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45

Nonhomogeneous Linear Systems

Let us now turn our attention from homogeneous linear systems to nonhomogeneous linear systems.

Fortunately, the basic theory and the most important methods for solving nonhomogeneous systems

pretty well parallels the basic theory and methods you already know for solving nonhomogeneous

linear differential equations.

45.1 General Theory

So let’s consider the problem of solving a nonhomogeneous linear system of differential equations

x′ = Px + g ,

assuming P is some N×N continuous matrix-valued function and g is some vector-valued function

on some interval of interest. Unsurprisingly, we will then refer to the correspondin homogeneous

system

x′ = Px

as the corresponding or associated homogeneous system.

A good start is to make a couple of observations regarding any two particular solutions xp and

xq to the nonhomogeneous system, and any solution x0 to the corresponding homogeneous system.

So we are assuming

dx p

dt
= Pxp + g ,

dxq

dt
= Pxq + g and

dxh

dt
= Pxh .

Our first observation is that, by the linearity of differentiation and matrix multiplication,

d

dt

[

xq − xp
]

=
dxq

dt
−

dx p

dt

=
(

Pxq + g
)

−
(

Pxp + g
)

= Pxq − Pxp

= P
[

xq − xp
]

,

showing that

xq (t) − xp(t) = a solution to the corresponding homogeneous system .

Let me rephrase this:
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If xp and xq are any two solutions to a given nonhomogeneous linear system of

differential equations, then

xq (t) = xp(t) + a solution to the corresponding homogeneous system .

On the other hand,
d

dt

[

xp + xh
]

=
dx p

dt
+

dxh

dt

=
(

Pxp + g
)

+

(

Pxh
)

= Pxp + Pxh + g

= P
[

xp + xh
]

+ g .

That is,

If xp is a particular solution to a given nonhomogeneous linear system of differential

equations, then

xp(t) + any solution to the corresponding homogeneous system

is also a solution to the given nonhomogeneous system.

If you check, you’ll find that we’ve just repeated the discussion leading to the theorem on

general solutions to nonhomogeneous differential equations, theorem 21.1 on page 445, only now

we are dealing with linear systems, and have now derived:

Theorem 45.1 (general solutions to nonhomogeneous systems)

A general solution to a given nonhomogeneous N × N linear system of differential equations is

given by

x(t) = xp(t) + xh(t)

where xp is any particular solution to the nonhomogeneous equation, and xh is a general solution

to the corresponding homogeneous system.

This theorem assures us that we can construct a general solution for a nonhomogeneous system

of differential equations from any single particular solution xp , provided we know a general solution

xh for the corresponding homogeneous system. And, as we will soon see, it is often a good idea

to find that xh — commonly called the complementary solution — before seeking a particular

solution to the nonhomogeneous system, just as it was a good idea to find a general solution to

the corresponding homogeneous differential equation before seeking a particular solution to a given

nonhomogeneous differential equation.

Keep in mind that the general solution to the corresponding homogeneous system xh(t) contains

arbitrary constants, while the particular solution xp(t) does not. Recalling the basic theory for

homogeneous systems, we see that the formula for x in the above theorem can also be written as

either

x(t) = xp(t) + c1x1(t) + c2x2(t) + · · · + cN xN (t) (45.1)

where {x1, x2, . . . , xN } is a fundamental set of solutions for x′ = Px , or as

x(t) = xp(t) + [X(t)]c (45.2)
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where X is a fundamental matrix for x′ = Px .

While we are at it, I should remind you of the superposition principle for nonhomogeneous

equations, theorem 21.4 on page 447. This allowed us to construct solutions to certain nonho-

mogeneous differential equations as linear combinations of solutions to simpler nonhomogeneous

equations. Here is the systems version (which you can easily verify yourself):

Theorem 45.2 (principle of superposition for nonhomogeneous systems)

Let P be an N × N matrix-valued function, and assume that, for some positive integer K ,

{x1, x2, . . . , xK } and {g1, g2, . . . , gK } are two sets of vector-valued functions related over some

interval of interest by

dx1

dt
= Px1 + g1 ,

dx2

dt
= Px2 + g2 , . . . and

dxK

dt
= PxK + gK .

Then, for any set of K constants {a1, a2, . . . , aK } , a particular solution to

x′ = Px +

[

a1g1 + a2g2 + · · · + aK gK
]

is given by

xp(t) = a1x1(t) + a2x2(t) + · · · + aK xK (t) .

45.2 Method of Undetermined Coefficients / Educated
Guess

If our problem is of the form

x′ = Ax + g

where A is a constant N ×N matrix and g is a “relatively simple” vector-valued function involv-

ing exponentials, polynomials and sinusoidals, then particular solutions can be found by a fairly

straightforward adaptation of the “method of educated guess / undetermined coefficients” developed

in chapter chapter 22.1

Recall that this method begins with a reasonable “first guess” as to the form for a particular

solution.

First Guesses

Let’s start with an example.

!◮Example 45.1: Consider the nonhomogeneous system

x ′ = x + 2y + 3t

y′ = 2x + y + 2
.

which, in matrix/vector form, is

x′ = Ax + g

1 You may want to quickly review chapter 22 before reading the rest of this section.
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with

A =

[

1 2

2 1

]

and g(t) =

[

3

0

]

t +

[

0

2

]

.

In chapter 22, we saw that, if the nonhomogeneous term in a linear differential equation is a

polynomial of degree 1 , then our first guess for the form of a particular solution should also be

a polynomial of degree 1

at + b

with the coefficients a and b to be determined. But in our problem, a particular solution must be

a vector, and so it makes sense to replace the unknown constants a and b with unknown constant

vectors, “guessing” that there is a particular solution of the form

xp(t) = at + b =

[

a1

a2

]

t +

[

b1

b2

]

.

Plugging this into our system (after rewriting it as g = x′ − Ax to simplify computations), we

get
[

3

0

]

t +

[

0

2

]

= g(t) =
dx p

dt
− Axp(t)

=
d

dt

([

a1

a2

]

t +

[

b1

b2

])

−

[

1 2

2 1

]([

a1

a2

]

t +

[

b1

b2

])

=

[

a1

a2

]

−

[

a1 + 2a2

2a1 + a2

]

t −

[

b1 + 2b2

2b1 + b2

]

=

[

−a1 − 2a2

−2a1 − a2

]

t +

[

a1 − b1 − 2b2

a2 − 2b1 − b2

]

,

clearly requiring that a1 , a2 , b1 and b2 satisfy the two linear algebraic systems
[

3

0

]

=

[

−a1 − 2a2

−2a1 − a2

]

and

[

0

2

]

=

[

a1 − b1 − 2b2

a2 − 2b1 − b2

]

.

The first is easily solved, and yields

a1 = 1 and a2 = −2 .

