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Nonlinear Systems: Phase Plane Analysis
Using Linearizations

Let us now turn our attention to nonlinear systems of differential equations. We will not attempt

to explicitly solve them — that is usually just too difficult. Instead, we will see that certain things

we learned about the trajectories for linear systems with constant coefficients can be applied to

sketching trajectories for nonlinear systems. Consequently, we will be drawing pictures describing

the qualitative behavior of the solutions. These pictures can be very informative.

Much of the basic theory that we’ll develop in the first few sections can be extended and applied

to any regular N×N autonomous system of differential equations. However, since we are beginners,

we will limit ourselves to 2×2 systems.

46.1 The Systems of Interest and a Little Review

Our interest in this chapter concerns fairly arbitrary 2×2 autonomous systems of differential equa-

tions; that is, systems of the form

x ′ = f (x, y)

y′ = g(x, y)
,

which we will often write as x′ = F(x) with the usual understanding that

x = x(t) =
[

x(t)

y(t)

]

and F(x) =
[

f (x, y)

g(x, y)

]

.

We will assume that our autonomous systems are regular; that is (as you may recall from chapter

39, we will assume the component functions f and g are continuous and have continuous partial

derivatives everywhere on the XY –plane.

Recall that we discussed “trajectories”, “direction fields”, “phase planes”, “critical points and

equilibria”, and “stability” for such systems in chapter 39. Let us refresh our memories with an

example:

!◮Example 46.1: Consider the system

x ′ = 10x − 5xy

y′ = 3y + xy − 3y2
. (46.1)
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To find the critical points, we need to find every ordered pair of real numbers (x, y) at which

both x ′ and y′ are zero in the above system. This means algebraically solving the system

0 = 10x − 5xy

0 = 3y + xy − 3y2
. (46.2)

Fortunately, the first equation factors easily,

0 = 10x − 5xy = 5x(2 − y) ,

immediately telling us that either x = 0 or y = 2 .

If x = 0 , then the second equation in system (46.2) reduces to

0 = 3y + 0 · y − 3y2 = 3y(1 − y) ,

telling us that y = 0 or y = 1 . This gives us two critical points with x = 0 , namely, (0, 0)

and (0, 1) .

On the other hand, if the first equation in system (46.2) holds because y = 2 , then the

second equation becomes

0 = 3 · 2 + x · 2 − 3
(

22
)

= 2(x − 3) ,

implying that x = 3 when y = 2 . This gives us a third critical point, (3, 2) .

In summary, our system of differential equations has three critical points:

(0, 0) , (0, 1) and (3, 2) .

No other choices for (x, y) will satisfy algebraic system (46.2) (the conditions for a critical

point), and any phase portrait for our system of differential equations should include these points.

(Remember critical points are the trajectories of the constant/equilibrium solutions to the system,

and are the only points at which trajectories can “start” or “end” .)

A direction field for our system of differential equations, along with a few trajectories, has

been sketched in figure 46.1. In that figure, it certainly appears that the critical points (0, 0) and

(0, 1) are unstable, and that the critical point (3, 2) is asymptotically stable. In fact, from the

trajectories and direction arrows in the regions right around the respective points, it even appears

that (0, 0) is an unstable node, (0, 1) is a saddle point, and (3, 2) is an asymptotically stable

spiral point. We will come back to these observations later.

Some more observations:

1. Recall that a constant matrix system x′ = Ax always has (0, 0) as a critical point, and that,

if A is not degenerate (i.e., if det(A) 6= 0 ), then (0, 0) is the only critical point. This need

not be true for a nonlinear system. As the above example illustrates, we may have several

rather different critical points. And it is quite easy to construct systems with no critical points

(just use x ′ = y2 + 1 as one of the equations).

2. Also recall that, if a constant matrix system x′ = Ax has an asymptotically stable critical

point, then every trajectory in the phase plane converges to that critical point. Again, this

need not be the case with a nonlinear system. In figure 46.1, it certainly appears that the

critical point (3, 2) is asymptotically stable. However, only those trajectories in the first

quadrant appear to converge to this point.
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Figure 46.1: A direction field and some trajectories for the system in Example 46.1. This system

has critical points (0, 0) , (0, 1) and (3, 2)

The last observation prompts a little more terminology. We will refer to the region containing

of all the trajectories that converge to a given asymptotically stable critical point as either the region

of asymptotic stability or the basin of attraction for that critical point, and a trajectory bounding that

region is called a separatrix for that region. It figure 46.1, it appears that the first quadrant is the

basin of attraction for critical point (3, 2) , with any trajectory on the positive X–axis or Y –axis

being a separatrix.

46.2 Rewriting Systems Using Jacobian Matrices
The Jacobian Matrix of a System

Associated any regular system

x ′ = f (x, y)

y′ = g(x, y)

is the Jacobian matrix of the system, also called the Jacobian matrix of f and g with respect to x

and y , or the Jacobian matrix of the vector-valued function F = [ f, g]T . This is the matrix-valued

function of x and y — normally denoted by either J or ∂( f,g)/∂(x,y) — given by

J(x, y) = ∂( f, g)

∂(x, y)
=
[

∂ f/∂x
∂ f/∂y

∂g/∂x
∂g/∂y

]

.



✐

✐

✐

✐

✐

✐

✐

✐

Chapter & Page: 46–4 Nonlinear Systems: Using Linearizations

You may have encountered this creature (or its determinant) in other courses involving “two functions

of two variables” or “multidimensional change of variables”. It will, in a few pages, provide an

important link between nonlinear and linear systems.

!◮Example 46.2: Let’s compute the Jacobian matrix for the system in example 46.1,

x ′ = 10x − 5xy

y′ = 3y + xy − 3y2
. (46.3)

Here,

f (x, y) = 10x − 5xy ,

g(x, y) = 3y + xy − 3y2 ,

and the Jacobian matrix associated with this system is

J(x, y) =
[∂ f/∂x

∂ f/∂y

∂g/∂x
∂g/∂y

]

=









∂

∂x
[10x − 5xy] ∂

∂y
[10x − 5xy]

∂

∂x

[

3y + xy − 3y2
] ∂

∂y

[

3y + xy − 3y2
]









=

[

10 − 5y −5x

y 3 + x − 6y

]

.

In particular,

J(1, 3) =

[

10 − 5 · 3 −5 · 1

3 3 + 1 − 6 · 3

]

=
[

−5 −5

3 −14

]

.

We will be particularly interested in the Jacobian matrices at the critical points found in the

previous exercise. So, let’s compute them:

J(0, 0) =

[

10 − 5 · 0 −5 · 0

0 3 + 0 − 6 · 0

]

=

[

10 0

0 3

]

,

J(0, 1) =

[

10 − 5 · 1 −5 · 0

1 3 + 0 − 6(12) · 0

]

=

[

5 0

1 −3

]

and

J(3, 2) =

[

10 − 5 · 2 −5 · 3

2 3 + 3 − 6 · 2

]

=

[

0 −15

2 −6

]

.

Recollections of Differentiability

To see the potential value of a Jacobian matrix, we need to review some basic notions regarding

“derivatives”.

Differential Form for a Function of One Variable

Let us start with a continuous function of one variable f = f (x) . Recall that the phrase “ f (x) is

differentiable at x0 ” means there is a finite number denoted by f ′(x0) given by

f ′(x0) = d f

dx

∣

∣

∣

x0

= lim
x→x0

f (x) − f (x0)

x − x0
.
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Let ǫ(x) be the difference between the quotient in the above limit and f ′(x0) ,

ǫ(x) = f (x) − f (x0)

x − x0
− f ′(x0) ,

and observe both that, if we solve the last equation for f (x) , we get

f (x) = f (x0) +
(

f ′(x0) + ǫ(x)
)

[x − x0] ,

and that, by the definition of f ′(x0) and continuity of f , we must have that ǫ is a continuous

function with ǫ(x) → 0 as x → x0 . In other words, if f is differentiable at x0 , then there is a

continuous function ǫ(x) such that

f (x) = f (x0) +
(

f ′(x0) + ǫ(x)
)

[x − x0] (46.5)

with

lim
x→x0

ǫ(x) = 0 . (46.6)

This is the differential form for f about x0 . Note that, if x ≈ x0 , then ǫ(x) ≈ 0 , and equation

(46.5) yields the approximation

f (x) ≈ f (x0) + f ′(x0)[x − x0] when x ≈ x0 .

Differential Form for a Function of Two Variables

Let’s now advance to a continuous function of two variables f = f (x, y) . Instead of the derivative

of f at x0 , we have the partial derivatives f at (x0, y0)

fx (x0, y0) = ∂ f

∂x

∣

∣

∣

(x0,y0)
= lim

x→x0

f (x, y0) − f (x0, y0)

x − x0

and

fy(x0, y0) = ∂ f

∂y

∣

∣

∣

∣

(x0,y0)

= lim
y→y0

f (x0, y) − f (x0, y0)

y − y0
.

