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43

Homogeneous Constant Matrix Systems,
Part II

Let us now expand our discussions begun in the previous chapter, and consider homogeneous con-

stant matrix systems whose matrices either have complex eigenvalues or have incomplete sets of

eigenvectors.

43.1 Solutions Corresponding to Complex Eigenvalues
Eigenpairs of Real Matrices

Remember that the real and imaginary parts of a complex number z are those real numbers x and

y , respectively, such that z = x + iy , and that the complex conjugate z∗ of z is

z∗ = x − iy .

All these notions extend to matrices having complex components in the obvious manner: Given a

matrix M whose entries are complex, we define the complex conjugate M∗ of M to be the matrix

formed by replacing each entry of M with that entry’s complex conjugate, and the real and imaginary

parts of M are simply the corresponding matrices of the real and imaginary parts of the components

of that matrix.

It is easy to show that the standard identities for the conjugates of complex numbers such as

(

z∗)∗ = z , (az)∗ = (a∗)(z∗) and z = w ⇐⇒ z∗ = w∗

also hold for analogous expression involving matrices and column vectors. In particular, for any

complex value r ,

(Au)∗ = (A∗)(u∗) and (ru)∗ = r∗u∗ .

But if (as we’ve been assuming) the components of A are real numbers, then

A∗ =











a11
∗ a12

∗ · · · a1N
∗

a21
∗ a22

∗ · · · a2N
∗

...
... · · ·

...

aN1
∗ aN2

∗ · · · aN N
∗











=











a11 a12 · · · a1N

a21 a22 · · · a2N

...
... · · ·

...

aN1 aN2 · · · aN N











= A ,

and thus,

Au = ru ⇐⇒ (Au)∗ = (ru)∗ ⇐⇒ (A∗)(u∗) = r∗u∗ ⇐⇒ A(u∗) = r∗u∗ ,
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giving us the first part of the following lemma:

Lemma 43.1

Let A be a real N ×N constant matrix. Then (r, u) is an eigenpair for A if and only if (r∗, u∗)
is an eigenpair for A . Moreover, if r is not real, then the real and imaginary parts of u form a

linearly independent set.

The proof of the second part — the claimed linear independence of the real and imaginary parts

of u — is not difficult, but may distract us from our core narrative. So we’ll place it in an appendix

for later verification (see lemma 43.10 in section 43.6).

The Corresponding Real-Valued Solutions

Let’s now look at the solutions to x′ = Ax when the N×N matrix A has complex eigenvalues, still

assuming that A is a real constant matrix. From lemma 43.1, we know that the complex eigenpairs

occur in complex conjugate pairs. So let (r, u) and (r∗, u∗) be such a pair, with

r = λ + iω , r∗ = λ − iω ,

u =













u1

u2

...

uN













=













a1 + ib1

a2 + ib2

...

aN + ibN













=













a1

a2

...

aN













+ i













b1

b2

...

bN













= a + ib

and

u∗ = · · · = a − ib .

Even though the eigen-pairs are complex, the computations from the start of the last chapter still

apply, and tell us that one “fundamental” pair of solutions to x′ = Ax corresponding to the complex

conjugate pair of eigenvalues λ + iω and λ − iω is

x(t) = uer t = [a + ib]e(λ+iω)t and x∗(t) = u∗er∗t = [a − ib]e(λ−iω)t ,

which, by the way, we can rewrite in terms of sines and cosines since

e(λ±iω)t = eλt e±iωt = eλt [cos(ωt) ± i sin(ωt)] .

Recall that we had a similar situation arise when solving single homogeneous linear differential

equations with constant coefficients (see chapters 17 and 19). And here, just as there, we prefer to

have solutions that do not involve complex values. So let’s try adapting what we did there to get a

corresponding “fundamental pair” of solutions to x′ = Ax in terms of real-valued functions only.

We start by splitting our two solutions into their real and imaginary parts:

e(λ±iω)t = [a ± ib]eλt [cos(ωt) ± i sin(ωt)]

= · · ·

= eλt [a cos(ωt) − b sin(ωt)] ± ieλt [b cos(ωt) + a sin(ωt)] .

Letting

xR(t) = the real part of x(t) = eλt [a cos(ωt) − b sin(ωt)] (43.2)
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and

xI (t) = the imaginary part of x(t) = eλt [b cos(ωt) + a sin(ωt)] , (43.3)

we can write our two solutions to x′ = Ax as

x(t) = xR(t) + ixI (t) and x∗(t) = xR(t) − ixI (t) .

In turn, we can easily solve this pair of equations for xR and xI , obtaining

xR(t) = 1

2
x(t) + 1

2
x∗(t) and xI (t) = 1

2i
x(t) − 1

2i
x∗(t) .

Being linear combinations of solutions to the homogeneous linear system x′ = Ax , xR and xI must

also be solutions to this system of differential equations. Note that both are in terms of real-valued

functions only. And it is a fairly easy exercise (using the second part of lemma 43.1) to show that
{

xR, xI
}

is a linearly independent pair. It is this pair that we will use as the “pair of real-valued

solutions corresponding to eigenvalues λ ± iω ”.

Theorem 43.2

Let A be a real constant N × N matrix. Then the complex eigenvalues of A occur as complex

conjugate pairs. Moreover, if u is an eigenvector corresponding to eigenvalue λ+iω (with ω 6= 0 ),

then a corresponding linearly independent pair of real-valued solutions to x′ = Ax is given by
{

xR(t) , xI (t)
}

where

xR(t) = the real part of x(t) , xI (t) = the imaginary part of x(t)

and

x(t) = ue(λ+iω)t = ueλt [cos(ωt) + i sin(ωt)] .