With this, the second algebraic system becomes

[

0

2

]

=

[

1 − b1 − 2b2

−2 − 2b1 − b2

] (

i.e.,

[
b1 + 2b2

2b1 + b2

]

=

[

1

−4

])

whose solution is easily found to be

b1 = −3 and b2 = 2 .

So, our particular solution is

xp(t) =

[

a1

a2

]

t +

[

b1

b2

]

=

[

1

−2

]

t +

[

−3

2

]

.

To find the general solution, we need the general solution xh to x′ = Ax . Fortunately, in

example 42.2 on page 42–4, we found that general solution to be

xh(t) = c1

[

1

1

]

e3t + c2

[

−1

1

]

e−t .
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So a general solution to our nonhomogeneous system of differential equations is

x(t) = xp(t) + xh(t) =

[

1

−2

]

t +

[

−3

2

]

+ c1

[

1

1

]

e3t + c2

[

−1

1

]

e−t .

As illustrated in the above example, the only difference between the first guesses here (for

systems), and the first guesses given in chapter 22 (for individual equations) is that the unknown

coefficients are constant vectors instead of scalar constants. In particular, if, in the above example,

g were simply some constant vector, say,

g(t) =

[

1

1

]

,

then our first guess would have been a corresponding constant vector,

xp(t) = a =

[

a1

a2

]

.

If

g(t) =

[

1

1

]

e3t ,

then our first guess would have been

xp(t) = ae3t =

[

a1

a2

]

e3t .

If

g(t) =

[

3

2

]

sin(3t) ,

then our first guess would have been

xp(t) = a cos(3t) + b sin(3x) =

[

a1

a2

]

cos(3t) +

[

b1

b2

]

sin(3t) .

And if

g(t) =

[

3

2

]

t2e4t sin(3t) ,

then our first guess would have been

xp(t) =

(

a2t2 + a1t + a0
)

e4t cos(3t) +

(

b2t2 + b1t + b0
)

e4t sin(3x) = · · · .

Second and Subsequent Guesses

In chapter 22, we saw that the first guess would fail if it were also a solution to the corresponding

homogeneous problem, but that a second guess consisting of the first guess multiplied by the variable

would work (provided no term in that guess is a solution to the corresponding homogeneous problem).

As illustrated in the next example, the situation is similar — but not completely analogous — for

the systems version.

!◮Example 45.2: Consider the nonhomogeneous system

x ′ = x + 2y + 6e3t

y′ = 2x + y + 2e3t
.
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which, in matrix/vector form, is

x′ = Ax + g

with

A =

[

1 2

2 1

]

and g(t) =

[

6

2

]

e3t .

The matrix A is the same as in examples 42.1 and 42.2. From those examples we know that A

has eigenvalues

r = 3 and r = −1 ,

and the corresponding homogeneous system has general solution

xh(t) = c1

[

1

1

]

e3t + c2

[

−1

1

]

e−t .

Since g(t) = g0e3t for the constant vector g0 = [6, 2]T , the “first guess” is that xp would

be of the form

xp(t) = ae3t =

[

a1

a2

]

e3t .

There should be some concern, however, because of the similarity between this guess and one

of the terms in xh . After all, for some choices of a , this xp is a solution to the corresponding

homogeneous problem. In particular, we should be concerned that, because the exponential factor

is e3t while 3 is an eigenvalue for A , we may obtain a degenerate system for a1 and a2 having

no solution.

Plugging the above guess into our system, we get

[

6

2

]

e3t = g(t) =
dx p

dt
− Axp(t)

=
d

dt

([

a1

a2

]

e3t

)

−

[

1 2

2 1

]([

a1

a2

]

e3t

)

= · · ·

=

[

2a1 − 2a2

−2a1 + 2a2

]

e3t .

So a1 and a2 must satisfy the algebraic system

[

6

2

]

=

[

2a1 − 2a2

−2a1 + 2a2

]

,

which is clearly an algebraic system having no possible solution. So our concern about the above

guess was justified.

In chapter 22, we constructed second guesses by multiplying the first guess by the variable.

Mimicking that here, let us naively try

xp(t) = ate3t =

[

a1

a2

]

te3t .
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Plugging this into our system, we now get

[

6

2

]

e3t = g(t) =
dx p

dt
− Axp(t)

=
d

dt

([

a1

a2

]

te3t

)

−

[

1 2

2 1

]([

a1

a2

]

te3t

)

= · · ·

=

[

2a1 − 2a2

−2a1 + 2a2

]

te3t +

[

a1

a2

]

e3t ,

requiring that a1 and a2 satisfy both

[

0

0

]

=

[

2a1 − 2a2

−2a1 + 2a2

]

and

[

6

2

]

=

[

a1

a2

]

. (45.3)

The good news is that each of these systems has one or more solutions, even though the first

system is degenerate. Unfortunately, the solution to the second system does not satisfy the first,

as required. So our naive second guess is not sufficient.

If you examine how the systems in (45.3) arose from using ate3t as our second guess, you

may suspect that we should have included lower-order terms,

xp(t) = ate3t + be3t =

[

a1

a2

]

te3t +

[

b1

b2

]

e3t .

Trying this:

[

6

2

]

e3t = g(t) =
dx p

dt
− Axp(t)

=
d

dt

([

a1

a2

]

te3t +

[

b1

b2

]

e3t

)

−

[

1 2

2 1

]([

a1

a2

]

te3t +

[

b1

b2

]

e3t

)

= · · ·

=

[

2a1 − 2a2

−2a1 + 2a2

]

te3t +

[

a1 + 2b1 − 2b2

a2 − 2b1 + 2b2

]

e3t ,

which is satisfied if and only if our coefficients satisfy both

[

0

0

]

=

[

2a1 − 2a2

−2a1 + 2a2

]

and

[

6

2

]

=

[

a1 + 2b1 − 2b2

a2 − 2b1 + 2b2

]

.

From the first system, we get a1 = a2 . With this, the second system can be rewritten as

a1 + 2b1 − 2b2 = 6

a1 − 2b1 + 2b2 = 2
.

Adding these two equations together and dividing by 2 yields

a1 =
1

2
[6 + 2] = 4 .

So (since a2 = a1 ),

a =

[

a1

a2

]

=

[

4

4

]

,
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and the last system further reduces to

2b1 − 2b2 = 6 − a1 = 2

−2b1 + 2b2 = 2 − a1 = −2
,

which then reduces to

b1 − b2 = 1 .

We can pick any convenient value for either b1 or b2 , obtaining the other from this last simple

equation. (This arbitrariness in the values of b1 and b2 reflects the fact that be3t is a solution

to the corresponding homogeneous problem when b1 − b2 = 0 .) Keeping b2 arbitrary, we get

b =

[

b1

b2

]

=

[

1 + b2

b2

]

.

Then choosing, for no particular reason, b2 = 0 gives us

b =

[

1

0

]

.