It is a little more work (see the appendix at the end of this section), but the general two-dimensional

analog to equation set (46.4) can be derived if the partial derivatives fx and fy are continuous in a

region around (x0, y0) . What you get is that there are continuous functions ǫ1(x, y) and ǫ2(x, y)

such that

f (x, y) = f (x0, y0) +
(

fx (x0, y0) + ǫ1(x, y)
)

[x − x0]

+
(

fy(x0, y0) + ǫ2(x, y)
)

[y − y0]
(46.6)

with

lim
(x,y)→(x0,y0)

ǫ1(x, y) = 0 and lim
(x,y)→(x0,y0)

ǫ2(x, y) = 0 . (46.7)

Now “for convenience”, let

A1 = fx (x0, y0) and A2 = fy(x0, y0) ,

and observe that equation set (46.5) can be written more concisely as

f (x, y) = f (x0, y0) +
[

A1 + ǫ1(x, y) , A2 + ǫ2(x, y)
]

[

x − x0

y − y0

]

(46.7)
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with

lim
(x,y)→(x0,y0)

[ǫ1(x, y) , ǫ2(x, y)] = [0 , 0] . (46.8)

From this, we immediately get the approximation1

f (x, y) ≈ f (x0, y0) +
[

A1 , A2

]

[

x − x0

y − y0

]

when (x, y) ≈ (x0, y0) .

Differential Form for a Vector-Valued Function

Finally, let’s consider our vector-valued function

F(x) =
[

f (x, y)

g(x, y)

]

.

Remember, we are assuming that f , g and the partial derivatives of f and g are continuous. Let

(x0, y0) be any point in the plane. By the above, we know there are four continuous functions of

(x, y) — ǫ1,1 , ǫ1,2 , ǫ2,1 and ǫ2,2 — which vanish as (x, y) → (x0, y0) and such that

f (x, y) = f (x0, y0) +
[

A1,1 + ǫ1,1(x, y) , A1,2 + ǫ1,2(x, y)
]

[

x − x0

y − y0

]

and

g(x, y) = g(x0, y0) +
[

A2,1 + ǫ2,1(x, y) , A2,2 + ǫ2,2(x, y)
]

[

x − x0

y − y0

]

.

where

A1,1 = fx (x0, y0) , A1,2 = fy(x0, y0) ,

A2,1 = gx (x0, y0) and A2,2 = gy(x0, y0) .

Now for two simple observations. The first is that the above formulas for f and g can be

written even more concisely as

[

f (x, y)

g(x, y)

]

=
[

f (x0, y0)

g(x0, y0)

]

+
(

A + E(x)
)

[

x − x0

y − y0

]

where

A =
[

fx (x0, y0) fy(x0, y0)

gx (x0, y0) gy(x0, y0)

]

and E(x) =
[

ǫ1,1(x, y) ǫ1,2(x, y)

ǫ2,1(x, y) ǫ2,2(x, y)

]

.

The second observation is that A is simply the Jacobian matrix of the system evaluated at (x0, y0) ,

A = J(x0, y0) .

1 If you’ve had multivariable calculus, you probably noticed that

[

A1 , A2

]

=
[

fx (x0, y0) , fy (x0, y0)
]

is the gradient of f (x, y) at (x0, y0) , written as a row matrix instead of as a column vector. So the gradient should be

viewed as the analog of ‘the derivative’ when dealing with real-valued functions of two variables.
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What all this means is that we have the following theorem:

Theorem 46.1 (differential form for a vector-valued function of two variables)

Assume f (x, y) and g(x, y) are continuous functions on the XY –plane having continuous partial

derivatives everywhere on the plane, and let F be the corresponding vector-valued function

F(x) =
[

f (x, y)

g(x, y)

]

with x =
[

x

y

]

.

Then, for each x0 = [x0, y0]T and x = [x, y]T ,

F(x) = F(x0) +
(

A + E(x)
)

[

x − x0
]

(46.8)

where

A = J(x0, y0) = the Jacobian matrix of F at (x0, y0) (46.9)

and E is a continuous matrix-valued function of x = [x, y]T satisfying

E(x) →
[

0 0

0 0

]

as x → x0 . (46.10)

As we will see in the next section, the above theorem has especially important consequences

when x0 is a critical point for the system.

Appendix: Derivation of Formula (46.5)

First of all, observe that equation set (46.4) can be rewritten as

f (σ ) − f (σ0) =
(

f ′(σ0) + ǫ(σ )
)

[σ − σ0] (46.8)

with

lim
σ→σ0

ǫ(σ ) = 0 , (46.9)

provided f is a differentiable function of any variable σ at σ0 . This is true even if f is a function

of several variables, in which case “the derivative, f ′ ” should be replaced with “the derivative with

respect to σ , fσ ” . Using this with both σ = x and σ = y , along with formula (46.4) and a

simple “cheap trick”, we see that

f (x, y) − f (x0, y0) = f (x, y) − f (x0, y) + f (x0, y) − f (x0, y0)

=
(

fx (x0, y) + ǫ3(x, y)
)

[x − x0]

+
(

fy(x0, y0) + ǫ4(x0, y)
)

[y − y0]

=
(

[ fx (x0, y0) + ǫ5(x0, y)] + ǫ3(x, y)
)

[x − x0]

+
(

fy(x0, y0) + ǫ4(x0, y)
)

[y − y0] .

Solving the above for f (x, y) and setting

ǫ1(x, y) = ǫ5(x0, y) + ǫ3(x, y) and ǫ2(x, y) = ǫ4(x0, y)

gives us formula (46.5).
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46.3 Linearized Systems and Trajectories Near Critical
Points

Let’s now restrict our attention to the region near a critical point (x0, y0) for our system x′ = F(x) .

Then F(x0) = 0 , and theorem 46.1 immediately yields the following corollary:

Corollary 46.2 (differential form for a nonlinear system)

Let (x0, y0) be a critical point for the regular system x′ = F(x) where

F(x) =
[

f (x, y)

g(x, y)

]

and x =
[

x

y

]

.

Then, letting x0 = [x0, y0]T , the system x′ = F(x) can be written as

x′ =
(

A + E(x)
)

[

x − x0
]

(46.11)

where

A = J(x0, y0) = the Jacobian matrix of F at (x0, y0) (46.12)

and E is a continuous matrix-valued function of position satisfying

E(x) →
[

0 0

0 0

]

as x → x0 . (46.13)

For the rest of this section, we will assume that the assumptions in the above corollary hold,

and that our system of interest, x′ = F(x) can be written as described in this corollary. We will also

assume that A is nonsingular. This will ensure that

A[x − x0] 6= 0 whenever x 6= x0 .

Dropping the E(x) in equation (46.11) gives us the shifted linear system

x′ = A
[

x − x0
]

,

often referred to as the linearization of our system about critical point (x0, y0) . This is a system we

can solve completely (see section 44.1). We can also determine much about the nearby trajectories

just from the eigenvalues and eigenvectors for A . Moreover, if x = x(t) is a solution to our

nonlinear system x′ = F(x) , and we are just looking at a portion of the trajectory near x0 (where

E is approximately the zero matrix), then

x′ = F(x) =
(

A + E(x)
)

[

x − x0
]

≈ A
[

x − x0
]

.

But remember, the direction of the direction arrow at each point in a direction field for our system is

given by the direction of x′ computed at that point using our system. So, in the region near (x0, y0) ,

any direction field of x′ = F(x) is closely approximated by the direction field of the linearization

x′ = A[x − x0] . Hence, in the region near (x0, y0) , any phase portrait for x′ = F(x) is closely

approximated by a corresponding phase portrait for the linearization x′ = A[x − x0] . Moreover,

these approximations improve as we look at smaller and smaller regions about the critical point

(x0, y0) .
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!◮Example 46.3: Again, consider the system

x ′ = 10x − 5xy

y′ = 3y + xy − 3y2
. (46.11)

From examples 46.1 and 46.2, we know (0, 0) is a critical point for this system, and that the

Jacobian matrix of this system at (0, 0) is

A = J(0, 0) =

[

10 0

0 3

]

.

So the linearization of our nonlinear system about critical point (0, 0) is

[

x ′

y′

]

=

[

10 0

0 3

][

x

y

]

.

According to our discussion above, we should expect the direction fields of system (46.11) and

the above linearization to be very similar near the critical point (0, 0) . Just how similar is well

illustrated in figure 46.2 in which corresponding direction fields for both have been sketched in a

1×1 square about (0, 0) .

Let’s go a bit farther and observe that the matrix of the linearized system clearly has eigenpairs

(

3,

[

0

1

])

and

(

10,

[

1

0

])

,

telling us that the critical point (0, 0) is an unstable node for the linearized system, with the

nonhorizontal trajectories diverging from (0, 0) starting out tangent to the vertical axis. And

because the direction field of the nonlinear system is so closely approximated by that of the

linearized system, it should be clear (especially if we look at the close up views in figure 46.2)

that (0, 0) must also be an unstable node for our nonlinear system, with most of the trajectories

diverging from (0, 0) also starting out tangent to the vertical axis. And that was reflected in the

phase portrait sketched in figure 46.1.

As indicated in the above, a careful analysis of the trajectories for our nonlinear system x′ =
F(x) near the critical point (x0, y0) starts by rewriting the system as

x′ = (A + E(x)) [x − x0]
or, equivalently, as

x′ = A[x − x0] + E(x)[x − x0] .