By the way, memorizing formulas (43.2) and (43.3) for xR(t) and xI (t) is not necessary, or

even advisable for most people. Instead, just expand ue(λ+iω)t into its real and imaginary parts, and

use those parts for xR(t) and xI (t) .

!◮Example 43.1: Let’s solve the system






x ′(t)

y′(t)

z′(t)






=







2 0 3

0 −4 0

−3 0 2













x

y

z






.

Setting up the characteristic equation:

det[A − rI] = 0

→֒ det







2 − r 0 3

0 −4 − r 0

−3 0 2 − r






= 0

→֒ (−4 − r)
[

(2 − r)2 + 9
]

= 0

→֒ −(r + 4)
[

r2 + 4r + 13
]

= 0 .

Hence, either

r + 4 = 0 or r2 + 4r + 13 = 0 ,
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which you can easily solve, obtaining

r1 = −4 , r2 = 2 + i3 and r3 = 2 − i3

as the eigenvalues for our matrix.

By now, you should have no problem is showing that

u1 = [0 , 1 , 0]T

is an eigenvector corresponding to eigenvalue r1 = −4 , giving us

x1(t) =





0

1

0



 e−4t

as one solution to our system.

For the pair of solutions corresponding to the conjugate pair of eigenvalues r2 = 2 + i3 and

r3 = 2 − i3 , we first need to find an eigenvector u corresponding to r2 = 2 + i3 . Letting

u =
[

α , β , γ
]T

,

we see that

→֒












2 0 3

0 −4 0

−3 0 2






− (2 + i3)







1 0 0

0 1 0

0 0 1

→֒






2 − (2 + i3) 0 3

0 −4 − (2 + i3) 0

−3 0 2 − (2 + i3)

→֒






−3i 0 3

0 −6 − 3i 0

−3 0 −3i

So α , β and γ must satisfy the algebraic system

−3iα + 0β + 3γ = 0

0α − (6 + 3i)β + 0γ = 0

−3α + 0β − 3iγ = 0

.

The second equation in this system clearly tells us that

β = 0 .

The first and third equations are equivalent (if this is not obvious, multiply the third by i ). So α

and β must satisfy

−3iα + 0β + 3γ = 0 ,

which can be rewritten as

γ = iα .
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Thus, all the eigenvectors corresponding to eigenvalue 2 + 3i are given by

u =





α

β

γ



 =





α

0

iα



 = α





1

0

i





where α is arbitrary. Picking α = 1 , we have the single eigenvector

u =





1

0

i



 .

So, a single solution corresponding to to the conjugate pair of eigenvalues r2 = 2 + i3 and

r3 = 2 − i3 is

x(t) = uer2t =





1

0

i



 e(2+i3)t =





1

0

i



 e2t [cos(3t) + i sin(3t)] .

To find the corresponding pair of real-valued solutions, we first expand out the last formula for

x(t) ,

x(t) =





1

0

i



 e2t [cos(3t) + i sin(3t)]

= e2t





cos(3t) + i sin(3t)

0

i cos(3t) − sin(3t)





= e2t









cos(3t)

0

− sin(3t)



 + i





sin(3t)

0

cos(3t)







 =





cos(3t)

0

− sin(3t)



 e2t + i





sin(3t)

0

cos(3t)



 e2t .

Taking the real and imaginary parts, we get

xR(t) =





cos(3t)

0

− sin(3t)



 e2t and xI (t) =





sin(3t)

0

cos(3t)



 e2t .

We now have a set

{

x1(t), xR(t) , xI (t)
}

=











0

1

0



 e−4t ,





cos(3t)

0

− sin(3t)



 e2t ,





sin(3t)

0

cos(3t)



 e2t







of solutions to our 3×3 homogeneous linear system of differential equations. It should be clear

that this set is linearly independent (if its not clear, compute the Wronskian at t = 0 ). Hence, it

is a fundamental set of solutions to our system, and a general solution is given by

x(t) = c1





0

1

0



 e−4t + c2





cos(3t)

0

− sin(3t)



 e2t + c3





sin(3t)

0

cos(3t)



 e2t .
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43.2 Two-Dimensional Phase Portraits with Complex
Eigenvalues

Let us now see what patterns are formed by the trajectories of a 2×2 system x′ = Ax when A has

complex eigenvalues

λ + iω and λ − iω with ω 6= 0 .

As before, we’ll let

x(t) =
[

x(t)

y(t)

]

.

The General Solutions

In the previous section, we saw that, if u = a + ib is any eigenvector corresponding to eigenvalue

λ + iω , then {xR, xI } is a linearly independent pair of solutions to x′ = Ax where

xR(t) = eλt [a cos(ωt) − b sin(ωt)] and xI (t) = eλt [b cos(ωt) + a sin(ωt)] .

Hence,

x(t) = c1xR(t) + c2xI (t) (43.2)

is a general solution for our 2×2 system x′ = Ax .

However, for no apparent reason, let’s also consider Cxr (t − t0) where C and t0 are two real

constants. Using some basic trigonometric identities, you can easily confirm that

CxR(t − t0) = Ceλ[t−t0][a cos(ω[t − t0]) − b sin(ω[t − t0])
]

= · · ·

= Ce−λt0 cos(ωt0)e
λt [a cos(ωt) − b sin(ωt)]

+ Ce−λt0 sin(ωt0)e
λt [b cos(ωt) + a sin(ωt)]

= c1xR(t) + c2xI (t)

where

c1 = ρ cos(θ) and c2 = ρ sin(θ)

with

ρ = Ce−λt0 and θ = ωt0 .