Finally, we have a second guess

xp(t) = ate3t + be3t

that satisfies our nonhomogeneous system for some choices of a and b . In particular, this xp

satisfies the nonhomogeneous system if

a =

[

a1

a2

]

=

[

4

4

]

and b =

[

b1

b2

]

=

[

1

0

]

.

Thus,

xp(t) =

[

4

4

]

te3t +

[

1

0

]

e3t

is a particular solution to our nonhomogeneous system, and

x(t) = xp(t) + xh(t) =

[

4

4

]

te3t +

[

1

0

]

e3t + c1

[

1

1

]

e3t + c2

[

−1

1

]

e−t (45.4)

is a general solution.

In general, a “first guess” as to the form of a particular solution xp to a nonhomogeneous

system will fail if it or a term in it could be a solution to the corresponding homogeneous system for

some choice of the vector coefficients. In that case, a “second guess” for a particular solution can be

constructed by multiplying the first guess by t and adding corresponding lower order terms. And if

that fails, a “third guess” is constructed by multiplying the second by t and adding corresponding

lower order terms. And so on. Eventually, one of these guesses as to the form of the particular

solution will lead to a viable particular solution.
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45.3 Reduction of Order/Variation of Parameters
The Basic Variation of Parameters Formula

A relatively simple formula for the solution (over an appropriate interval) to

x′ = Px + g

can be derived using any fundamental matrix X for the corresponding homogeneous system x′ = Px

(so X′ = PX ). The derivation is reminiscent of the reduction of order method described in section

14.4 for solving nonhomogeneous differential equations. We start by expressing the yet unknown

solution x to the nonhomogeneous system as

x = Xu

where X is the aforementioned fundamental matrix for x′ = Px , and u is a yet to be determined

vector-valued function. Plugging this formula for x into our nonhomogeneous system (and using

the product rule from section 44.5):

x′ = Px + g

→֒ (Xu)′ = P[Xu] + g

→֒ X′u + Xu′ = [PX]u + g

→֒ [PX]u + Xu′ = [PX]u + g

→֒ Xu′ = g .

But fundamental matrices are invertible. So we can rewrite the last equation as

u′ = X−1g . (45.5)

Letting the “integral of a matrix” just be the matrix obtained by integrating each component of the

matrix, we now clearly have

u(t) =

∫

u′(t) dt =

∫

[X(t)]−1g(t) dt . (45.6)

Combined with the initial formula for x , x = Xu , and with conditions ensuring the existence of

X and the integrability of [X(t)]−1g(t) , this yields:

Theorem 45.3 (variation of parameters for systems (indefinite integral version))

Let P be a continuous N × N matrix-valued function on an interval (α, β) , and let X(t) be a

fundamental matrix over this interval for the homogeneous system

x′ = Px .

Then, for any continuous vector-valued function g on (α, β) , the solution to the nonhomogeneous

problem

x′ = Px + g
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is given by

x(t) = [X(t)]

∫

[X(t)]−1g(t) dt . (45.7)

Formula (45.7) is the variation of parameters formula for the solution to our nonhomogeneous

system (and is the systems analog of variation of paramenters formula 24.14 on page 510). You can

either memorize it or be able to rederive it as needed via the systems version of reduction of order

used above. Don’t forget the arbitrary constants that arise when computing indefinite integrals. That

means that, in the computation of the integral in formula (45.6), you should account for an arbitrary

constant vector c . If you forget this constant, then the resulting x is just a particular solution. If

you include it, the resulting x is a general solution.

!◮Example 45.3: Let g1 and g2 be any pair of functions continuous on (−∞, ∞) , and consider

solving the system

x ′ = x + 2y + g1

y′ = 2x + y + g2

.

In matrix/vector form, this is

x′ = Ax + g

where A is, again, the matrix from examples 42.1 and 42.2 , and g = [g1, g2]
T .

The corresponding homogeneous system is x′ = Ax , which we considered in example 42.2.

There we found that
{

x1 , x2
}

=

{ [

e3t

e3t

]

,

[

−e−t

e−t

]}

is a fundamental set of solutions to the homogeneous system. Hence,

X(t) =

[

e3t −e−t

e3t e−t

]

is a fundamental matrix for the homogeneous system. It’s inverse is easily found,

[X(t)]−1 =
1

2

[
e−3t e−3t

−et et

]

.

From the derivation of formula (45.7), we know the solution to our nonhomogeneous system

is

x(t) = [X(t)]

∫

[X(t)]−1g(t) dt =
1

2

[

e3t −e−t

e3t e−t

] ∫ [

e−3t e−3t

−et et

] [

g1(t)

g2(t)

]

dt .

In particular, if

g(t) =

[

6

2

]

e3t ,

as in example 45.2, then

x(t) =
1

2

[

e3t −e−t

e3t e−t

] ∫ [

e−3t e−3t

−et et

] [

6e3t

2e3t

]

dt

=
1

2

[

e3t −e−t

e3t e−t

] ∫ [

8

−4e4t

]

dt
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=
1

2

[

e3t −e−t

e3t e−t

]
[

8t + c1

e4t + c2

]

=
1

2

[

8te3t + c1e3t + e3t − c2e−t

8te3t + c1e3t − e3t + c2e−t

]

=

[

4

4

]

te3t +
1

2

[

1

−1

]

e3t + C1

[

1

1

]

e3t + C2

[

−1

1

]

e−t .

Comparing this to that obtained in example 45.2, we see that they are the same, with the above

C1 and C2 related to the c1 and c2 in formula (45.4) on page 45–8 by

C1 = c1 +
1

2
and C2 = c2 .

The Definite Integral Version

Instead of using an indefinite integral with equation (45.5), we could have used the definite integral,

u(t) − u(t0) =

∫ t

s=t0

u′(s) ds =

∫ t

s=t0

[X(s)]−1g(s) ds .

Then

u(t) = u(t0) +

∫ t

s=t0

[X(s)]−1g(s) ds ,

x(t) = [X(t)]u(t) = [X(t)]u(t0) + [X(t)]

∫ t

s=t0

[X(s)]−1g(s) ds

and

x(t0) = [X(t0)]u(t0) + [X(t0)]

∫ t0

s=t0

[X(s)]−1g(s) ds = [X(t0)]u(t0) + 0 .

Solving this last equation for u(t0) and plugging it back into the previous equation gives the following

version of the variation of parameters formula for systems:

x(t) = [X(t)][X(t0)]
−1x(t0) + [X(t)]

∫ t

s=t0

[X(s)]−1g(s) ds . (45.8)

This formula for x may be preferable to formula (45.7) when dealing with initial-value prob-

lems. Moreover, even if the above integrals end up being too difficult to compute explicitly, good

approximations for them can be found for any desired value of t by using any of the numerical

routines for computing integrals (trapezoidal rule, Simpson’s method, etc.).