We can view E(x)[x−x0] as an “error term” in using the linearized system to compute x′ . Moreover,

since E(x) → 0 as x → x0 , it is easily verified that this error term is much smaller than the

A[x − x0] term when x is “sufficiently close” to x0 .2 Thus, in some region about our critical point,

the directions of the direction arrows for x′ = F(x) are determined primarily by the linearized

system. The error term introduces small adjustments, with those adjustments shrinking to zero

as we get closer to the critical point. Consequently, the phase portrait near the critical point is

2 Remember, we are assuming A is nonsingular. However, if A is singular, then it has a zero eigenvalue, and, when x−x0

is a corresponding eigenvector,

x′ = A[x − x0] + E(x)[x − x0] = 0 + E(x)[x − x0] .

Hence, in this case, the error term is not insignificant compared to the term from the linearized system.
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(a) (b)

XX

YY

1/2
1/2

1/2
1/2

Figure 46.2: Direction fields about critical point (0, 0) for (a) nonlinear system (46.11) and (b)

the corresponding linearized system

a slightly distorted version of a phase portrait of the corresponding linearized system, with the

distortion shrinking to zero as position approaches the critical point. From this, what we know about

critical points for the linearized system, and a little careful thought about the possibilities, we get

the following theorem3:

Theorem 46.3 (trajectories about critical points, part I)

Suppose (x0, y0) is a critical point of a regular 2 × 2 autonomous system x′ = F(x) . Let A be

the Jacobian matrix of the system at this critical point, and let r1 and r2 be the eigenvalues of A ,

with r1 ≤ r2 if the eigenvalues are real. Then:

1. If 0 < r1 < r2 , then (x0, y0) is an unstable node, just as for the linearized system x′ =
A[x − x0] . Moreover, all the trajectories diverging from (x0, y0) are tangent at this point to

the eigenvectors of A , just as for the linearized system.

2. If r1 < r2 < 0 , then (x0, y0) is an asymptotically stable node, just as for the linearized

system x′ = A[x − x0] . Moreover, all the trajectories converging to (x0, y0) are tangent at

this point to the eigenvectors of A , just as for the linearized system.

3. If r1 < 0 < r2 , then (x0, y0) is a saddle point, just as for the linearized system x′ =
A[x − x0] . Moreover, the trajectories of those solutions that converge or diverge from the

critical point are tangent at the critical point to the corresponding eigenvectors (with those

converging to (x0, y0) being tangent to the eigenvectors corresponding to r1 , and those

diverging from (x0, y0) being tangent to the eigenvectors corresponding to r2 . However,

most trajectories that pass sufficiently close to (x0, y0) turn away from the critical point.

4. If the eigenvalues are complex with nonzero real parts, then (x0, y0) is a spiral point, just

as for the linearized system x′ = A[x − x0] . It is asymptotically stable if the real parts are

negative, and is unstable if the real parts are positive.

In addition, for each of the cases above, a phase portrait for x′ = A[x − x0] can be closely

approximated in a sufficiently small region about (x0, y0) by a phase portrait of the linearized

system in that region.

3 The situation is similar to that discussed in section 44.3 regarding imprecisely known systems
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You may have noticed a few cases of interest missing from the above theorem; namely, where

the eigenvalues of A are equal, and where the eigenvalues of A are purely imaginary. Well:

1. If 0 < r1 = r2 or r1 = r2 < 0 , then the critical point is a star node for the linearized

system. However, the error term can add small real and/or imaginary terms to eigenvalues

of the matrix A + E(x) when x 6= x0 . This can change the nature of the critical point to

either an improper node or a spiral point. Still, in some open region about x0 , the additional

small real terms are too small to change the signs of the real parts of these eigenvalues.

Consequently, in this region, we will still have the direction arrows all pointing in the general

direction of the critical point if the two eigenvalues of A are negative, and all generally

pointing away from the critical point if the two eigenvalues of A are positive.

2. If the eigenvalues are purely imaginary, then the linearized system has a stable center at the

critical point. However, the error term could also add a small positive or negative real part to

the eigenvalues of matrix A + E(x) when x 6= x0 , changing the elliptical trajectories into

spirals either converging to or diverging from the critical point.

Taking the above into consideration leads to our second theorem on trajectories near critical points.

Theorem 46.4 (trajectories about critical points, part II)

Suppose (x0, y0) is a critical point of a regular 2 × 2 autonomous system x′ = F(x) . Let A be

the Jacobian matrix of the system at this critical point, and let r1 and r2 be the eigenvalues of A .

Then:

1. If 0 < r1 = r2 , then (x0, y0) is either an unstable node or an unstable spiral point.

2. If r1 = r2 < 0 , then (x0, y0) is either an asymptotically stable node or an asymptotically

stable spiral point.

3. If the eigenvalues are purely imaginary, then (x0, y0) can be either a center or a spiral point.

Whether it is a stable, asymptotically stable or unstable critical point cannot be determined

from just these eigenvalues.

So let us finish this section by looking at the remaining critical points of the system we’ve been

working on.

!◮Example 46.4: Once again, consider the nonlinear system

x ′ = 10x − 5xy

y′ = 3y + xy − 3y2
. (46.12)

From examples 46.1 and 46.2, we know this system has three critical points — (0, 0) , (0, 1)

and (3, 2) — and that the Jacobian matrices of the system at these points are

J(0, 0) =

[

10 0

0 3

]

, J(0, 1) =

[

5 0

1 −3

]

and J(3, 2) =

[

0 −15

2 −6

]

.

So, as noted in the last example, the linearized system about critical point (0, 0) is

[

x ′

y′

]

=

[

10 0

0 3

][

x

y

]

.
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This matrix clearly has eigenpairs (3, [0, 1]T) and (10, [1, 0]T) . Theorem 46.3 assures us that,

in fact, (0, 0) is an unstable node for the nonlinear system, and that in a region about about

(0, 0) a phase portrait for the nonlinear system is closely approximated by a phase portrait for

the linearized system.

Using the Jacobian matrix at (0, 1) , we get the linearized system about the critical point

(0, 1) ,
[

x ′

y′

]

=

[

5 0

1 −3

][

x − 0

y − 1

]

.

It is easily verified that the matrix here has eigenpairs

(

−3,

[

0

1

])

and

(

5,

[

8

1

])

,

telling us that this linearized system has a saddle point at (0, 1) . Hence, so does our nonlinear

system (according to theorem 46.3).

Finally, using the Jacobian matrix at (3, 2) , we get the linearized system about the critical

point (3, 2) ,
[

x ′

y′

]

=

[

0 −15

2 −6

][

x − 3

y − 2

]

.

This eigenvalues of the matrix in this linearization are given by r = −3 ± i
√

21 . So (3, 2) is

an asymptotically stable spiral point for the linearized system, and theorem 46.3 assures us that

this critical point is also an asymptotically stable spiral point for our nonlinear system.

This verifies the suspicions voiced on page 46–2 after looking at figure 46.1 on page 46–2.

Do observe that we often do not actually need to write out the linearization of our system at

each critical point. The important thing is to first find the matrix of that shifted linear system (i.e.,

the Jacobian matrix of our nonlinear system evaluated at that critical point) and its eigenvalues. If,

for a given critical point, the eigenvalues are real and unequal, then all the important information

about the trajectories of the nonlinear system about that critical point can then be determined just

from the eigenvalues and corresponding eigenvectors. If the eigenvalues are complex (with nonzero

real parts), then we can skip finding the eigenvectors and use the linearized system to help sketch

the spiral about the critical point.

46.4 Sketching Trajectories for Nonlinear Systems

We now have some basic tools for sketching a (crude) phase portrait of a 2×2 nonlinear regular

autonomous system x′ = F(x) , provided the system is not too complicated. You start by first

determining the behavior of the trajectories near the critical points via the following procedure:

1. Compute the Jacobian matrix J(x, y) for the system.

2. Find all the critical points.

3. Determine the “region of interest” over which you will be sketching this phase portrait. This

should be based on your interest in the problem and the distribution of the critical points. (Of

course, later analysis may lead you to later modify your choice for the region.)
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4. For each critical point (x0, y0) in the region of interest:

(a) Evaluate the Jacobian matrix at that point, A = J(x0, y0) . This is the matrix for the

corresponding linearized system at (x0, y0) .

(b) Find the eigenvalues and, if appropriate, the eigenvectors for A .

(c) Using the eigenvalues just found, determine (using theorems 46.3 and 46.4) the stability

and type of each critical point, and then sketch the trajectories in the region near the

critical point according to these eigenvalues and, as appropriate, the corresponding

eigenvectors or linearized system. Be sure to include indications of the “direction of

travel” for them.

Of course, doing the above does require that we can suitably identify the type and stability of the

critical points using the theorems in the last section. In particular, the approach we are describing

here is of limited value if one or more of the critical points are centers for the corresponding linearized

systems.

For a more complete phase portrait, you then fill in the space between the critical points with

trajectories sketched in a logical and consistent manner. Show, for example, how trajectories go

from one critical point to another, and how they come in from outside the sketched region and either

converge to a critical point or leave the sketched region.

The last bit is tricky part. Depending on the system and the region of interest, you must try, as

well as possible, to determine the general directions of the direction arrows in relevant regions of the

sketched phase portrait, and on the edges of region in which the sketch is being made. Feel free to

construct a minimal direction field to help guide your efforts, or even use a computer to construct a

useful direction field over the region of interest.