So, Cxr (t − t0) a solution of x′ = Ax for any pair of real constants C and t0 . Moreover, if we

are first given real values c1 and c2 , we can then find real constants C and t0 so that

CxR(t − t0) = c1xR(t) + c2xI (t)

by simply taking the polar coordinates (ρ, θ) of the point with Cartesian coordinates (c1, c2) and

setting

t0 = θ

ω
and then C = ρeλt0 .
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This means that we have two real-valued general solutions at our disposal.

Theorem 43.3

Let A be a real 2×2 matrix with complex eigenvalues

r = λ + iω and r∗ = λ − iω with ω 6= 0 ,

and let

xR(t) = eλt [a cos(ωt) − b sin(ωt)] and xI (t) = eλt [b cos(ωt) + a sin(ωt)]

where a and b are, respectively, the real part and the imaginary part of an eigenvector corresponding

to r . Then two general solutions for x′ = Ax are

c1xR(t) + c2xI (t) and CxR(t − t0)

where c1 , c2 , C and t0 are arbitrary (real) constants.

It immediately follows that, for the A’s begin considered now, all the trajectories of x′ = Ax

are simply scaled versions of the trajectory of xR(t) .1 Consequently, if we can get a reasonable

sketch of one nonzero trajectory, all the others in our phase portrait can be obtained by just scaling

the one already sketched. We will use this in constructing the phase portraits that follow.

There are three cases to consider: λ = 0 , λ > 0 and λ < 0 .

Trajectories when λ = 0

If λ = 0 , then eλt = 1 and

xR(t) = a cos(ωt) − b sin(ωt) .

From a simple observation,

xR
(

t + 2π

ω

)

= a cos
(

ω
[

t + 2π

ω

])

− b sin
(

ω
[

t + 2π

ω

])

= a cos(ωt + 2π) − b sin(ωt + 2π)

= a cos(ωt) − b sin(ωt) = xR(t) ,

we know the components of xR(t) — call them xR(t) and yR(t) — are periodic with a period

of 2π/ω . That is, (xR(t), yR(t)) repeatedly goes through the same points on the XY –plane as

t increases by increments of 2π/ω . With a little thought, you will realize that this means these

trajectories are closed loops.

Moreover, by the same sort of calculations just done, you can easily verify that

xR
(

t + π

ω

)

= −xR(t) for all t ,

telling us that, for each point on the trajectory of xR , there is another point on the trajectory with

the origin right in the middle of these two points.

So, not only is this trajectory a closed loop, this loop must be centered about the origin. In fact,

it can be shown that this loop is an ellipse centered about the origin (either trust the author on this,

or turn to section 43.6 where it is proven).

1 Remember: The trajectory of a solution x(t) is the same as that solution shifted by t0 , x(t − t0) .
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As a result of all this, sketching a phase portrait is fairly easy. First sketch a minimal direction

field. Then sketch an elliptic trajectory about the origin using the direction field to get the general

shape and the direction of travel.2 Finally, scale this trajectory to get a sequence of concentric elliptic

trajectories. Include the dot at the origin for the critical point, and you have a phase portrait for this

system.

Note that we don’t actually need the eigenvector u = a + ib to sketch a phase portrait. And

the only reason you need the eigenvalue r = iω is to verify that it is imaginary.

!◮Example 43.2: You can easily verify that

A =
[

1 1

−2 −1

]

has eigenvalues r± = ±i with corresponding eigenvectors

u± = a ± ib =
[

1

−1

]

± i

[

0

1

]

.

So general solutions to our system are given by

x(t) = c1xR(t) + c2xI (t) and x(t) = CxR(t − t0)

where

xR(t) = the real part of u+ei t = · · · =
[

1

−1

]

cos(t) −
[

0

1

]

sin(t)

and

xI (t) = the imaginary part of u+ei t = · · · =
[

0

1

]

cos(t) +
[

1

−1

]

sin(t) .

Since the eigenvalues are imaginary, we know the trajectories are ellipses centered about the

origin. To get a better idea of the shape of these ellipses and the direction of travel along these

ellipses, we’ll compute x′ at a few “well-chosen’ points using x′ = Ax :

At (1, 0) : x′ =
[

1 1

−2 −1

] [

1

0

]

=
[

1

−2

]

.

At (1, 1) : x′ =
[

1 1

−2 −1

] [

1

1

]

=
[

2

−3

]

.

At (0, 1) : x′ =
[

1 1

−2 −1

] [

0

1

]

=
[

1

−1

]

.

At (−1, 1) : x′ =
[

1 1

−2 −1

] [

−1

1

]

=
[

0

1

]

.

Then we sketch corresponding direction arrows at these points, and at other points using the

symmetries in the direction field discussed in section 42.4. That gives the minimal direction field

sketched in figure 43.1a. Sketching an ellipse that ‘best matches’ this direction field then gives

the trajectory also sketched in figure 43.1a.

Scaling this one ellipse by various constants, adding the dot for the critical point and erasing

the direction field then gives the phase portrait in figure 43.1b for our system.

2 Alternatively, you can plot xR(t) for a few well-chosen values of t , and get the direction of travel from the derivative

of xR(t) at some convenient value of t .
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(a) (b)

XX

YY

11

11

22

22

33

33

−1−1

−1−1

−2−2

−2−2

−3−3

−3−3

Figure 43.1: (a) A minimal direction field with one ‘matching’ elliptic trajectory, and (b) a phase

portrait of the system in example 43.2.