There is something else worth noting: The above definite integral makes sense even if the

components of g are merely piecewise continuous on our interval of interest, suggesting that we can

relax our requirement that the components of g be continuous. And, indeed, we can.

Theorem 45.4 (variation of parameters for systems (definite integral version))

Let P be a continuous N × N matrix-valued function over an interval (α, β) , and let X(t) be a

fundamental matrix over this interval for the homogeneous system

x′ = Px .
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Then, for any vector g of functions piecewise continuous on (α, β) , any t0 in (α, β) and any

constant column vector a , the solution to the nonhomogeneous initial-value problem

x′ = Px + g with x(t0) = a

is given by

x(t) = [X(t)][X(t0)]
−1a + [X(t)]

∫ t

s=t0

[X(s)]−1g(s) ds . (45.9)

That formula (45.9) is a solution to the given initial-value problem can be verified by plugging

it into the initial-value problem and using properties of fundamental matrices and basic facts from

calculus. To see that this formula is the only solution, go back over the derivation of this formula,

and observe that it would still have been obtained assuming x = Xu where u is given by X−1

multiplied on the right by any given solution to the initial-value problem. Hence, any given solution

must be given by this one formula. The details of all this will be left to the interested reader.

By the way, if you recall the discussion from section 44.5, you will notice that the first term

in formula (45.9) is a solution to the corresponding homogeneous problem, x′ = Px , leaving the

integral term as a particular solution to the given nonhomogeneous problem. And if you think about

it a little more, you will realize that formula (45.9) is a general solution for the nonhomogeneous

equation x′ = Px + g provided a is treated as an arbitrary constant vector.

Using Exponential Matrices

If P is a constant matrix A , then we can use the exponential matrix eAt for the fundamental matrix

X in the above formulas. This does lead to a simpler way of expressing these formulas. After all,

from section 44.5, we know that, if X(t) = eAt , then

[X(t)]−1 = e−At and eAt e−As = eA(t−s) .

Using these facts, it’s easy to see that formula (45.9) for the solution to

x′ = Ax + g with x(t0) = a

reduces to

x(t) = eA(t−t0)a +

∫ t

s=t0

eA(t−s)g(s) ds , (45.10)

and, when t0 = 0 , to

x(t) = eAt a +

∫ t

s=0

eA(t−s)g(s) ds . (45.11)

!◮Example 45.4: Let g1 and g2 be any pair of functions piecewise continuous on (−∞, ∞) ,

and again consider solving the system

x ′ = x + 2y + g1

y′ = 2x + y + g2

.

this time with some initial condition x(0) = a = [a1, a2]
T . In matrix/vector form, this is

x′ = Ax + g with x(0) = a

where g = [g1, g2]
T and A is, again, the matrix from examples 42.1, 42.2 and 45.3.
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From example 45.3, we know one fundamental matrix for x = Ax is

X(t) =

[

e3t −e−t

e3t e−t

]

.

In section 44.5, we learned that exponential fundamental matrix eAt is given by X(t)[X(0)]−1 .

In this case, then

eAt = X(t)[X(0)]−1

=

[

e3t −e−t

e3t e−t

] [

e3·0 −e−0

e3·0 e−0

]−1

=

[

e3t −e−t

e3t e−t

]
[

1 −1

1 1

]−1

.

Computing the inverse however you wish, we get

eAt =

[

e3t −e−t

e3t e−t

]
(

1

2

[
1 1

−1 1

])

=
1

2

[

e3t + e−t e3t − e−t

e3t − e−t e3t + e−t

]

.

Plugging this into variation of parameters formula (45.11),

x(t) = eAt a +

∫ t

s=0

eA(t−s)g(s) ds ,

gives us

x(t) =
1

2

[

e3t + e−t e3t − e−t

e3t − e−t e3t + e−t

]
[

a1

a2

]

+
1

2

∫ t

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

g1(s)

g2(s)

]

ds

(45.12)

as the solution to

x′ = Ax + g with x(0) = a .

Bad as formula (45.12) may initially look, it gives us a straightforward, almost mechanical,

process for solving the above initial-value problem. Before really using it, let’s observe that we

can “precompute” the first term,

1

2

[

e3t + e−t e3t − e−t

e3t − e−t e3t + e−t

]
[

a1

a2

]

=
1

2

[

a1(e
3t + e−t ) + a2(e

3t − e−t )

a1(e
3t − e−t ) + a2(e

3t + e−t )

]

=
a1 + a2

2

[
1

1

]

e3t +
a1 − a2

2

[
1

−1

]

e−t .

So solution (45.12) “simplifies” to

x(t) =
a1 + a2

2

[
1

1

]

e3t +
a1 − a2

2

[
1

−1

]

e−t + xp(t) (45.14)

where

xp(t) =
1

2

∫ t

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

g1(s)

g2(s)

]

ds . (45.15)



✐

✐

✐

✐

✐

✐

✐

✐

Chapter & Page: 45–14 Nonhomogeneous Linear Systems

Let’s finish solving the problem given in the last example for two different choices of g

!◮Example 45.5: In particular, consider solving

x′ = Ax + g with x(0) = a

where A is as in the last example,

a =

[
1

3

]

and g(t) =

[
6

2

]

e3t ,

Using formula set (45.13), we get that the solution is,

x(t) =
1 + 3

2

[
1

1

]

e3t +
1 − 3

2

[
1

−1

]

e−t + xp(t) (45.14)

with

xp(t) =
1

2

∫ t

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

] [

6e3s

2e3s

]

ds

=
1

2

∫ t

s=0

[

6(e3t + e−t+4s)) + 2(e3t − e−t+4s

6(e3t − e−t+4s)) + 2(e3t + e−t+4s

]

ds

=

∫ t

s=0

([
4

4

]

e3t +

[
2

−2

]

e−t e4s

)

ds

=

([
4

4

]

e3t s +

[
2

−2

]

e−t 1

4
e4s

) ∣
∣
∣
∣

t

s=0

=

[
4

4

]

e3t t +
1

2

[
1

−1

]
(

e3t − e−t
)

Plugging all this back into (45.14) (and simplifying a few things) gives us our solution,

x(t) = 2

[
1

1

]

e3t − 1

[
1

−1

]

e−t +

[
4

4

]

e3t t +
1

2

[
1

−1

]
(

e3t − e−t
)

=
1

2

[
5

3

]

e3t +
1

2

[
−3

3

]

e−t +

[
4

4

]

te3t .

Finally, let’s solve a simple problem involving a step function,

stepγ (t) =

{

0 if t < γ

1 if γ < t
.

!◮Example 45.6: Let us find the general solution to system

x ′ = x + 2y + 3 step1(t)

y′ = 2x + y − 3 step1(t)
.