One feature of a phase portrait that can be particularly useful and easy to find are the horizontal

and vertical trajectories. They can found by simply finding vertical line segments on which x ′ = 0

or horizontal line segments where y′ = 0 .

!◮Example 46.5: Once again, consider the system

x ′ = 10x − 5xy

y′ = 3y + xy − 3y2
. (46.13)

On the positive X–axis (where y = 0 ), the above system reduces to

x ′ = 10x > 0

y′ = 0
, (46.14)

which tells us that the direction arrows on the positive X–axis are all parallel to the X–axis and

point to the right (as sketched in figure 46.1 on page 46–2). From this (and theorem 39.2 on page

39–24) it follows that the positive X–axis is, itself, a trajectory starting at the critical point (0, 0) .

Similarly, on the negative X–axis our system reduces to

x ′ = 10x < 0

y′ = 0
,

and that means the negative X–axis, oriented away from the origin, is also a trajectory for our

system.

(Note that we had to exclude the origin from our computations since the origin, here, is a

critical point, and trajectories cannot go through critical points.)



✐

✐

✐

✐

✐

✐

✐

✐

Chapter & Page: 46–14 Nonlinear Systems: Using Linearizations

In the above, we used theorem 39.2 to confirm that two horizonal oriented lines were trajectories.

Since horizontal and vertical trajectories are relatively common in practice, let us note the following

two lemmas (which are immediate corollaries of theorem 39.2):

Lemma 46.5 (horizontal trajectories)

Assume f and g are functions of two variables having continuous partial derivatives everywhere.

Assume, further, that there is a horizontal straight-line segment

l = {(x, y) : y = y0 and α < x < β}

such that, for each (x, y) in l ,

f (x, y) 6= 0 and g(x, y) = 0 .

Then segment l , properly oriented, is either a trajectory or is contained in a trajectory for the system

x ′ = f (x, y)

y′ = g(x, y)
.

Lemma 46.6 (vertical trajectories)

Assume f and g are functions of two variables having continuous partial derivatives everywhere.

Assume, further, that there is a vertical straight-line segment

l = {(x, y) : x = x0 and α < y < β}

such that, for each (x, y) in l ,

f (x, y) = 0 and g(x, y) 6= 0 .

Then segment l , properly oriented, is either a trajectory or is contained in a trajectory for the system

x ′ = f (x, y)

y′ = g(x, y)
.

We will try to illustrate some of the ideas mentioned above in the next two sections.

Again, you may ask why bother with all the above when we can have a computer compute

the direction field to begin with. In practice, it’s wise to at least find the important points of the

phase plane (i.e., the critical points) and to determine the general behavior of the trajectories about

these points. This gives you a good idea of the general behavior of the solutions, and a good idea

of the regions in the phase plane of particular interest. You can then have the computer construct a

direction field (and maybe a few trajectories) in the region of interest to refine your understanding of

the trajectories. Moreover, as we will see in the next section, we may be able to carry out the above

analysis for a wide class of related systems, obtaining very general (and useful) results for all the

systems in this class.

By the way, there is a complication that we have barely touched on: Some of the trajectories

may be closed loops. This could certainly occur if a critical point is a center for the corresponding

linearized system. It can even arise when none of the critical points are centers. We will deal with

systems having “closed loop trajectories” in later chapters. For now, we will simply avoid such

systems.
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46.5 Application: Competing Species

Let us return to the “competing species” model regarding a large field of rabbits and gerbils that are

competing with each other for the resources in the field. In chapter 38, we derived a system (the

basic competing species model) describing how the two populations vary over time. This system is

R′ = (β1 − γ1 R − α1G)R

G ′ = (β2 − γ2G − α2 R)G
(46.15)

where

R = R(t) = number of rabbits in the field at time t ,

G = G(t) = number of gerbils in the field at time t ,

β1 and β2 are the net birth rates per creature under ideal conditions for rabbits and gerbils, respec-

tively, and the γk’s and αk’s are positive constants deterimined by experiment and measurement.

In the next two sections, let us see what we can derive from this model using the material

developed in this chapter. First, we’ll improve on the work we did in section 39.5 on one particular

case, and then we discuss the more general situation.

46.6 Re-Analyzing a Particular Competing Species Model
The Model

In chapter 39, we used computer-generated direction fields to study this model with a particular set

of choices for the constants; namely,

d R

dt
=
(

5

4
− 1

160
R − 3

1000
G

)

R

dG

dt
=
(

3 − 3

500
G − 3

160
R
)

G

. (46.16)

In that analysis, we found that the critical points were (R, G) equalling

One thing noted was that it could be somewhat difficult to determine precisely what a given

direction field was indicating about the trajectories near some of the critical points. Let’s see how

using the Jacobian can clarify matters.

Analysis Using the Jacobian Matrix

The Jacobian matrix of this system is easily computed. It is

J(R, G) =









∂

∂ R

[(

5

4
− 1

160
R − 3

1000
G

)

R

]

∂

∂G

[(

5

4
− 1

160
R − 3

1000
G

)

R

]

∂

∂ R

[(

3 − 3

500
G − 3

160
R
)

G
]

∂

∂G

[(

3 − 3

500
G − 3

160
R
)

G
]









=







5

4
− 2

160
R − 3

1000
G

−3

1000
R

−3

160
G 3 − 6

500
G − 3

160
R






.
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From our work on this system in chapter 39 we already know each critical point (R, G) . There

are four of them:

(0, 0) , (0, 500) , (200, 0) and (80, 250) .

Now let’s look at each of these points:

1. (R, G) = (0, 0): Plugging (R, G) = (0, 0) into the Jacobian matrix yields

J(0, 0) =

[

5

4
0

0 3

]

,

which clearly has eigenvalues 5/4 and 3 , with corresponding

eigenvectors [1, 0]T and [0, 1]T , respectively. Thus, this critical

point is an unstable node, and any phase portrait about this point

will be similar to the sketch at the right.

2. (R, G) = (200, 0): Plugging (R, G) = (200, 0) into the Jacobian matrix yields

J(200, 0) =







5

4
− 2

160
· 200

−3

1000
· 200

0 3 − 3

160
· 200






=







− 5

4

−3

5

0 − 3

4






,

which you can easily verify has eigenvalues −5/4 and −3/4 , with

corresponding eigenvectors [1, 0]T and [6, −5]T , respectively.

Thus, this critical point is an asymptotically stable node, and any

phase portrait about this point will be similar to the sketch at the

right.

3. (R, G) = (0, 500): Plugging (R, G) = (0, 500) into the Jacobian matrix yields

J(0, 500) =







5

4
− 3

1000
· 500 0

−3

160
· 500 3 − 6

500
· 500






=







− 1

4
0

− 75

8
−3






,

which you can easily verify has eigenvalues −1/4 and −3 ,

with corresponding eigenvectors [22, −75]T and [0, 1]T , re-

spectively. Thus, this critical point is also an asymptotically

stable node, and any phase portrait about this point will be sim-

ilar to the sketch at the right.

4. (R, G) = (80, 250): Plugging (R, G) = (80, 250) into the Jacobian matrix yields

J(80, 250) = · · · =







− 1

2
− 6

25

− 75

16
− 3

2






.
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(a) (b)
RR

GG

500500

250250

0
0

0
0

8080 200200

Figure 46.3: Constructing a phase portrait for the rabbit/gerbil system (46.16): (a) The critical

points with portions of nearby trajectories. (b) Adding the trajectories along the

axes and the direction arrows on the outer boundaries.

You should have little difficulty in verifying that

(

1 −
√

7 ,

[

12

−75 + 50
√

7

])

and

(

1 +
√

7 ,

[

12

−75 − 50
√

7

])

,

are eigenpairs for this matrix. Note that 1−
√

7 < 0 < 1+
√

7 .

Thus, the critical point (80, 250) is a saddle point, and any phase

portrait about it will be similar to that sketched to the right.

Now that we have the critical points and know something of the trajectories near these points,

let’s plot these critical points and, in a small region about each critical point, sketch simplified

versions of the phase portraits of the corresponding linearized systems. This yields figure 46.3a.

To fill in the rest of our phase portrait, it helps to observe that our system

d R

dt
=
(

5

4
− 1

160
R − 3

1000
G

)

R

dG

dt
=
(

3 − 3

500
G − 3

160
R
)

G

can be rewritten as
d R

dt
=
(

1

160
[200 − R] − 3

1000
G
)

R

dG

dt
=
(

3

500
[500 − G] − 3

160
R
)

G

. (46.17)

Note that the values 200 and 500 in the above system are, respectively, the R and G values of the

critical points on the R–axis and G–axis. Note, also, that this system simplifies greatly when either

G = 0 or R = 0 .
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If G = 0 , the above system reduces to

d R

dt
= 1

160
[200 − R]R

dG

dt
= 0

. (46.18)

Hence, the direction arrow at each non-critical point (R, 0) of the R–axis is parallel to the R–axis

(as sketched in figure 46.3a). In particular, when 0 < R < 200 , then R′ > 0 and the arrow points

to the right. And when 200 < R , then R′ < 0 and the arrow points to the left. This (along with

lemma 46.5 on page 46–14) tells us that there is one trajectory along the positive R–axis from the

origin to the critical point (200, 0) , and another trajectory towards the critical point along the rest

of the positive R–axis. Knowing this, we can now sketch these two trajectories on the R–axis, as

done in figure 46.3b.