In practice, we may not always need to sketch the the trajectory for xR(t) as carefully as we

did in the above example. Often, it is sufficient to simply note that the trajectories are all concentric

ellipses centered at the origin and to determine the direction of travel on each by simply finding the

direction arrow at one point.

In this case, the critical point (0, 0) is not called a node or saddle point. For obvious reasons, we

call it a “center”. Observe that the corresponding equilibrium solution is stable, but not asymptotically

stable, since the trajectory of any solution x(t) with x(t0) ≈ 0 for some t0 is an ellipse right around

(0, 0) .

By the way, when sketching a trajectory for

a cos(ωt) − b sin(ωt) ,

it is tempting to suspect that the vectors a and b directly correspond to the two axes of the elliptic

trajectory. Well, in general, they don’t. To see this, just contemplate the last example and figure

43.1a. (Still, the lines of the axes are easily determined — see exercise 43.6 on page 43–29.)

Trajectories when λ > 0

If λ > 0 then all the trajectories are given by scaling the single trajectory of

xR(t) = eλt [a cos(ωt) − b sin(ωt)] .

As we just saw, the [a cos(ωt)− b sin(ωt)] factor in this formula for xR(t) repeatedly traces out an

ellipse as t varies. Multiplying by eλt — which increases to +∞ as t → +∞ and decreases to 0

as t → −∞ — converts this ellipse into a spiral that spirals outward as t → +∞ and spirals inward

to (0, 0) as t → −∞ , wrapping around the origin infinitely many times in either case. Whether

the trajectories are spiralling out in the clockwise or counterclockwise direction can be determined

by finding the direction of travel indicated by x′ computed at a convenient point via x′ = Ax . As

usual, a minimal direction field may aid your sketching.

!◮Example 43.3: Let us just consider sketching a phase portrait for x′ = Ax when

A =
[

2 3

−3 2

]

.
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(a) (b)

XX

YY

11

11

22

22

33

33

−1−1

−1−1

−2−2

−2−2

−3−3

−3−3

Figure 43.2: (a) A minimal direction field with one ‘matching’ spiral trajectory, and (b) a phase

portrait of the system in example 43.3 in which λ > 0 .

As you can easily verify, A has eigenvalues r = 2 ± i3 . The fact that these eigenvalues are

complex with positive real parts tells us that the trajectories of x′ = Ax are spirals with the

direction of travel being away from the origin. Computing x′ at a few ‘well-chosen’ points:

At (1, 0) : x′ =
[

2 3

−3 2

] [

1

0

]

=
[

2

−3

]

.

At (1, 1) : x′ =
[

2 3

−3 2

] [

1

1

]

=
[

5

−1

]

.

At (0, 1) : x′ =
[

2 3

−3 2

] [

0

1

]

=
[

3

2

]

.

At (−1, 1) : x′ =
[

2 3

−3 2

] [

−1

1

]

=
[

1

5

]

.

From these vectors and the symmetries discussed in section 42.4, we get the minimal direction

field sketched in figure 43.2a, which also includes a spiral trajectory matching that direction field.

Note that this trajectory is spiralling outwards in a clockwise direction.

Adding more spirals matching this minimal direction field (and erasing the direction field)

then gives us the phase portrait in figure 43.2b.

For these systems, the origin classified as a “spiral point” (for obvious reasons), and is clearly

unstable.

Trajectories when λ < 0

The only significant difference between this case and the previous is that eλt decreases to 0 as

t → +∞ and increases to +∞ as t → −∞ . All this does is to change the direction of travel.

We still get spiral trajectories, but with the direction of travel on each being towards the origin. The

result is a phase portrait similar to that sketched in figure 43.3.

The origin is still called a “spiral point”, but you can clearly see that the equilibrium solution

x(t) = 0 is asymptotically stable.
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−2

−3
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Figure 43.3: A phase portrait for x′ = Ax for a case where A has complex eigenvalues with

negative real parts.

43.3 ‘Second Solutions’ When the Set of Eigenvectors is
Incomplete

Up to now, we’ve assumed that our matrix A has a complete set of eigenvectors. That is, we’ve

assumed that, for each eigenvalue r

the algebraic multiplicity of r = the geometric multiplicity of r

where (just in case you forgot)

the algebraic multiplicity of r

= the multiplicity of r as a root of the characteristic polynomial, det[A − rI] ,

while

the geometric multiplicity of r

= the number of eigenvectors in any basis for the eigenspace of r .

Now, let’s suppose that an eigenvalue r has algebraic multiplicity of two or more, but geometric

multiplicity one, with u being a corresponding eigenvector. That gives us one solution

x1(t) = uer t

to x′ = Ax . It should seem reasonable to expect that there is another solution x2 corresponding to

this eigenvalue other than a constant multiple of x1 . Let’s look for this “second solution”.

Based on what we know about “second solutions” to homogeneous linear differential equations

with constant coefficients (from chapter 17), we might suspect that a second solution can be generated

by just multiplying the first by t ,

x2(t) = tx1(t) = tuer t .

Alas, it doesn’t work. Try it yourself to see what happens. You get a leftover term that does not

cancel out. But the attempt may lead you to try adding something to deal with that leftover term. So

let us try

x2(t) = [tu + w]er t
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where w is a yet unknown vector:
d

dt
x2(t) = Ax2

→֒ d

dt

(

[tu + w]er t
)

= A[tu + w]er t

→֒ [u + tru + rw]er t = [tru + Aw]er t

→֒ u + tru + rw = tru + Aw

→֒ u + rw = Aw

→֒ Aw − rw = u .