In matrix/vector form, this is

x′ = Ax + g with x(0) = a
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where A is the same matrix used in the last two examples, a = [a1, a2]
T is arbitrary, and

g(t) =

[

3

−3

]

step2(t) .

From example 45.4, we already know a general solution is given by

x = xh + xp (45.16)

where

xh(t) =
a1 + a2

2

[
1

1

]

e3t +
a1 − a2

2

[
1

−1

]

e−t (45.17)

and

xp(t) =
1

2

∫ t

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

3

−3

]

step2(t) ds . (45.18)

Of course, we could rewrite formula (45.17) for xh as

xh(t) = c1

[
1

1

]

e3t + c2

[
1

−1

]

e−t .

though we may prefer to leave xh in terms of a1 and a2 because of their relation to any given

initial values at t = 0 .

Because of the step function, the integration depends on whether t ≤ 2 or t > 2 . If t ≤ 2 ,

then

xp(t) =
1

2

∫ t

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

3

−3

]

step2(t)
︸ ︷︷ ︸

= 0

ds =

[

0

0

]

.

If t > 2 , then the integral must be split at s = 2 :

xp(t) =
1

2

∫ 2

s=0

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

3

−3

]

step2(t)
︸ ︷︷ ︸

= 0

ds

+
1

2

∫ t

s=2

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

3

−3

]

step2(t)
︸ ︷︷ ︸

= 1

ds

=

[

0

0

]

+
1

2

∫ t

s=2

[

e3(t−s) + e−(t−s) e3(t−s) − e−(t−s)

e3(t−s) − e−(t−s) e3(t−s) + e−(t−s)

]
[

3

−3

]

ds

=
1

2

∫ t

s=2

[

3
(

e3(t−s) + e−(t−s)
)

− 3
(

e3(t−s) − e−(t−s)
)

3
(

e3(t−s) − e−(t−s)
)

− 3
(

e3(t−s) + e−(t−s)
)

]

ds

=

∫ t

s=2

[

3

3

]

e−(t−s) ds

=

[

3

3

]

e−(t−s)
∣
∣
∣

t

s=2

=

[

3

3

]
[

1 − e2−t
]

.
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Combining all the above then gives us our solution:

x(t) = xh(t) + xp(t)

= c1

[
1

1

]

e3t + c2

[
1

−1

]

e−t +









0 if t ≤ 2
[

3

3

]
[

1 − e2−t
]

if 2 < t
.

45.4 Using Laplace Transforms

It should be mentioned that a constant matrix system of differential equations can be reduced to a

linear system of algebraic equations by taking the Laplace transform of each equation. After solving

the resulting algebraic system, the solution to the original system of differential equations can then

be found by taking the inverse Laplace transforms of the solutions to the algebraic system.

This approach can be taken whether or not the system is homogeneous. One example should

adequately illustrate the positive and negative points of this approach.

!◮Example 45.7: Again, consider solving the system

x ′ = x + 2y + 3 step1(t)

y′ = 2x + y

with initial conditions

x(0) = 0 and y(0) = 2 .

Taking the Laplace transform of the first equation:

L
[

x ′
]∣
∣
s

= L[x]|s + 2L[y]|s + 3L
[

step1(t)
]∣
∣
s

→֒ s X (s) − x(0) = X (s) + 2Y (s) +
3

s
e−2s

→֒ s X (s) − 0 = X (s) + 2Y (s) +
3

s
e−2s

→֒ [s − 1]X (s) − 2Y (s) =
3

s
e−2s .

Doing the same with the second equation:

L
[

y′
]∣
∣
s

= 2L[x]|s + L[y]|s

→֒ sY (s) − y(0) = 2X (s) + Y (s)

→֒ sY (s) − 2 = 2X (s) + Y (s)

→֒ −2X (s) + [s − 1]Y (s) = 2 .
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So the transforms X = L[x] and Y = L[y] must satisfy the algebraic system

[s − 1]X (s) − 2Y (s) =
3

s
e−2s

−2X (s) + [s − 1]Y (s) = 2

. (45.16)

It is relatively easy to solve the above system. To find X (s) we can first add s − 1 times

the first equation to 2 times the second to obtain

[s − 1]2 X (s) − 4X (s) =
3(s − 1)

s
e−2s + 4 .

After rewriting this as
[

(s − 1)2 − 4
]

X (s) =
3(s − 1)

s
e−2s + 4 ,

we see that

X (s) =
3(s − 1)

s
[

(s − 1)2 − 4
]e−2s +

4

(s − 1)2 − 4
. (45.17)

Similarly, to find Y (s) , we can add 2 times the first equation in system (45.16) to (s − 1)

times the second equation, obtaining

−4Y (s) + [s − 1]2Y (s) =
6

s
e−2s + 2(s − 1) .

Solving this for Y (s) then yields

Y (s) =
6

s
[

(s − 1)2 − 4
]e−2s +

2(s − 1)

(s − 1)2 − 4
. (45.18)

Finding the formulas for X and Y was easy. Now we need to compute the formulas for

x = L
−1[X] and y = L

−1[Y ] from formulas (45.17) and (45.18) using the theory, techniques

and tricks for finding inverse Laplace transforms developed in chapters 26 through 30 of this text.

That is less easy, and the details will be left to the reader “as a review of Laplace transform” (and

to save space here). Suffice it to say that, after using the necessary translation identities, partial

fractions or convolutions, the end result will be the same as obtained (more easily) in example

45.6.

45.5 Using Similarity Transforms

In section 44.8, we discussed converting a homogeneous constant N ×N matrix system x′ = Ax

to an equivalent homogeneous constant matrix system y′ = By by means of a similarity transform

in which A and B are related by

B = T−1AT and A = TBT−1

for some invertible N ×N matrix T . The solutions x and y are related by

y = T−1x and x = Ty .
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This fact was derived in equation sets (44.9) on page 44–22. You can easily redo those computations

assuming x and y satisfy nonhomogeneous systems, and derive:

Theorem 45.5

Let A and B be two constant N ×N matrices related by a similarity transform

B = T−1AT and A = TBT−1 ,

and let x and y be two vector-valued functions on (−∞, ∞) related by

y = T−1x and x = Ty .

Then, for any vector-valued function g on (−∞, ∞) , x is a solution to

x′ = Ax + g

if and only if y is a solution to

y′ = By + T−1g .

?◮Exercise 45.1: Derive the claim made in the last theorem.

Of course, for the above to be of value in solving x′ = Ax + g , we should choose the matrix

T so that the corresponding equivalent system y′ = By + T−1g is as easily solved as possible. In

particular, we would like to choose T so that B is as described in theorem 44.8 on page 44–21.

And remember, when A has a complete set of eigenvectors {u1, u2, · · · , uN } , this T can be given

by the matrix whose kth column is uk .