Likewise, when R = 0 , system (46.17) reduces to

d R

dt
= 0

dG

dt
= 3

500
[500 − G]G

,

telling us that the direction arrow at each noncritical point (0, G) on the positive G–axis is parallel

to the G–axis and pointing towards the critical point (0, 500) . From this (and lemma 46.6), we

see that there is one trajectory along the G–axis from the origin to this critical point, and another

trajectory directed towards this critical point along the rest of the positive G–axis. Naturally, we

add these two trajectories on the G–axis to our sketch, as done in figure 46.3b.

The fact that the trajectory through any non-critical point on the positive R–axis and G–axis

remains on the respective axis tells us that no trajectory crosses either the positive R–axis or the

positive G–axis. Thus, any trajectory passing through a point (R, G) with R ≥ 0 and G ≥ 0 is

totally contained in the quarter-plane with R ≥ 0 and G ≥ 0 . This assures us of two things:

1. The model is realistic in that it never predicts a negative number of rabbits or gerbils (assuming

we start with nonnegative numbers of rabbits and gerbils).

2. We can restrict our attention to the first quadrant and its boundary.

Since we cannot actually sketch a phase portrait over the entire first quadrant, let us choose our

“area of interest” to be a rectangle containing the critical points, and bounded below and to the left

by, respectively, the R–axis and G–axis.

What about the trajectories passing through the edges of this region other than the two axes?

Well, to begin with, suppose (R0, G0) is any point with R0 ≥ 200 and G0 > 0 . Then, at this

point,
d R

dt
=
(

1

160
[200 − R0] − 3

1000
G0

)

R0 < 0 .

That is, the horizontal component of the direction arrow at this point is negative, that is, this arrow

points in a “leftward direction”. Consequently, any trajectory in the upper half plane intersecting a

vertical line to the right of the critical point (200, 0) must be crossing that line with a direction of

travel towards the left.

Similarly, at any point (R0, G0) with R0 > 0 and G0 ≥ 500 ,

dG

dt
=
(

3

500
[500 − G0] − 3

160
R0

)

G0 < 0 ,

and, from this, it follows that any trajectory in the first octant intersecting a horizontal line above the

critical point (0, 500) must be crossing that line with a direction of travel in a downwards direction.
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(a) (b)
R R

G G

500 500

250 250

0 0
0 0

80 80200 200

Figure 46.4: Constructing a phase portrait for the rabbit/gerbil system (46.16): (a) Adding

trajectories from the saddle point to the stable nodes. (b) Adding the trajectories to

the saddle point from the unstable node and from outside the sketched region.

What all this tells us is that every trajectory passing through the upper or righthand boundary

of our region of interest must be directed into the region. To indicate this, direction arrows for our

system were computed and sketched at a few points on the outer boundary of our sketch in figure

46.3b.

Next, let’s attempt some complete trajectories off of the axes.

In figure 46.3b we see that there are two trajectories “leaving” critical point (80, 250) . Let

us (somewhat naively) attempt to extend these trajectories, starting with the one initially heading

“down and to the right”. Because of what we now know about the trajectories, this trajectory cannot

head out of our region of interest, nor should we expect it to meander aimlessly in the region. A

reasonable expectation is that it heads towards one of the critical points other than the unstable node

at (0, 0) . Let us keep things as simple as possible and naively continue extending this trajectory

“down and to the right” until it ends at the stable node (200, 0) , as done in figure 46.4a.

Likewise, let us naively extend the trajectory “leaving” critical point (80, 250) and initially

heading “up and to the left” to the stable node which is “up and to the left”, namely, the point (0, 500) ,

as also indicated in figure 46.4a.

(The critical reader would rightfully be concerned at how we chose the end points of these two

trajectories. That reader is encouraged to attempt exercise 46.6 on page 46–31 to better justify the

naive assumptions made above.)

Now, consider the two trajectories that “end” at the saddle point (80, 250) . Clearly, the one

coming in from below must have started at the unstable node (0, 0) . There is no other point from

which it can begin. So let’s extend this trajectory back to (0, 0) , remembering to have it “leave”

this node tangent to the R–axis. This leaves the trajectory coming into (80, 250) from above, and

since there are no other critical points from which this trajectory can begin, it seems reasonable that

it must be one of the trajectories “coming into the region”. So let’s draw it as such.

The result is the minimal phase portrait in figure 46.4b.

To finish our phase portrait, we simply add a few trajectories starting at (0, 0) (the only unstable

node) or coming in from above or to the right of the region of interest, and converging to whichever

stable node is possible. Remember to take into account the fact that (80, 250) is a saddle point, and

the fact that the trajectories become tangent to certain lines as the trajectories approach the stable

nodes. The end result should be similar to that sketched in figure 46.5a.

(For comparison, a more accurate phase portrait generated by a computer has been sketched in
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(a) (b)
RR

GG
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250250

0
0

0
0
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Figure 46.5: A phase portrait for the rabbit/gerbil system of example (46.16) (a) “hand drawn”

using the derived information and (b) “computer drawn”.

figure 46.5b. Note that all the more accurate drawing does for us is to refine our knowledge of the

shapes of the trajectories.)

Conclusions

So, what can we conclude from our final phase portrait in figure 46.5a about the number of rabbits

and gerbils, R(t) and G(t) , as time t increases, given that we know these numbers at some moment

in time, say, when t = 0 ? (And let’s assume that R(0) ≥ 0 and G(0) ≥ 0 to avoid unrealistic

scenarios.)

First of all, if (R(0), G(0)) = (0, 0) , then we are at a critical point, and (R(t), G(t)) = (0, 0)

for all values of t . This should be expected; after all, rabbits and gerbils cannot reproduce if there

are no rabbits or gerbils to begin with.

Otherwise, (R(0), G(0)) will be some point on some trajectory that leads to one of the other

three critical points. If it leads to the stable critical point (R, G) = (200, 0) , then, as t → ∞ ,

R(t) → 200 and G(t) → 0 .

In this case, the number of rabbits stabilizes at 200 while the gerbils die out. On the other hand, if

the trajectory leads to the stable critical point (R, G) = (0, 500) , then, as t → ∞ ,

R(t) → 0 and G(t) → 500 ,

and we end up with a field of 500 gerbils and no rabbits.

In theory, it is possible for the trajectory to lead to the critical point (R, G) = (80, 250) ,

implying that, as t → ∞ ,

R(t) → 80 and G(t) → 250 .

In this case, the populations stabilize at 80 rabbits and 250 gerbils. However, very few trajectories

lead to this critical point, so the likelihood of this scenario is very small. Moreover, (80, 250) is an

unstable critical point. So, as a practical matter, even if (R(t), G(t)) is on a trajectory leading to

(80, 250) , a small perturbation (say, a few gerbils having unusually large litters) can tip the balance

causing (R(t), G(t)) to instead follow one of the many other trajectories leading to one of the two

stable critical points, (0, 200) and (500, 0) .
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46.7 General Analysis of the Competing Species Model

It is worthwhile to redo the analysis just done in the last example, but with the general system for

the basic competing species model,

d R

dt
= (β1 − γ1 R − α1G)R

dG

dt
= (β2 − γ2G − α2 R)G

. (46.19)

Remember the β j ’s , γ j ’s and α j ’s are all positive.

Fundamental Features Common to All Competing Species
Models

Following the suggestions given in section 46.4, we first compute the Jacobian matrix for our system,

obtaining

J(R, G) =





β1 − 2γ1 R − α1G −α1 R

−α2G β2 − 2γ2G − α2 R



 . (46.20)

The critical points are then found by solving the algebraic system obtained by setting R′ = 0

and G ′ = 0 in equation set (46.19):

0 = (β1 − γ1 R − α1G)R

0 = (β2 − γ2G − α2 R)G
.

Because of the factoring of these two equations, this is equivalent to finding the solutions to each of

the following systems:

0 = R

0 = G
,

0 = β1 − γ1 R − α1G

0 = G
,

0 = R

0 = β2 − γ2G − α2 R

and
0 = β1 − γ1 R − α1G

0 = β2 − γ2G − α2 R
. (46.21)

The first three are very easily solved, and, respectively, give us the critical points

(0, 0) , (R0, 0) and (0, G0)

where

R0 = β1

γ1
> 0 and G0 = β2

γ2
> 0 .

We’ll deal with the possible critical point(s) arising from system (46.21) later, after looking at the

behavior of the trajectories around the above critical points.

At critical point (0, 0) , formula (46.20) for the Jacobian reduces to

J(0, 0) =
[

β1 0

0 β2

]

,
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which has eigenpairs
(

β1, [1, 0]T
)

and
(

β2, [0, 1]T
)

. Since β1 > 0 and β2 > 0 , we can immedi-

ately conclude that (0, 0) is always an unstable node.

At critical point (R0, 0) , formula (46.20) for the Jacobian reduces to

J(R0, 0) =
[

−β1 −α1 R0

0 β2 − α2 R0

]

.