And since

Aw − rw = Aw − rIw = [A − rI]w ,

we can rewrite our last equation as

[A − rI]w = u . (43.3)

This is what w must satisfy.

!◮Example 43.4: Let us consider the 2×2 system x′ = Ax with

A =
[

3 10

0 3

]

.

Solving for the eigenvalues,

0 = det[A − rI] = det

[

3 − r 10

0 3 − r

]

= (r − 3)2 ,

we get a single eigenvalue r = 3 with algebraic multiplicity 2 .

Any eigenvector u = [α, β]T then must satisfy

[

0

0

]

= [A − 3I]u =
[

0 10

0 0

] [

α

β

]

=
[

10β

0

]

,

which tells us that β = 0 and α is arbitrary. So any eigenvector of this matrix can be written as

u =
[

α

0

]

= α

[

1

0

]

.

Taking α = 1 gives us the single eigenvector

u =
[

1

0

]

.

Thus, r = 3 is an eigenvalue with algebraic multiplicity 2 but geometric multiplicity 1 .

One solution to x′ = Ax is then given by

x1(t) = uer t =
[

1

0

]

e3t .
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According to our derivation above, another solution is given by

x2(t) = [tu + w]e3t

where w satisfies

[A − 3I]w = u .

To find such a w , plug w = [α, β]T into the last equation, and solve for α and β :

[A − 3I] w = u

→֒
([

3 10

0 3

]

− 3

[

1 0

0 1

])[

α

β

]

=
[

1

→֒
[

10β

0

]

=
[

1

Hence, β = 1/10 , α is arbitrary, and

w =

[

α
1

10

]

=

[

0
1

10

]

+ α

[

1

0

]

That is, for w we can use [0, 1/10]T plus any constant multiple of the one eigenvector u , αu .

For simplicity, let us take α = 0 . Then, for our second solution, we have

x2(t) = [tu + w]er t =

(

t

[

1

0

]

+

[

0
1

10

])

e3t =

[

t
1

10

]

e3t .

Clearly, x2 is not a constant multiple of x1 . Hence, our system x′ = Ax has

{

[

1

0

]

e3t ,

[

t
1

10

]

e3t

}

as a fundamental pair of solutions, and

x(t) = c1

[

1

0

]

e3t + c2

[

t
1

10

]

e3t =

(

c1

[

1

0

]

+ c2

[

t
1

10

])

e3t

as a general solution. And if, for esthetic reasons, we don’t like fractions explicitly appearing in

our general solutions, we can replace c2 with 10C2 , rewriting the above as

x(t) = c1

[

1

0

]

e3t + c2

[

t
1

10

]

e3t =
(

c1

[

1

0

]

+ C2

[

10t

1

])

e3t .

The key to our finding a second solution is in finding a w satisfying

[A − rI]w = u

when (r, u) is an eigenpair for A . You may have some concern about this being possible. After

all, since r is an eigenvalue,

det[A − rI] = 0 ,
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telling us that the matrix A − rI is not invertible. So what guarantee is there that the above key

equation has a solution w ? Well, for a 2×2 matrix, there is the following lemma, which you’ll get

to verify yourself in exercise 43.10 on page 43–30.3

Lemma 43.4

Let A be a 2×2 matrix with eigenpair (r, u) . If r has algebraic multiplicity two, but geometric

multiplicity of only one, then there is a w , which is not a constant multiple of u , such that

[A − rI]w = u .

Do note that the w in the above lemma is not unique. After all, if

[A − rI]w1 = u for some w1 ,

then, for any constant c ,

[A − rI]w = u with w = w1 + cu ,

simply because, since (r, u) is an eigen-pair,

[A − rI](w1 + cu) = [A − rI]w1 + c[A − rI]u = u + c0 .

Back to differential equations: As an immediate corollary of the above lemma and the work

done before the previous example, we have

Theorem 43.5

Let A be an 2×2 matrix with eigenpair (r, u) . If r has algebraic multiplicity two, but geometric

multiplicity of only one, then the general solution to x′ = Ax is given by

x(t) = c1uer t + c2[tu + w]er t

where w is any vector satisfying

[A − rI]w = u .

You may wonder if we can expand this discussion to find third and fourth solutions when the

algebraic multiplicity is greater than two. The answer is yes, but let’s look at the trajectories of the

solutions we’ve found when A is a simple 2×2 matrix before discussing this expansion.

43.4 Two-Dimensional Phase Portraits with Incomplete
Sets of Eigenvectors

If A is a 2×2 matrix with a single eigenvalue r having algebraic multiplicity two but geometric

multiplicity one, then, as we just saw, a general solution to x′ = Ax is given by

x(t) = c1uer t + c2[tu + w]er t

where u is an eigenvector corresponding to eigenvalue r , and w satisfies [A− rI]w = u . The tra-

jectories of this when c2 = 0 are simply the straight-line trajectories corresponding to the eigenpair

(r, u) , and, along with the critical point, are the first trajectories to sketch in our phase portrait.

3 Much more general versions of this lemma will be discussed in section 43.5.
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To simplify our sketching of the trajectories when c2 6= 0 , let’s rewrite the above formula for

x as

x(t) = c2

[

(αu + w)er t + tuer t
]

where α = c1/c2 . Note that

x(0) = c2(αu + w) .

This may help us make rough sketches of the trajectories.

