
✐

✐

✐

✐

✐

✐

✐

✐

38

Addendum to Chapter 38:
Higher-Order Systems

In the published version of chapter 38 (Systems of Differential Equations: A Starting Point), we

defined what was meant by a “kth-order M × N system”, but pretty well limited our examples to

standard first-order systems (in which k = 1 and M = N , and with N usually just being 2 ).

There were reasons for this concentration on standard first-order systems. For one thing, as we will

see, most other systems of interest can be converted to standard first-order systems. Still, those other

systems do arise in applications, and deserve some discussion.

38.1 Higher-Order Systems

Here is a simple example:

!◮Example 38.1: Letting x , y and z be three unknown functions of t , the two differential

equations

x ′′
+ 3x ′

− y′
+ sin(t) [y − x] = z

and

y′′
− t2z′

+ xy = 0

make up a second-order system of two differential equations with three unknown functions; that

is, a second-order, 2×3 system.

In practice, the number of equations is often equal to the number of unknown functions (unlike

what we had in the above example). This is illustrated in the application that follows.

Application: A Double Mass-Spring System

Consider the spring system in figure 38.1 with the assumption that there are no frictional forces. Here

the “natural length” of each spring — L1 and L2 , respectively — takes into account the horizontal

dimension of the object; that is, if the springs are neither compressed or stretched, then

x1 = L1 and x2 − x1 = L2 .

(If it helps, pretend that each mass is a ‘point mass’.)
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X0 x1(t) x2(t)

m1 m2

L1 L2

Figure 38.1: A double mass/spring system with objects of mass m1 and m2 located at positions

x1(t) and x2(t) , respectively. The first spring, which has a natural length of L1 and

spring constant κ1 , connects the object of mass m1 to the wall. The second spring,

which has a natural length of L2 and spring constant κ2 , connects the two objects

together. In this snapshot, the first spring is stretched, and the second is compressed.

Now remember, if we have a horizontal spring with spring constant κ and natural length L ,

then the force exerted by the spring on an object attached to its right end is

Fright = −κ × the “stretch” in the spring = −κ × [current length of the spring − L] .

(The negative sign tells us that the force of the spring is in the negative direction if the spring is

stretched beyond its natural length, and is positive if the spring is compressed to a length less than

its normal length.)

Changing the sign then gives the corresponding force exerted by the spring at the left end,

Fleft = κ × “stretch” in the spring = κ × [current length of the spring − L] .

Then applying F = ma to the first object and noting how the “current length” of each spring

is computed from x1(t) and x2(t) , we get

m1
d2x1

dt2
= force of spring 1 on object 1 + force of spring 2 on object 1

= F1,right + F2,left

= −κ1 [x1 − L1] + κ2 [(x2 − x1) − L2]

= −[κ1 + κ2]x1 + κ2x2 + [κ1L1 − κ2L2] .

Since the second object is only attached to the second spring,

m2
d2x2

dt2
= force of spring 2 on object 2

= F2,right

= κ2 [L − (x2 − x1)]

= κ2x1 − κ2x2 + κ2L2 .

So the motion of the objects in this physical system is described by the solutions to the system

m1x1
′′

= −(κ1 + κ2)x1 + κ2x2 + (κ1L1 − κ2L2)

m2x2
′′

= κ2x1 − κ2x2 + κ2L2

. (38.1)

Equivalently,

x1
′′

= a11x1 + a12x2 + b1

x2
′′

= a21x1 + a22x2 + b2
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where

a11 = −
κ1 + κ2

m1
, a12 =

κ2

m1
, b1 =

κ1L1 − κ2L2

m1
,

a21 =
κ2

m2
, a22 = −

κ2

m2
and b2 =

κ2L2

m2
.

In particular, suppose the first spring has a natural length of L1 = 1 meter and spring constant

of κ1 = 1 kg./sec.2 , and is attached to an object of mass m1 = 1 kg. , while the second spring is

shorter and stiffer with natural length L2 = 0.2 meter and spring constant κ2 = 2.5 kg./sec.2 and

is attached on the right to an object of mass m2 = 0.1 kg. . Then (in units of sec.−2)

a11 = −
1 + 2.5

1
= −

7

2
, a12 =

2.5

1
=

5

2
,

a21 =
2.5

0.1
= 25 and a22 = −

2.5

0.1
= −25 ,

and (in units of meters·sec.−2)

b1 =
1 · 1 − 2.5 · 0.2

1
=

1

2
and b2 =

2.5 · 0.2

0.1
= 5 ,

and the above system governing the positions of the two objects as functions of time, x1(t) and

x2(t) , is

x1
′′

= −
7

2
x1 +

5

2
x2 +

1

2

x2
′′

= 25x1 − 25x2 + 5

.

Converting to First-Order Systems

In section 38.3 of the published text, we saw a way to convert a single differential equation of order

two or greater to a corresponding standard first-order system of differential equations. With very

minor modifications, this approach can be used with higher-order systems. The biggest difficulty is

simply keeping track of the unknown functions.

!◮Example 38.2: Let us consider the system

x1
′′

= −
7

2
x1 +

5

2
x2 +

1

2

x2
′′

= 25x1 − 25x2 + 5

. (38.2)

from our discussion of a double mass-spring system. Let

x3 = x1
′ and x4 = x2

′ .

Then

x3
′

= x1
′′

= −
7

2
x1 +

5

2
x2 +

1

2

and

x4
′

= x2
′′

= 25x1 − 25x2 + 5 ,

allowing us to rewrite our second-order system of two equations as the first-order system

x1
′

= x3

x3
′

= −
7

2
x1 +

5

2
x2 +

1

2

x2
′

= x4

x4
′

= 25x1 − 25x2 + 5

.
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TTTank A

(700 gal.)