The two eigenvalues of this matrix are the real values −β1 and β2 − α2 R0 . Since −β1 < 0 this

critical point will be

1. a stable node if β2 − α2 R0 < 0 , and

2. a saddle point if β2 − α2 R0 > 0 .4

Similarly, at critical point (0, G0) , formula (46.20) for the Jacobian reduces to

J(0, G0) =
[

β1 − α1G0 0

−α2G0 −β2

]

,

which has real eigenvalues β1 − α1G0 and −β2 . Since −β2 < 0 this critical point will be

1. a stable node if β1 − α1G0 < 0 , and

2. a saddle point if β1 − α1G0 > 0 .

At this point, let us observe that the origin is always an unstable node, and that the positive

R–axis and the positive G–axis each contains exactly one critical point, each of which is either a

stable node or a saddle point. Let us also note that, because R0 = β1/γ1 and G0 = β2/γ2 , the system

we are studying (system (46.19)) can be rewritten as

d R

dt
= (γ1[R0 − R] − α1G)R

dG

dt
= (γ2[G0 − G] − α2 R)G

. (46.22)

Using this system just as we used system (46.17) on page 46–17, you can easily verify the follow-

ing:

1. There is one trajectory along the positive R–axis from the origin to the critical point (R0, 0) ,

and another trajectory towards this critical point along the rest of the positive R–axis.

2. There is one trajectory along the positive G–axis from the origin to the critical point (0, G0) ,

and another trajectory towards this critical point along the rest of the positive G–axis.

3. The horizontal component of the direction arrow at any point (R, G) with R ≥ R0 and

G > 0 is negative, and, hence, the direction of travel of any trajectory through this point is

towards the left.

4. The vertical component of the direction arrow at any point (R, G) with R > 0 and G ≥
G0 is negative, and, hence, the direction of travel of any trajectory through this point is

downwards.

Consequently, no matter what positive values we may have for the β j ’s , γ j ’s and α j ’s , we

can at least sketch the partial phase portrait given in figure 46.6a, and, just as in our last example,

we are justified in restricting our attention to the region with R ≥ 0 and G ≥ 0 .

4 We are ignoring, for now, the remote possibility that β2 − α2 R0 = 0 because the analysis developed in this chapter

required that the eigenvalues be nonzero.
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(a) (b)

RR

GG

R0R0

G0G0

00
00

R1

G1

Figure 46.6: Phase portraits for a competing species system: (a) The trajectories common to all

phase portraits, along with rough approximations of the direction arrows on the

outer boundary of the region of interest. (b) A phase portrait for a system having a

“peaceful coexistence” equilibrium.

Critical Point(s) Off the Axes (If Any)

Now let’s turn our attention to the possible critical points given by algebraic system (46.21) on page

46–21. Since this is a algebraic system of two variables and two linear equations, there are three

cases to consider:

1. This linear system is nondegenerate with its one solution (R1, G1) in the first quadrant.

2. This linear system has no solutions in the first quadrant.

3. The linear system is degenerate because the two equations in the system are constant multiples

of each other.

To simplify things slightly, let us rewrite both that algebraic system and the Jacobian matrix

in terms of R0 and G0 using the fact that R0 = β1/γ1 and G0 = β2/γ2 . You can easily verify that

system (46.21) becomes

0 = γ1[R0 − R] − α1G

0 = γ2[G0 − G] − α2 R
, (46.23)

and that the Jacobian matrix (formula 46.20 on page 46–21) becomes

J(R, G) =

[

γ1[R0 − 2R] − α1G −α1 R

−α2G γ2[G0 − 2]G − α2 R

]

.

Now observe that, if (R, G) satisfies system (46.21), then this Jacobian matrix simplifies to

J(R, G) =

[

−γ1 R −α1 R

−α2G −γ2G

]

. (46.24)

Now let’s look at each of the three cases:

Case 1: Suppose system (46.23) has a single solution (R1, G1) in the first quadrant (so R1 > 0

and G1 > 0 ). Using a little basic linear algebra or by simply solving for (R1, G1) you can verify
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that the nondegeneracy of the system means that

γ1γ2 − α1α2 6= 0 .

Now, had we specific values for the constants in the system, we would explicitly solve for R1 and

G1 . Here, though, the attempt would only yield cumbersome formulas for R1 and G1 . Instead,

let’s make use of the fact that, being a solution to system (46.23), (R1, G1) must satisfy

0 = γ1[R0 − R1] − α1G1 and 0 = γ2[G0 − G1] − α2 R1 .

Rearranging these equations and using the fact that this point is in the first quadrant then gives us

R0 − R1 = α1

γ1
G1 > 0 and G0 − G1 = α2

γ2
R2 > 0 ,

which, in turn, tells us that

0 < R1 < R0 and 0 < G1 < G0 .

So we know roughly (very roughly) where to plot the critical point (R1, G1) .

Computing the eigenvalues of J(R1, G1) is straightforward but tedious. You do it:

?◮Exercise 46.1: Assume that system (46.23) is nondegenerate, and that R and G are both

positive. Verify that the eigenvalues r+ and r− for the matrix J(R, G) in formula (46.24) are

both nonzero, and are given by

r± = −A ±
√

B

2

where

A = γ1 R + γ2G > 0 and B = (γ1 R − γ2G)2 + 4α1α2 RG > 0 .

It immediately follows from the above exercise (with (R, G) = (R1, G1) ) that the eigenvalues

r+ and r− for the J(R1, G1) are real and nonzero, with r− < 0 . Consequently, there are two

possibilities:

1. If r+ > 0 , then critical point (R1, G1) is a saddle point, as was illustrated in our earlier

example (and graphically illustrated in figure 46.5 on page 46–20). In this case, the eventual

outcome — whether we end up with just rabbits or just gerbils or a tenuous balance of R1

rabbits with G1 gerbils — depends on just how many of each we start with.

2. If r− < 0 , then critical point (R1, G1) is a stable node. When this happens, you should

expect a phase portrait similar to that given in figure 46.6b. In this case, the critical points

(R0, 0) and (0, G0) can be shown to be saddle points, and this phase portrait tells us that if

we start with positive numbers of both rabbits and gerbils, then the populations stabilize at

R1 rabbits and G1 gerbils as t → ∞ . This situation is sometimes referred to as “peaceful

coexistence” since neither population overwhelms the other.

Case 2: If system (46.23) has no solution in the first quadrant, then the only critical points of interest

are (0, 0) , (R0, 0) and (0, G0) . We know (0, 0) is an unstable node, and that each of the other

two can be a saddle point or a stable node. It turns out that, generally, one of those critical points is

a stable node and one is a saddle point, as in figure 46.7a. You can get a crude idea of why this is so

by attempting to sketch phase portraits with just these three critical points, with both (R0, 0) and

(0, G0) being saddle points or both being stable nodes.

Observe that, in this case, no matter how many rabbits and gerbils you start with (as long as you

start with positive numbers of each), one particular species is forordained to die out. In particular,
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(a) (b)
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Figure 46.7: Phase portraits for two competing species systems: (a) A system having no critical

points inside the first quadrant. (b) A system having a line of critical points in the

first quadrant.

the model illustrated by figure 46.7a predicts that, in the end, there will only be gerbils (provided,

of course, that you started with a few gerbils).

Case 3: Finally, if both equations in system (46.23) are equivalent, then every point on the line

0 = γ1[R0 − R] − α1G

is a critical point, and it is easily checked that

γ1γ2 − α1α2 = 0 ,

and that redoing computations done in exercise 46.1 yields

r− = −(γ1 R + γ2G) and r+ = 0

as the eigenvalues for J(R, G) at each of these critical points on the above line. Technically, this

means that the Jacobian matrix at each of these points is singular and that the analysis developed

in the few previous sections does not apply. Still, especially if you’ve done some of the homework

concerning degenerate linear systems (see exercise 42.13 on page 42–28) and you think a little about

the possible trajectories, it should not surprise you that the phase portrait for such a system looks

something like that sketched in figure 46.7b. Thus, again, we have “peaceful coexistence”, but with

the final numbers of rabbits and gerbils depending strongly on the initial numbers.

46.8 Application: The Damped Pendulum

It is also worthwhile to “re-do” our study from chapter 39 of the “damped pendulum” problem. This

is the problem involving the system (derived in chapter 38

dθ

dt
= ω

dω

dt
= −γ sin(θ) − κω

(46.25)
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Figure 46.8: The pendulum system with a weight of mass m attached to a massless rod of length

L swinging about a pivot point under the influence of gravity.

describing the angular motion of the pendulum in figure 46.8. Here

θ(t) = the angular position of pendulum at time t measured counterclockwise

from the vertical line “below” the pivot point

and

ω(t) = dθ

dt
= the angular velocity of the pendulum at time t .

In addition, γ is a positive constant given by γ = g/L where L is the length of the pendulum and g

is the acceleration of gravity, and κ is the “drag coefficient”, a nonnegative constant describing the

effect friction has on the motion of the pendulum. The greater the effect of friction on the system,

the larger the value of κ , with κ = 0 when there is no friction slowing down the pendulum. We

will assume κ > 0 for the analysis here.

As noted in chapter 39, the fact that the right side of our system is periodic with period 2π

with respect to θ means that, on the θω–plane, the pattern of the trajectories in any vertical strip of

width 2π will be repeated in the next vertical strip of width 2π .