To help find the direction of travel and any tangents, we can use either the derivative,

dx

dt
= · · · = c2

[

[(rα + 1)u + rw)]er t + tuer t
]

,

or, to remove any distracting scaling effects, we can use any positive multiple of this. Let us use

T(t) = e−r t

|t |
dx

dt
= c2

[

(rα + 1)u + rw

|t |
+ t

|t |
ru

]

.

Note that

lim
t→−∞

T(t) = c2 [0 + (−1)ru] = −c2ru ,

while

lim
t→+∞

T(t) = c2 [0 + (+1)ru] = +c2ru .

This tells us that, if t+ is a very large positive value and t− is very large negative value, then the

tangents to the trajectories at these two values of t

1. are nearly parallel to the eigenvector u ,

but

2. are in directly opposite directions.

Trajectories when r > 0

If r > 0 and c2 6= 0 , then

lim
t→−∞

x(t) = lim
t→−∞

c2

[

(αu + w)er t + tuer t
]

= 0

and

lim
t→∞

‖x(t)‖ = lim
t→∞

∥

∥c2 [(αu + w) + tu] er t
∥

∥ = ∞ .

So each trajectory appears to start at (0, 0) and continues infinitely beyond the origin as t goes from

−∞ to +∞ . This, alone, tells us that the direction of travel on each nonequilibrium trajectory is

away from the origin.

Now, in our general comments, we saw that, if x(t) is a solution with c2 6= 0 , then

x(0) = c2(αu + w) ,

lim
t→∞

T(t) = c2ru and lim
t→−∞

T(t) = −c2ru .

In particular, if c2 > 0 , then the trajectory of x(t) appears to start at the origin, tangent to u but

directed in the direction opposite to u . As t increases to t = 0 , x(t) traces a path that bends in the

direction of w to pass through the point corresponding to c2(αu + w) . As t continues to get ever
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(a) (b)

XX

YY 33

33

−3−3

−3−3

22

22

−2−2

−2−2

11

11

−1−1

−1−1

Figure 43.4: Trajectories for a 2×2 system x′ = Ax when all the eigenvectors of A are parallel

to the X–axis assuming (a) the eigenvalue is positive, and (b) the eigenvalue is

negative.

larger, this path continues to bend and slowly “flattens out” until the direction of travel is in nearly

the same direction as u .

If c2 < 0 , then the trajectory of x(t) is just a mirror reflection of the trajectory of a corre-

sponding solution having positive c2 .

The end result is a phase portrait similar to that sketched in figure 43.4a. This is a phase portrait

for the system x′ = Ax with

A =
[

3 10

0 3

]

.

from example 43.4. In that example, we found that A only had r = 3 as an eigenvalue, and that all

eigenvectors were constant multiples of u = [1, 0]T . We also obtained w = [0, 1/10]T .

Do note, however, that you don’t really need to know w to sketch this phase portrait. You can

(as we’ve done several times before) start by sketching the straight-line trajectories for the solutions

±uer t , then add a minimal direction field and use this direction field to sketch a number of other

nonequilibrium trajectories. Just keep in mind that these trajectories “start” at the origin tangent to

u , and then bend around to ultimately head out in the opposite direction. And don’t forget the dot

at the origin for the equilibrium solution.

In these cases, the equilibrium solution x(t) = 0 is clearly an unstable equilibrium. The critical

point (0, 0) is classified as a “node”. Those who wish to be more precise refer to it as an “improper

node”.

By the way, we’ve not sketched enough of the trajectories in figure 43.4a to really see that the

tangents become parallel to the eigenvector as t gets large. That is because the magnitude of x(t)

increases like er t , much faster than T(t) approaches ±c2ru . Consequently, in practice, if you use

a scale large enough to see “the tangents being almost parallel to the eigenvector at large values of

t ”, then the behavior of the trajectories near the origin becomes almost invisible.

Trajectories when r < 0

The analysis just done assuming r > 0 can be redone with r < 0 . The only real difference is that

the directions of travel will be reversed. With r < 0 , the direction of travel will be towards the

origin. The result will be a phase portrait similar to that in figure 43.4b. The origin is a node (again,

“improper”), and the equilibrium solution x(t) = 0 is now an asymptotically stable equilibrium.
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Trajectories when r = 0

This is left as an exercise (exercise 43.11 on page 43–31).

43.5 Complete Sets of Solutions Corresponding to
Incomplete Sets of Eigenvectors

It is relatively easy to extend the ideas presented in section 43.3 for finding a ‘second solution’

corresponding to an eigenvalue with geometric multiplicity one but algebraic multiplicity of two.

Well, it’s ‘relatively easy’ least as long as the geometric multiplicity remains one and we know

enough linear algebra. So let us start with that case.

When the Geometric Multiplicity Is One

To begin, here are two lemmas that, together, appropriately generalize lemma 43.4:

Lemma 43.6

Let (r, u) be an eigenpair for some N×N matrix A , and let m be the algebraic multiplicity of r .

If the geometric multiplicity of r is only one, then there is a linearly independent set of m vectors

{

w1, w2, . . . , wm
}

such that

(a) w1 = u , and

(b) if m > 1 then

[A − rI]wk = wk−1 for k = 2, 3, . . . , m .

However, there is no v such that

[A − rI]v = wm .