!◮Example 45.8: Let us consider, one more time, the nonhomogeneous system considered in

examples 45.2 and 45.3; namely,

x′ = Ax + g

with

A =

[

1 2

2 1

]

and g(t) =

[

6

2

]

e3t .

From examples 42.1 and 42.2, we know A has a complete set of eigenvectors
{

u1, u2
}

with

u1 =

[
1

1

]

and u2 =

[
−1

1

]

.

(We also know A has eigenpairs (3, u1) and (−1, u2) , and that
{

u1e3t , u2e−t
}

is a fundamental

set of solutions for the corresponding homogeneous problem x′ = Ax .)

Computing the matrix T whose kth column is given by uk and the inverse of T gives

T =

[
1 −1

1 1

]

and T−1 =
1

2

[
1 1

−1 1

]

.

Hence,

B = T−1AT =
1

2

[
1 1

−1 1

] [
1 2

2 1

] [
1 −1

1 1

]

= · · · =

[
3 0

0 −1

]

,

T−1g =
1

2

[
1 1

−1 1

] [
6

2

]

e3t =

[
4

−2

]

e3t .
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and, letting y = [y1, y2]
T ,

By + T−1g =

[
3 0

0 −1

] [
y1

y2

]

+

[
−2

4

]

e3t =

[

3y1 + 4e3t

−y2 − 2e3t

]

.

Consequently, the system y′ = By + T−1g is simply

[
y1

′

y2
′

]

=

[

3y1 + 4e3t

−y2 − 2e3t

]

.

This is a completely uncoupled system. For convenience, let’s rewrite it as

dy1

dt
− 3y1 = 4e3t

dy2

dt
+ y2 = −2e3t

, (45.19)

noting that each equation in this system is a simple first-order linear differential equation that we

can solve using the methods from chapter 5 (using t as the variable, instead of x ).

For the first equation in system (45.19), we start by finding the integrating factor

µ(t) = e
∫

(−3) dt = e−3t .

Then we multiply the differential equation by this integrating factor and proceed as described in

section 5.2,

e−3t
[

dy1

dt
− 3y1

]

= e−3t
[

4e3t
]

→֒ e−3t dy1

dt
− 3e−3t y1 = 4

→֒
d

dt

[

e−3t y1

]

= 4

→֒
∫

d

dt

[

e−3t y1

]

dt =

∫

4 dt

→֒ e−3t y1 = 4t + c1 .

Multiplying both sides of the last equation by e3t then gives us our formula for y1 ,

y1(t) = 4te−3t + c1e−3t .

For the second equation in system (45.19), the integrating factor is

µ(t) = e
∫

1 dt = et .

Multiplying the differential equation by this integrating factor and proceeding as before, we get

et
[

dy2

dt
+ y2

]

= et
[

−2e3t
]

→֒
d

dt

[

et y1

]

= −2e4t

→֒ et y2 = −
1

2
e4t + c2 .
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Thus,

y2(t) = e−t
[

−
1

2
e4t + c2

]

= −
1

2
e3t + c2e−t ,

and our solution to system (45.19) is

y(t) =

[
y1(t)

y2(t)

]

=

[
4te−3t + c1e−3t

−
1

2
e3t + c2e−t

]

.

Finally, we need to compute the formula for x from our formula for y :

x(t) = Ty(t) =

[
1 −1

1 1

]
[

4te−3t + c1e−3t

−
1

2
e3t + c2e−t

]

= · · ·

=

[

4

4

]

te−3t +
1

2

[

1

−1

]

e3t + c1

[

1

1

]

e−3t + c2

[

−1

1

]

e−t .

which, unsurprisingly, is the same as obtained in both example 45.2 and example 45.3.

Whenever A has a complete set of eigenvectors, then choosing T as just described will lead to

a completely uncoupled system of first-order linear differential equations. If some of the eigenvalues

happen to be complex, then the corresponding differential equations will have complex terms, leading

to solutions involving complex exponentials. This means that, in the end, you will have to do a little

more work to convert your answers to answers involving just real-valued functions.

When A does not have a complete set of eigenvectors, then you can construct T from the wk, j ’s

described in theorems 43.8 and 43.9 from section 43.5. The resulting matrix B will be as described

in theorem 44.8 on page 44–21, and the system y′ = By + T−1g will be weakly coupled. Finding

the solution to this system will doubtlessly require a bit more labor than in the above example, but

will still be relatively straightforward.

Whether or not A has a complete set of eigenvectors, we still have the question of whether

“using similarity transforms” is any better than using, say, either the method of educated guess or the

variation of parameters method. Admittedly, it is nice to know that every nonhomogeneous linear

N × N system is equivalent to a rather simple system. But it must also be admitted that the other

methods are probably more efficient, computationally.

Additional Exercises

45.2. Each of the following nonhomogeneous systems either are in the form or can be written in

the form

x′ = Ax + b

where A is a constant matrix and b is a constant vector. Observe that, if there is a constant

vector x0 such that Ax0 = −b , then the nonhomogeneous system can be rewritten as the

shifted system

x′ = A
[

x − x0
]

.

Find that x0 for each system.
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a.

[

x ′

y′

]

=

[

4 2

8 6

] [

x

y

]

+

[

10

22

]

b.

[

x ′

y′

]

=

[

7 3

6 2

] [

x

y

]

+

[

1

2

]

c.
x ′ = 3x + 2y − 24

y′ = x − 2y
d.

x ′ = 3x + 2y

y′ = x − 2y − 24

45.3. Several nonhomogeneous linear systems of differential equations are give below, along with

a general solution xh to each of the corresponding homogeneous systems. In each case,

use the method of undetermined coefficients to find a particular solution xp . Also, write

out the complete general solution to each.

a.

[

x ′

y′

]

=

[

4 3

1 6

] [

x

y

]

+

[

9

−3

]

, xh(t) = c1

[

−3

1

]

e3t + c2

[

1

1

]

e7t

b.
x ′ = x + 2y − 12

y′ = 5x − 2y
, xh(t) = c1

[

−2

5

]

e−4t + c2

[

1

1

]

e3t

c.

[

x ′

y′

]

=

[

4 3

1 6

] [

x

y

]

+

[

−4

12

]

e−t , xh(t) = c1

[

−3

1

]

e3t + c2

[

1

1

]

e7t

d.
x ′ = x + 2y

y′ = 5x − 2y − 30e2t , xh(t) = c1

[

−2

5

]

e−4t + c2

[

1

1

]

e3t

e.
x ′ = 3y + 1 + 6t

y′ = 3x + 4 − 12t
, xh(t) = c1

[

1

1

]

e3t + c2

[

1

−1

]

e−3t

f.