A Particular Case

As in the previous study (in chapter 39) we will let

γ = 8 and κ = 2 .

With these values, pendulum system (46.25) becomes

θ ′ = ω

ω′ = −8 sin(θ) − 2ω
. (46.26)

Computing the Jacobian matrix of this system, we see that

J(θ, ω) =





∂

∂θ
[ω] ∂

∂ω
[ω]

∂

∂θ
[−8 sin(θ) − 2ω]

∂

∂ω
[−8 sin(θ) − 2ω]





=
[

0 1

−8 cos(θ) −2

]

.
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Setting θ ′ = 0 and ω′ = 0 in system (46.26) yields the algebraic system

0 = ω

0 = −8 sin(θ) − 2ω

for the critical points. From this we get that there are infinitely many critical points, and they are

given by

(θ, ω) = (nπ, 0) with n = 0, ±1, ±2, . . . .

Thus, the Jacobian matrix at each critical point (nπ, 0) is

J(nπ, 0) =
[

0 1

−8 cos(nπ) −2

]

for n = 0, ±1, ±2, . . . ,

which depends entirely on whether n is even or odd.

If n is even, then cos(nπ) = 1 ,

A = J(nπ, 0) =
[

0 1

−8 −2

]

,

and the corresponding linearized system is

[

θ ′

ω′

]

=
[

0 1

−8 −2

] [

θ − nπ

ω − 0

]

.

Writing out the characteristic equation for A , we get

0 = det

([

0 1

−8 −2

]

− r

[

1 0

0 1

])

=
∣

∣

∣

∣

0 − r 1

−8 −2 − r

∣

∣

∣

∣

= r2 + 2r + 8 .

So the eigenvalues are

r± = −2 ±
√

(−2)2 − 4 · 8

2
= −1 ± i

√
7 ,

a complex conjugate pair with nonzero imaginary parts and negative real parts. This means that these

critical points are stable spiral points. The question now is whether the trajectories spiral in clockwise

or counterclockwise. To determine this, let’s take the critical point (nπ, 0) with n being our favorite

even integer, namely, n = 0 . Picking a point on the positive θ–axis, say (θ, ω) = (1, 0) , we see

that the direction of the direction arrow there is given by

[

θ ′

ω′

]

=
[

0 1

−8 −2

] [

1

0

]

=
[

0

−8

]

,

which is downward. Hence, when we sketch the trajectories spiraling in to the origin, we find that

we must spiral clockwise towards the origin, as illustrated at θ = 0 in figure 46.9. And because

of the aforementioned periodicity, we know that the trajectories at the other critical points with θ

being an even multiple of π are similar spirals.

Now consider what these spirals are telling us about the angular position θ(t) and angular

velocity ω(t) of our pendulum as t increases. They tell us that if, for some t0 and even integer n ,

the angular position θ(t0) is close to nπ

and

the angular speed, |ω(t0)| is not too big ,
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0

θ

ω
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π 2π 3π−π−2π−3π

Figure 46.9: Rough sketches of the trajectories of the linearizations of pendulum system (46.26)

about the critical points.

then

(θ(t), ω(t)) → (nπ, 0) as t → ∞ .

But (with n even), (θ, ω) = (nπ, 0) describes a pendulum hanging straight down and not moving —

certainly what most of us would call a ‘stable equilibrium’ position for the pendulum, and certainly

the position we would expect to finally see in a real-world pendulum in which there is inevitably

some friction slowing the pendulum.

Now consider any critical point (θ, ω) = (nπ, 0) when n is an odd integer. In this case,

cos(nπ) = −1 ,

A = J(nπ, 0) =
[

0 1

8 −2

]

.

and

0 = det (A − rI) =
∣

∣

∣

∣

0 − r 1

8 −2 − r

∣

∣

∣

∣

= r2 + 2r − 8 = (r + 4)(r − 2) .

So the eigenvalues are

r1 = −4 and r2 = 2 ,

telling us that these critical points are saddle points. It is then an easy matter to show that [1, −4]T

and [1, 2]T are, respectively, corresponding eigenvectors, giving us the eigenpairs

(

−4,

[

1

−4

])

and

(

2

[

1

2

])

.

Applying what we learned in chapter 42.5 regarding the trajectories about saddle points leads to the

rough sketches of trajectories in figure 46.9 about the critcal points where θ = ±π, ±3π, . . . .

In this case (with n odd), our critical points are unstable. With n being an odd integer,

(θ, ω) = (nπ, 0) describes a stationary pendulum balanced straight up from its pivot point. Since

there are two trajectories leading to each of these critical points, it is theoretically possible to start the

pendulum moving in such a manner that it approaches this configuration. But if the initial conditions

are not just right, then the motion will be given by a trajectory that approaches and then goes away

from that critical point. In particular, the trajectories near this critical point that pass through the

horizontal axis (where the angular velocity ω is zero) are describing the pendulum slowing to a

stop before reaching the upright position and then falling back down, while the trajectories near this

critical point that pass over or below this point describe the pendulum traveling fast enough to reach

and continue through the upright position.

For a more complete picture of the trajectories of our system, we can refine the sketch made

in figure 46.9 by analyzing the general directions of the direction arrows in various portions of the

θω–plane, or by just employing a computer-generated direction field. For brevity, we’ll turn to

the computer. The result is given in figure 46.10. Note that every trajectory eventually ends by

spiraling into a stable critical point. This tells us that, while the pendulum may initially have enough
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θ

ω

Figure 46.10: A phase portrait (with direction field) for pendulum system (46.26). (Compare this

to figure 46.9.)

energy to spin in complete circles about the pivot point, it eventually stops spinning about the pivot

and begins rocking back and forth in smaller and smaller arcs about its stable downward vertical

position. Eventually, the arcs are so small that, for all practical purposes, the pendulum is motionless

and hanging straight down.

More General Cases

It’s fairly easy to redo the above using fairly arbitrary choices of γ and κ in pendulum system

(46.25), provided κ > 0 . As long as the friction is not too strong (i.e., as long as κ is not too large

compared to γ ), the resulting phase portrait will be quite similar to what we just obtained. However,

if κ is too large compared to γ , then none of the critical points are spiral points. As an exercise,

you should figure out just what “too large” means and just what the phase portrait then becomes (see

exercise 46.8).

But what if κ = 0 (i.e., there is no friction), you may ask? It turns out (and you can easily

verify this yourself) that, if κ = 0 , then half the critical points are centers of the linearized systems

instead of spirals. As noted in section 46.3, this tells us nothing about the stability of these points as

critical points of our nonlinear system. Thus, the approach discussed in this chapter is inadequate

to properly analyze the motion of the frictionless pendulum. That analysis will require additional

tools, tools that we will develop in later chapters.

Additional Exercises

46.2. For each of the following systems:

i. Find the Jacobian matrix of the system.

ii. Find all the critical points.

iii. Compute the Jacobian matrix at each critical point.
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iv. Write out the corresponding linearized system at each critical point.

v. Find the eigenvalues of the matrix of the linearized system at each critical point, and

state what can be determined regarding the stability and type (note, saddle point,

spiral, etc.) of each critical point from the eigenvalues.

a.
x ′ = (x − 1)(y − 3)

y′ = y − x
b.

x ′ = (x − 3)(y − 1)

y′ = y − x

c.
x ′ = x

(

5 − x2 − y
)

y′ = 4(x2 − 4)
d.

x ′ = x
(

5 − x2 + y
)

y′ = 2(x2 − 4)

e.
x ′ = x

(

5 − x2 + y
)

y′ = x2 − 4
f.

x ′ = (x − 2)(y − 6)

y′ = (x + 2)(y − 2)

g.
x ′ = x2 − 4y2

y′ = (x − 2)(y − 4)
h.

x ′ = x2 − 4x − y

y′ = y − 5

2

(

x2 − 4x
)

i.
x ′ = x2 − 4x − y

y′ = y − 3

2

(

x2 − 4x
) j.

x ′ = x2 − 4x − y

y′ = 4y − 5
(

x2 − 4x
)

k.
x ′ = 2x + sin(y)

y′ = x
(

y2 + 1
)

46.3. In this exercise, you will analyze the trajectories of the system

x ′ =
(

x2 − 1
) (

y2 + 1
)

y′ = βxy

for different values of β .

a. Assuming β 6= 0 , do the following:

i. Find the critical points of the above system.

ii. Find the Jacobian matrix at each of the critical points.

iii. Find the direction arrows at each point on the Y –axis (excluding critical points).

iv. Find the direction arrows at each point on the X–axis (excluding critical points).

v. Find the direction arrows at each point (x, y) with x = ±1 (excluding critical points).

b. For each of the following values of β , determine the stability and type of each of the

critical point of the above system, and sketch (by hand) a corresponding phase portrait,

noting the subtle (and not-so-subtle) differences between the phase portraits.

i. β = 2 ii. β = 1 iii. β = 4 iv. β = −4

46.4. Each of the following refers to a system from exercise set 46.2, above. For each, sketch (by

hand) a rough phase portrait for the system. Use what you’ve already obtained in the prior

exercise, possibly also computing appropriate eigenvectors, direction arrows, etc. (You

may want to compare your rough sketch to a computer-generated phase portrait using your

favorite software.)

a. The system from exercise 46.2 a. b. The system from exercise 46.2 b.
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c. The system from exercise 46.2 c. d. The system from exercise 46.2 e.

e. The system from exercise 46.2 h.

