differential equation problem

∂u

∂t
−

∂2u

∂x2
− 2

∂u

∂x
= 0 for 0 < x < ‘

with boundary conditions

u(0, t) = 0 and
∂u

∂x

∣

∣

∣

x=1
= 0 ,

and initial condition

u(x, 0) = f (x) .

Using the separation of variables method as appropriate:

a. Find the appropriate Sturm-Liouville problem.

b. Find the corresponding “other problem” (for the bk(t)’s ).

c. What is the appropriate inner product 〈 f | g 〉 for the eigenfunctions in the associated

Sturm-Liouville problem.

54.4. Finish finding the series solution to the partial differential equation problem in exercise 54.2

for an arbitrary f (x) .



✐

✐

✐

✐

✐

✐

✐

✐

Additional Exercises Chapter & Page: 54–9



✐

✐

✐

✐

✐

✐

✐

✐

Chapter & Page: 54–10 Choosing Sturm-Liouville Problems

Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

1a. φ′′(x) = −λφ(x) for 0 < x < 1 with φ(0) = 0 and φ(1) = 0

1b. b′′(t) + 9λb(t) = 0

1c.

∫ eπ

1

f (x)g(x) dx

2a. x2φ′′(x) + 3xφ′(x) = −λφ(x) for 1 < x < eπ with φ(1) = 0 and φ(eπ ) = 0

2b. b′′(t) + λb(t) = 0

2c.

∫ eπ

1

f (x)g(x)x dx

3a. φ′′(x) + 2φ′(x) = −λφ(x) for 0 < x < 1 with φ(1) = 0 and φ′(1) = 0

3b. b′′(t) + λb(t) = 0

3c.

∫ eπ

1

f (x)g(x)e2x dx

4. u(x, t) =

∞
∑

k=1

Bke−(k2+1)t sin(k ln |x|)

x
with Bk =

π

2

∫ eπ

1 f (x) sin(k ln |x |) dx
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