[

x ′

y′

]

=

[

3 2

1 2

] [

x

y

]

−

[

127

65

]

t2 , xh(t) = c1

[

1

−1

]

et + c2

[

2

1

]

e4t

g.
x ′ = 3y + 20 sin(t)

y′ = 3x + 10 cos(t)
, xh(t) = c1

[

1

1

]

e3t + c2

[

1

−1

]

e−3t

h.
x ′ = 3x + 2y − 5e3t sin(2t)

y′ = −2x + 3y + 3e3t sin(2t)
, xh(t) = c1

[

sin(2t)

cos(2t)

]

e3t+c2

[

− cos(2t)

sin(2t)

]

e3t

i.

[

x ′

y′

]

=

[

4 3

1 6

] [

x

y

]

+

[

5

1

]

e3t , xh(t) = c1

[

−3

1

]

e3t + c2

[

1

1

]

e7t

j.
x ′ = 8x + 2y + 15

y′ = 4x + y + 3
, xh(t) = c1

[

1

−4

]

+ c2

[

2

1

]

e9t

k.
x ′ = x + 2y + 7e−4t

y′ = 5x − 2y
, xh(t) = c1

[

−2

5

]

e−4t + c2

[

1

1

]

e3t

45.4. Again, find the general solution to each nonhomogeneous problem in exercise set 45.3, but

this time, use either variation of parameters formula (45.7) on page 45–10 or the definite

integral version, formula (45.9) on page 45–12. If using the definite integral version, let

t0 = 0 and let a = [a1, a2]
T be an arbitrary vector.

45.5. In exercise 44.10 d you found that the exponential fundamental matrix for x′ = Ax is

eAt =
1

9

[

1 + 8e9t −2 + 2e9t

−4 + 4e9t 8 + e9t

]

when A =

[
8 2

4 1

]

.

Using this and the appropriate integration by parts formula, solve

x′ = Ax + g with x(0) = a

for each of the following choices of a and g :
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a. a =

[
a1

a2

]

and g =

[
15

3

]

b. a =

[
−1

1

]

and g =

[
7

−7

]

e2t

c. a =

[
0

0

]

and g =

[
81e9t

41 cos(t)

]

45.6. In exercise 44.10 d you found that the exponential fundamental matrix for x′ = Ax is

eAt =

[

3e3t + e7t −3e3t + 3e7t

−e3t + e7t e3t + e7t

]

when A =

[
4 3

1 6

]

.

Using this and the appropriate integration by parts formula, solve

x′ = Ax + g with x(0) = a

for each of the following choices of a and g :

a. a =

[
a1

a2

]

and g =

[
9

−3

]

b. a =

[
1

1

]

and g =

[
5

1

]

e3t

c. a =

[
1

1

]

and g =

[
5

1

]

e3t step2(t)

45.7. In exercise 44.10 e you found that the exponential fundamental matrix for x′ = Ax is

eAt =
1

2

[
2 cos(4t) − sin(4t)

4 sin(4t) 2 cos(4t)

]

when A =

[
0 −2

8 0

]

.

Using this and the appropriate integration by parts formula, solve

x′ = Ax + g with x(0) = a

for each of the following choices of a and g :

a. a =

[
a1

a2

]

and g =

[
2

0

]

b. a =

[
1

2

]

and g =

[
0

4t

]

c. a =

[
0

0

]

and g =

[
cos(4t)

0

]

45.8. In exercise 44.10 f you found that the exponential fundamental matrix for x′ = Ax is

eAt = e3t

[
cos(2t) sin(2t)

− sin(2t) cos(2t)

]

when A =

[
3 2

−2 3

]

.

Using this and the appropriate integration by parts formula, solve

x′ = Ax + g

for each of the following choices of a and g :

a. a =

[
a1

a2

]

and g(t) =

[
13

0

]

b. a =

[
0

0

]

and g(t) =

[
1

−1

]

e3t

c. a =

[
0

0

]

and g(t) =

[
1

−1

]

e3(t−4π) step4π (t)
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45.9. Solve each of the following initial-value problems involving Euler systems using the ap-

propriate integration by parts formula and the given fundamental matrix X for the corre-

sponding homogeneous system (from exercise 44.15)

a.

[
x ′

y′

]

=
1

t

[
5 1

3 3

] [
x

y

]

+

[
5

5

]

with x(1) =

[
0

2

]

, X(t) =

[

t2 t6

−3t2 t6

]

b.

[
x ′

y′

]

=
1

t

[
5 1

3 3

] [
x

y

]

+

[
4

0

]

t2 with x(1) =

[
0

0

]

, X(t) =

[

t2 t6

−3t2 t6

]

c.

[
x ′

y′

]

=
1

t

[
6 7

3 2

] [
x

y

]

+

[
7

3

]

with x(1) =

[
1

−1

]

, X(t) =

[

t−1 7t9

−t−1 3t9

]

d.

[
x ′

y′

]

=
1

t

[
6 7

3 2

] [
x

y

]

+

[
14

6

]

t2 with x(1) =

[
1

−1

]

, X(t) =

[

t−1 7t9

−t−1 3t9

]

e.

[
x ′

y′

]

=
1

t

[
4 3

3 −4

] [
x

y

]

+

[
2

3

]

t with x(1) =

[
1

2

]

, X(t) =

[

t−5 3t5

−3t−5 t5

]

f.

[
x ′

y′

]

=
1

t

[
4 3

3 −4

] [
x

y

]

+

[
3

1

]

t−1 with x(1) =

[
0

0

]

, X(t) =

[

t−5 3t5

−3t−5 t5

]

g.

[
x ′

y′

]

=
1

3t

[
6 2

9 9

] [
x

y

]

+

[
2

−3

]

with x(1) =

[
0

0

]

, X(t) =

[

−2t t4

3t 3t4

]

h.

[
x ′

y′

]

=
1

3t

[
6 2

9 9

] [
x

y

]

+

[
2

−3

]

t2 with x(1) =
1

2

[
2

−3

]

, X(t) =

[

−2t t4

3t 3t4

]

45.10. Solve each of the following initial-value problems (taken from previous exercises) using

the Laplace transform.

a.
x ′ = x + 2y

y′ = 5x − 2y
with

x(0) = 1

y(0) = 15

b.
x ′ = 8x + 2y + 15

y′ = 4x + y + 3
with

x(0) = a1

y(0) = a2

c.
x ′ = 8x + 2y + 7e2t

y′ = 4x + y − 7e2t
with

x(0) = −1

y(0) = 1

d.
x ′ = 4x + 3y + 5e3t

y′ = 1x + 6y + e3t
with

x(0) = 1

y(0) = 1

e.
x ′ = 4x + 3y + 5e3t step2(t)

y′ = 1x + 6y + e3t step2(t)
with

x(0) = 1

y(0) = 1

f.
x ′ = −2y

y′ = 8x
with

x(0) = a1

y(0) = a2

g.
x ′ = −2y

y′ = 8x + 4t
with

x(0) = 1

y(0) = 2
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h.
x ′ = −2y + cos(4t)

y′ = 8x
with

x(0) = 0

y(0) = 0

i.
x ′ = 3x + 2y

y′ = −2x + 3y
with

x(0) = a1

y(0) = a2

j.
x ′ = 3x + 2y + e3(t−4π) step4π (t)

y′ = −2x + 3y − e3(t−4π) step4π (t)
with

x(0) = 0

y(0) = 0
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

2a.
[

−2
−1

]