Lemma 43.7

Let {r1, r2, . . . , rJ } be the complete set of distinct eigenvalues for an N×N matrix A , and suppose

that the geometric multiplicity of each eigenvalue is one. For each r j , let m j be the algebraic

multiplicity of r j , and let

W j =
{

w j,1, w j,2, . . . , w j,m j

}

be any set of vectors such that

1. w j,1 is an eigenvector for A corresponding to eigenvalue r j , and

2. if m j > 1 then

[A − rI]w j,k = w j.k−1 for k = 2, 3, . . . , m j .

Then the union of the W j ’s is a linearly independent set of N vectors.
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The wk’s and w j,k’s in the above lemmas are sometimes referred to as generalized eigenvectors

for the matrix. Unfortunately, the arguments outlined in exercise 43.10 for proving lemma 43.4 do

not readily extend to the more general cases considered by the above lemmas. To verify these

lemmas, we really should delve deeper into the general theory of linear algebra and further develop

such concepts as generalized eigenvectors and “the Jordan form of a matrix” —- concepts rarely

mentioned in elementary linear algebra courses. But that would take us far outside the appropriate

bounds of this text. So either “trust the author” or (better yet) take a more advanced course in linear

algebra and learn how to prove the above lemmas yourself.

Back to differential equations: Let A be an N × N matrix with eigenpair (r, u) , and as-

sume r has algebraic multiplicity m greater than one, but geometric multiplicity of only one. By

the arguments already given in section 43.3, it immediately follows that the ‘first two’ solutions

corresponding to eigenvalue r are

x1(t) = w1er t and x2(t) =
[

tw1 + w2
]

er t (43.5)

where w1 = u , and w2 is any column vector statisfying

[A − rI] w2 = w1 . (43.6)

And if the algebraic multiplicity of r is greater than two, then you can easily extend the computations

done in section 43.3 to show that a third solution is given by

x3(t) =
[

t2w1 + 2tw2 + w3
]

er t (43.7)

where w3 is any column vector satisfying

[A − rI] w3 = w2 (43.8)

(see exercise 43.12). And once you’ve done that (and noted that xk(0) = wk ensures the linear

independence of the set of xk’s ), the road to generating a linearly independent set of m solutions to

x′ = Ax should be clear, at least when r has algebraic multiplicity m and geometric multiplicity

one. Traveling that road is left to the interested reader.

But we can at least do a simple example using the above formulas.

!◮Example 43.5: Consider the system x′ = Ax where

A =







4 3 2

0 4 1

0 0 4







It is easily verified that

det(A − rI) = (4 − r)3 .

So this matrix has one eigenvalue r = 4 , and this eigenvalue has algebraic multiplicity three. It

is also easily seen that all eigenvectors are constant multiples of

u =





1

0

0



 .

So the geometric multiplicity of r = 4 is one. From this and our last lemma it follows that we

have a linearly independent set
{

w1, w2, w3
}

with

w1 = u =





1

0

0



 ,
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and with w2 and w3 being any vectors satisfying

[A − 4I]w2 = w1 and [A − 4I]w3 = w2 .

Letting w2 = [α, β, γ ]T , we see that [A − 4I]w2 = w1 is simply





0 3 2

0 0 1

0 0 0









α

β

γ



 =





1

0

0



 ,

yielding

α is arbitrary , β = 1

3
and γ = 0 .

Taking α = 0 for convenience, we have

w2 =









0

1

3

0









= 1

3





0

1

0



 .

Now consider [A − 4I]w3 = w2 . Letting w3 = [α, β, γ ]T , this becomes





0 3 2

0 0 1

0 0 0









α

β

γ



 = 1

3





0

1

0



 ,

which reduces to the easily solved system

3β + 2γ = 0 and γ = 1

3
.

From this, it immediately follows that

α is arbitrary , β = −2

9
and γ = 1

3
.

Again, we might as well take α = 0 , giving us

w3 =









0

− 2

9

1

3









= 1

9





0

−2

3





Applying the formulas given in set (43.4) for the corresponding solutions to the system

x′ = Ax , we have

x1(t) = w1er t =





1

0

0



 e4t ,

x2(t) =
[

tw1 + w2
]

er t =



t





1

0

0



 + 1

3





0

1

0







 e4t = 1

3





3t

1

0



 e4t

and

x3(t) =
[

t2w1 + 2tw2 + w3
]

er t
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=



t2





1

0

0



 + 2t · 1

3





0

1

0



+ 1

9





0

−2

3







 e4t = 1

9





t2

6t − 2

3



 e4t .

So, a general solution to our system x′ = Ax is

x(t) = c1x1(t) + c2x2(t) + c3x3(t)

= c1





1

0

0



 e4t + c2

3





3t

1

0



 e4t + c3

9





t2

6t − 2

3



 e4t

=



C1





1

0

0



 + C2





3t

1

0



 + C3





t2

6t − 2

3







 e4t .

When the Geometric Multiplicity Is Greater Than One

If the geometric multiplicity of an eigenvalue is two or more, then we must account for the fact that

the corresponding “basic set” of eigenvectors contains two or more eigenvectors. This complicates

things a bit, especially since the eigenvectors first found might not be quite the ones generating the

other generalized eigenvectors. You can see that in the following generalization of lemma 43.6:

Theorem 43.8

Assume r is an eigenvalue for some N × N matrix A , and let m and µ be, respectively, the

algebraic and geometric multiplicities of r . Then N ≥ m ≥ µ ≥ 1 , and there is a unique collection

of µ integers {γ1, γ2, . . . γµ} , along with corresponding linearly independent sets of vectors

Wr,k =
{

wk,1, wk,2, . . . , wk,γk

}

for k = 1, 2, . . . , µ

such that:

1. γ1 + γ2 + · · · + γµ = m .