46.5. Each of the following systems can be viewed as an example of competing species model

from section 46.5 with various values chosen for the parameters in system (46.19). For

each, analyze the behavior of (x, y) as t → ∞ after finding and identifying the critical

points, and sketching rough phase portraits for the given system.

a.
R′ = (160 − R − 3G)R

G ′ = (120 − 2G − R)G
b.

R′ = (120 − 2R − 2G)R

G ′ = (320 − 8G − 3R)G

c.
R′ = (240 − 3R − 4G)R

G ′ = (300 − 4G − 3R)G
d.

R′ = (120 − 4R − 4G)R

G ′ = (160 − 4G − 9R)G

e.
R′ = (120 − 4R − 2G)R

G ′ = (60 − 2G − R)G
f.

R′ = (50 − R − G)R

G ′ = (75 − G − 2R)G

g.
R′ = (180 − 2R − 3G)R

G ′ = (50 − G − R)G

46.6. Consider the particular competing species model analyzed in section 46.6.

a. Show that the direction arrow at any point on the vertical line segment

v = {(R, G) : R = 80 , 0 < G < 250}

points to the right.

b. Show that the direction arrow at any point on the horizontal line segment

h = {(R, G) : 80 < R , G = 250}

points downward.

c. Why does the above (along with the analysis done in the example) confirm that the

trajectory from (80, 250) initially heading“down and to the right” cannot go to any

critical point of the system other than (200, 0) .

46.7. For each of the following, assume that each critical point (R, G) of some standard “com-

peting species” model,

R′ = (β1 − γ1 R − α1G) R

G ′ = (β2 − γ2G − α2 R) G
,

is as described (with R(t) and G(t) being, respectively, the number of rabbits and gerbils

in a large field at time t ).

For each:
i. Sketch a rough phase portrait

ii. Describe what happens to the rabbit and gerbil populations as t → ∞ , assuming

we start with positive values for R(t) and G(t) at t = 0 .

a. The critical points are (0, 0) , (50, 0) , (0, 40) and (40, 30) .

At (0, 0) , the linearized system has eigen-pairs
(

2, [1, 0]T
)

and
(

3, [0, 1]T
)

.

At (50, 0) , the linearized system has eigen-pairs
(

−2, [1, 0]T
)

and
(

−4, [0, 1]T
)

.

At (0, 40) , the linearized system has eigen-pairs
(

−3, [1, 0]T
)

and
(

−2, [0, 1]T
)

.

At (40, 30) , the linearized system has eigen-pairs
(

4, [1, −1]T
)

and
(

−3, [1, 1]T
)

.
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b. The critical points are (0, 0) , (50, 0) , (0, 40) and (40, 30) .

At (0, 0) , the linearized system has eigen-pairs
(

2, [1, 0]T
)

and
(

2, [0, 1]T
)

.

At (50, 0) , the linearized system has eigen-pairs
(

−2, [1, 0]T
)

and
(

4, [0, 1]T
)

.

At (0, 40) , the linearized system has eigen-pairs
(

−3, [1, 0]T
)

and
(

2, [0, 1]T
)

.

At (40, 30) , the linearized system has eigen-pairs
(

−4, [1, −1]T
)

and
(

−3, [1, 1]T
)

.

c. The critical points are (0, 0) , (50, 0) and (0, 40) .

At (0, 0) , the linearized system has eigen-pairs
(

4, [1, 0]T
)

and
(

2, [0, 1]T
)

.

At (50, 0) , the linearized system has eigen-pairs
(

−2, [1, 0]T
)

and
(

4, [0, 1]T
)

.

At (0, 40) , the linearized system has eigen-pairs
(

−3, [1, 0]T
)

and
(

−2, [0, 1]T
)

.

46.8. Consider the damped pendulum system

dθ

dt
= ω

dω

dt
= −γ sin(θ) − κω

.

(This is the same as system (46.25) on page 46–25.)

a. Show that this system will have critical points at (θ, ω) = (nπ, 0) where n = 0, ±1, ±2, . . . .

b. Let n be an even integer and show that the critical point (nπ, 0) is

i. a spiral point if κ2 < 4γ . ii. a stable node if κ2 > 4γ .

c. Sketch a phase portrait for the above system assuming κ = 6 and γ = 5 .
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

2a. J(x, y) =
[

y−3 x−1
−1 1

]

; critical points: (1, 1) [saddle point, unstable]; (3, 3) [spiral point,

unstable]

2b. J(x, y) =
[

y−1 x−3
−1 1

]

; critical points: (1, 1) [saddle point, unstable]; (3, 3) [node, unstable];

2c. J(x, y) =
[

−2x2 −x
8x 0

]

; critical points: (−2, 1) [spiral point, stable]; (2, 1) [spiral point, stable]

2d. J(x, y) =
[

−2x2 −x
4x 0

]

; critical points: (−2, 1) [type and stability cannot be determined from

eigenvalues]; (2, 1) [type and stability cannot be determined from the eigenvalues]

2e. J(x, y) =
[

−2x2 −x
4x 0

]

; critical points: (−2, 1) [node, stable]; (2, 1) [node, stable]

2f. J(x, y) =
[

y−6 x−2
x+2 y−2

]

; critical points: (2, 2) [saddle point, unstable]; (−2, 6) [center or spiral

point, stability cannot be determined from the eigenvalues]

2g. J(x, y) =
[

2x −8y
y−4 x−2

]

; critical points: (2, 1) [saddle point, unstable]; (2, −1) [spiral point,

unstable]; (8, 4) [node, unstable]; (−8, 4) [node, asymptotically stable]

2h. J(x, y) =
[

2x−4 −1
10−5x 1

]

; critical points: (0, 0) [spiral point, asymptotically stable]; (4, 0) [saddle

point, unstable]

2i. J(x, y) =
[

2x−4 −1
6−3x 1

]

; critical points: (0, 0) [node, asymptotically stable]; (4, 0) [saddle point,

unstable]

2j. J(x, y) =
[

2x−4 −1
20−10x 4

]

; critical points: (0, 0) [center or spiral point, stability cannot be

determined by the eigenvalues]; (4, 0) [saddle point, unstable]

2k. J(x, y) =
[

2 cos(y)

y2+1 2xy

]

; critical points: (0, nπ) for n = 0, ±2, , ±4, . . . [spiral points,

unstable]; (0, kπ) for k = ±1, ±3, ±5, . . . [saddle points, unstable]

3a i. (±1, 0)

3a ii. J(1, 0) =
[

2 0
0 β

]

, J(−1, 0) =
[

2 0
0 −β

]

3a iii. They are horizonatal, pointing to the right.

3a iv. They are horizonatal, pointing to the right if x2 > 1 , and to the left if x2 < 1 .

3a v. They are vertical, pointing up if βxy > 0 , and down if βxy < 0 .

3b i. (1, 0) is an unstable star node. (−1, 0) is an unstable saddle point.

3b ii. (1, 0) is an unstable node. (−1, 0) is an unstable saddle point.

3b iii. (1, 0) is an unstable node. (−1, 0) is an unstable saddle point.

3b iv. (1, 0) is an unstable saddle point. (−1, 0) is an unstable node.

5a. critical points (0, 0) [unstable node], (160, 0) & (0, 60) [stable nodes], (40, 40) [unstable saddle

point] ; as t → ∞ , either R → 0 or G → 0 .

5b. critical points (0, 0) [unstable node], (60, 0) & (0, 40) [unstable saddle points], (32, 28) [stable

node] ; as t → ∞ , (R, G) → (32, 28) (peaceful coexistence).

5c. critical points (0, 0) [unstable node], (80, 0) [unstable saddle point], (0, 75) [stable node] ; as

t → ∞ , (R, G) → (0, 75) .

5d. critical points (0, 0) [unstable node], (0, 40) & (30, 0) [stable nodes], (8, 22) [unstable saddle

point] ; as t → ∞ , either R → 0 or G → 0 .

5e. critical points (0, 0) [unstable node], (30, 0) & (0, 30) [unstable saddle points], (20, 20) [stable

node] ; as t → ∞ , (R, G) → (20, 20) (peaceful coexistence).

5f. critical points (0, 0) [unstable node], (50, 0) & (0, 75) [stable nodes], (25, 25) [unstable saddle

point] ; as t → ∞ , either R → 0 or G → 0 .

5g. critical points (0, 0) [unstable node], (90, 0) [stable node], (0, 50) [unstable saddle point] ; as

t → ∞ , (R, T ) → (90, 0) .
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7a. As t → ∞ , there is a slight chance of the populations stabilizing at 40 rabbits and 30 gerbils.

Otherwise, we will either end up with 50 rabbits and no gerbils, or with no rabbits and 40 gerbils,

depending on the initial values of R and G .

7b. We have peaceful coexistence! As t → ∞ the populations stabilize at 40 rabbits and 30

gerbils.

7c. As t → ∞ , the rabbits die out and we end up with 40 gerbils.