Tank B

(1,000 gal.)

2 gal./min.

7 gal./min.

Tank C

(800 gal.)

5 gal./min.

10 gal./min.

5 gal./min.

5 gal./min.

Figure 38.2: The system of three tanks containing water/alcohol mixtures for exercise 38.1. In

this scenario, each tank contains a mixture of water and alcohol, and each minute

five gallons of mix is added from the upper spigot, with 40 % of that added mix

being alcohol.

Additional Exercises

Note: Some of the following exercises concern higher-order systems of differential equations and

refer to the material in this addendum, while others are exercises that could have been in the published

version of chapter 38, but were excluded to save space.

38.1. Consider the tank system illustrated in figure 38.2. Let x , y and z be, respectively, the

amount of alcohol in tanks A , B and C at time t (measured in minutes), and find the

first-order system of three differential equations describing how x , y and z varies over

time.

38.2. Consider the mass/spring system illustrated in figure 38.3. Assume there are no frictional

forces, and let κ j and L j be, respectively, the spring constant and natural length for the

j th spring (for j = 1, 2, and 3).

a. Derive the second-order system of two differential equations describing how x1 and x2

vary in time. (As in the derivation of system (38.1) on page 38–2, assume the widths of

the two objects are both zero.)

b. What, in particular, is the system just derived when W = 3 meters ,

m1 = m2 =
1

2
(kilogram) ,

L1 = L3 = 1 (meter) , L2 =
1

5
(meter) ,

κ1 = κ3 = 1

(

kilogram

second 2

)

and κ2 =
5

2

(

kilogram

second 2

)

?

38.3. Rewrite the following differential equations as systems of first order equations:

a. 4t2 y′′
+ y = 0 b. y(4)

+ y4
= 0

38.4. Rewrite each of the following second-order systems as first-order systems:

a.
x ′ − 7y′ = t x2

y′′ + 4y = 3x
b.

x1
′′ + 2x2x1

′ + 3x1x2
′ = 0

x2
′′ − 4x2

′ + 8x2 = (x1)
2
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X0 Wx1(t) x2(t)

m1 m2

Spring #1 Spring #2 Spring #3

Figure 38.3: The mass/spring system for exercise 38.2 consisting of two objects with masses m1

and m2 located at positions x1(t) and x2(t) , respectively, and attached to each

other and to walls at x = 0 and x = W by three springs as indicated.

38.5 a. In section 38.3 of the published text, we saw that we can convert any second-order differ-

ential equation of the form

ay′′
+ by′

+ cy = 0

to a first order system after introducing a new function x related to y by x = y′ . While

this is the “standard” approach, it is not the only approach. In particular, convert each

of the following second-order Euler equations to a first-order system by introducing an a

new function x related to y by x = t y′ . (Also, compare the resulting systems to those

obtained for the same equations in exercise 38.9 of the published text and exercise 38.3,

above.)

i. t2 y′′
− 5t y′

+ 8y = 0 ii. t2 y′′
− t y′

+ 10y = 0

iii. 4t2 y′′
+ y = 0

b. Show that, by introducing a new function x related to y by x = t y′ , any second-order

Euler equation

αt2 y′′
+ βt2 y′

+ γ y = 0

can be converted to the first-order system

t x ′
=

[

1 −
β

α

]

x −
γ

α
y

ty′
= x

.

38.6 a. Convert each of the following third-order Euler equations to a first-order system by intro-

ducing new functions x and z satisfying x = t y′ and z = t x ′ :

i. t3 y′′′
+ 2t2 y′′

− 4t y′
+ 4y = 0

ii. t3 y′′′
+ 4t2 y′′

+ 2t y′
− 3y = 0

b. Show that, by introducing new functions x and z satisfying x = t y′ and z = t x ′ , any

third-order Euler equation

αt3 y′′′
+ βt2 y′′

+ γ t y′
+ ωy = 0

can be converted to the first-order system

t x ′
= z

ty′
= x

tz′
=

(

β − γ

α
− 2

)

x −
ω

α
y +

(

3 −
β

α

)

z

.
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

1.
x ′ = 2 −

1

100
x +

1

500
y

y′ =
1

100
x −

3

250
y +

1

160
z

z′ =
1

100
y −

1

80
z

2a. m1x1
′′ = −(κ1 + κ2)x1 + κ2x2 + (κ1L1 − κ2L2)

m2x2
′′ = κ2x1 − (κ2 + κ3)x2 + κ2L2 + κ3(W − L3)

2b. x1
′′ = −7x1 + 5x2 + 1

x2
′′ = 5x1 − 7x2 + 5

3a. x ′ = −
1

4t2
y

y′ = x

3b.

y1
′ = y2 (with y1 = y)

y2
′ = y3

y3
′ = y4

y4
′ = − (y1)

4

4a.
x ′ = 7z + t x2

y′ = z

z′ = −4y + 3x

4b.

x1
′ = x3

x2
′ = x4

x3
′ = −2x2x3 − 3x1x4

x4
′ = 4x4 − 8x2 + (x1)

2

5a i. t x ′ = 6x − 8y

ty′ = x

5a ii. t x ′ = 2x − 10y

ty′ = x

5a iii. t x ′ = x −
1

4
y

ty′ = x

6a i.
t x ′ = z

ty′ = x

tz′ = 4x − 4y + z
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6a ii.
t x ′ = z

ty′ = x

tz′ = 3y − z
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