2b.
[

−1
2

]

2c.
[

6
3

]

2d.
[

6
−9

]

3a. xp(t) =
[

−3
1

]

, x(t) = xp(t) + xh(t) =
[

−3
1

]

+ c1

[
−3
1

]

e3t + c2

[
1
1

]

e7t

3b. xp(t) =
[

2
5

]

, x(t) = xp(t) + xh(t) =
[

2
5

]

+ c1

[
−2
5

]

e−4t + c2

[
1
1

]

e3t

3c. xp(t) =
[

2
−2

]

e−t , x(t) = xp(t) + xh(t) =
[

2
−2

]

e−1 + c1

[
−3
1

]

e3t + c2

[
1
1

]

e7t

3d. xp(t) =
[

10
5

]

e2t , x(t) = xp(t) + xh(t) =
[

10
5

]

e2t + c1

[
−2
5

]

e−4t + c2

[
1
1

]

e3t

3e. xp(t) =
[

4
−2

]

t +
[

−2
1

]

3f. xp(t) =
[

2
4

]

+
[

14
10

]

t +
[

31
17

]

t2

3g. xp(t) = −
[

2
1

]

cos(t) −
[

3
6

]

sin(t)

3h. xp =
[

2
2

]

e2t cos(2t) +
[

3
−1

]

e2t sin(2t)

3i. xp(t) =
[

3
−1

]

te3t +
[

4
−2

]

e3t

3j. xp(t) =
[

1
−4

]

t +
[

−3
5

]

3k. xp(t) =
[

2
−5

]

te−4t +
1

2

[
−4
5

]

e−4t

5a. x(t) =

(
a1 − 2a2

9

)
[

1
−4

]

+

(
4a1 + a2

9
+

7

9

)
[

2
1

]

e9t +
[

1
4

]

t −
7

9

[
2
1

]

5b. x(t) = −
3

2

[
1

−4

]

−
1

2

[
−1
10

]

e2t

5c. x(t) =
[

−1
4

]

+
1

2

[
4

−7

]

e9t + 36
[

2
1

]

te9t +
1

2

[
−18
73

]

sin(t) −
1

2

[
2
1

]

cos(t)

6a. x(t) =

(
a1 − a2

4
+ 1

)
[

3
−1

]

e3t +

(
a1 + 3a2

4

)
[

1
1

]

e7t +
[

−3
1

]

6b. x(t) =
3

2

[
1
1

]

e7t +
[

3
−1

]

te3t −
1

2

[
1
1

]

e3t

6c. If t < 2 : x(t) =
[

1
1

]

e7t . If t ≥ 2 : x(t) =

(

1 +
1

2
e−8

)
[

1
1

]

e7t +
[

3
−1

]

te3t +
1

2

[
−13

3

]

e3t

7a. x(t) = a1

[
cos(4t)

2 sin(4t)

]

+
a2 − 1

2

[
− sin(4t)
2 cos(4t)

]

+
[

0
1

]

7b. x(t) =

[
cos(4t)

2 sin(4t)

]

+
7

8

[
− sin(4t)
2 cos(4t)

]

−
1

2

[
1
0

]

t +
1

4

[
0
1

]

7c. x(t) =
1

2

[
cos(4t)

2 sin(4t)

]

t +
1

8

[
0

sin(4t)

]

8a. x(t) =

(

(a1 + 3)
[

cos(2t)
− sin(2t)

]

+ (a2 + 2)
[

sin(2t)
cos(2t)

]
)

e3t −
[

3
2

]

8b. x(t) =
1

2

(
[

cos(2t)
− sin(2t)

]

+

[
sin(2t)
cos(2t)

]

−
[

1
1

]
)

e3t

8c. If t < 4π : x(t) =
[

0
0

]

. If t ≥ 4π : x(t) =
1

2

(
[

cos(2t)
− sin(2t)

]

+

[
sin(2t)
cos(2t)

]

−
[

1
1

]
)

e3(t−4π)

9a.
1

2

(
[

3
3

]

t6 +
[

−1
3

]

t2 −
[

2
2

]

t
)

9b.
[

1
1

]

t6 +
[

−1
3

]

t2 −
[

0
4

]

t3

9c.
1

8

[
7
3

]

t9 −
1

8

[
7
3

]

t +
[

1
−1

]

t−1

9d.
1

3

[
7
3

]

t9 −
1

3

[
7
3

]

t3 +
[

1
−1

]

t−1

9e.
2

5

[
−1
3

]

t−5 +
4

5

[
3
1

]

t5 −
[

1
0

]

t2

9f.
1

5

[
3
1

]

t5 −
1

5

[
3
1

]
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9g.
[

2
−3

]

t ln |t |

9h.
1

2

[
2

−3

]

t3

10a. 2
[

−2
5

]

e−4t + 5
[

1
1

]

e3t

10b. x(t) =

(
a1 − 2a2

9

)
[

1
−4

]

+

(
4a1 + a2

9
+

7

9

)
[

2
1

]

e9t +
[

1
4

]

t −
7

9

[
2
1

]

10c. x(t) = −
3

2

[
1

−4

]

−
1

2

[
−1
10

]

e2t

10d. x(t) =
3

2

[
1
1

]

e7t +
[

3
−1

]

te3t −
1

2

[
1
1

]

e3t

10e. If t < 2 : x(t) =
[

1
1

]

e7t . If t ≥ 2 : x(t) =

(

1 +
1

2
e−8

)
[

1
1

]

e7t +
[

3
−1

]

te3t +
1

2

[
−13

3

]

e3t

10f. x(t) = a1

[
cos(4t)

2 sin(4t)

]

+
a2

2

[
− sin(4t)
2 cos(4t)

]

10g. x(t) =

[
cos(4t)

2 sin(4t)

]

+

(
7

8

) [
− sin(4t)
2 cos(4t)

]

−
1

2

[
1
0

]

t +
1

4

[
0
1

]

10h. x(t) =
1

2

[
cos(4t)

2 sin(4t)

]

t +
1

8

[
0

sin(4t)

]

10i. x(t) =

(

a1

[
cos(2t)

− sin(2t)

]

+ a2

[
sin(2t)
cos(2t)

]
)

e3t

10j. If t < 4π : x(t) =
[

0
0

]

. If t ≥ 4π : x(t) =
1

2

(
[

cos(2t)
− sin(2t)

]

+

[
sin(2t)
cos(2t)

]

−
[

1
1

]
)

e3(t−4π)
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