2. The set {w1,1, w2,1, . . . , wµ,1} is a linearly independent set of eigenvectors for A corre-

sponding to eigenvalue r .

3. The set of all wk, j ’s is linearly independent.

4. For k = 1, 2, . . . , µ :

(a) If γk > 1 , then

[A − rI]wk, j = wk, j−1 for j = 2, . . . , γk .

(b) There is no v such that [A − rI]v = wk,γk .

While the above theorem assures us that the collection of γk ’s is unique for each eigenvalue r

of A , it does not assure us that the corresponding sets of wk, j ’s are unique. In fact, they are not.

For convenience, let us refer to any set of vectors Wr as a complete set of generalized eigenvectors

for an N ×N matrix A corresponding to eigenvalue r if and only if Wr can be given as

Wr =
{

wk,1, wk,2, . . . , wk,γk : k = 1, 2, . . . , µ
}

where:
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1. The value µ is the geometric multiplicity of eigenvalue r .

2. The set {w1,1, w2,1, . . . , wµ,1} is a linearly independent set of eigenvectors for A corre-

sponding to eigenvalue r .

3. For k = 1, 2, . . . , µ :

(a) If [A − rI]v = wk,1 has no solution, then γk = 1 . Otherwise γk > 1 .

(b) If γk > 1 , then

[A − rI]wk, j = wk, j−1 for j = 2, . . . , γk .

(c) There is no v such that [A − rI]v = wk,γk .

In practice, a complete set of generalized eigenvectors corresponding to an eigenvalue r can be

found starting with the eigenvectors originally found, and requiring that the wk, j ’s satisfy the three

conditions above (with the last being used to find the γk’s ). The previous theorem assures us that

such sets exist. The one below, generalizing lemma 43.7, assures us that any process of generating

complete sets of generalized functions will generate all the generalized eigenvectors needed for our

purposes.

Theorem 43.9

Let {r1, r2, . . . , rJ } be the set of all distinct eigenvalues for an N × N matrix A , and, for j =
1, 2, . . . , J , let

W j = a complete set of generalized eigenvectors corresponding to r j .

Then:

1. Each W j is a linearly independent set of m j vectors with m j being the algebraic multiplicity

of r j .

2. The set of all the vectors in all these W j ’s is a linearly independent set of N vectors.

These two theorems can either be developed using lemmas 43.6 and 43.7, or developed inde-

pendently, and the lemmas viewed as corollaries of the theorems. Alternatively, all the lemmas and

theorems in this section can be viewed as corollaries of a theorem we will discuss (but not prove)

later (theorem 44.8 on page 44–21). In any case, you either must trust the author on these theorems,

or take a suitable course on linear algebra.

When the situation is as described in the two theorems, then each set of wk, j ’s described in

theorem 43.8,
{

wk,1, wk,2, . . . , wk,γk

}

,

generates a corresponding linearly independent set of solutions to x′ = Ax ,

{

xk,1, xk,2, . . . , xk,γk

}

,

following the scheme just discussed for the case where the geometric multiplicity is one,

xk,1(t) = wk,1er t ,

xk,2(t) =
[

twk,1 + wk,2
]

er t ,

xk,3(t) =
[

t2wk,1 + 2twk,2 + wk,3
]

er t ,
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...

One major difference, however, is that you do not know the initial eigenvector wk,1 . All you know

is that it must be some linear combination of the µ eigenvectors u1 , . . . and uµ originally found

corresponding to the eigenvalue being used. So finding a suitable linear combination

wk,1 = a1u1 + a2u2 + · · · + aµuµ

is part of solving

[A − rI]wk,2 = wk,1 for each k .

In addition, you do not initially know the γk ’s . So you just have to iteratively solve for the wk, j ’s

until you reach the point where

[A − rI]wk, j = wk, j−1

has no solution wk, j . You then know γk = j − 1 for that k and j .

!◮Example 43.6: Consider the system x′ = Ax where

A =







4 1 0

0 4 0

0 1 4






.

It is easily verified that

det(A − rI) = (4 − r)3 .

So this matrix has one eigenvalue r = 4 , and this eigenvalue has algebraic multiplicity three. It

is also easily seen that all eigenvectors are linear combinations of the two eigenvectors

u1 =





1

0

0



 and u2 =





0

0

1



 .

So the geometric multiplicity of r = 4 is two. From this and our last lemma it follows that we

have a linearly independent set
{

w1,1, w2,1, w2,2
}

with w1,1 and w2,1 being eigenvectors of A , and with

[A − 4I] w2,2 = w2,1 .

We also know the corresponding fundamental set of solutions to x′ = Ax is {x1,1, x2,1, x2,2}
where

x1,1(t) = w1,1e4t , x2,1(t) = w2,1e4t and x2,2(t) =
[

tw2,1 + w2,2
]

e4t .

Now, consider the equation

[A − 4I] w2,2 = w2,1 .

Since w2,1 must be an eigenvector, it must be a linear combination of the two eigenvectors already

obtained; that is,

w2,1 = σu1 + τu2 = σ







1

0

0






+ τ







0

0

1






=







σ

0

τ






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for some, yet unknown, pair of constants σ and τ . Letting w2,2 = [α, β, γ ]T , we now have

[A − 4I] w2,2 = w2,1

→֒






0 1 0

0 0 0

0 1 0













α

β

γ






=







σ

0

τ

→֒






β

0

β






=







σ

0

τ

Consequently, α , β , γ , σ and τ can be any values satisfying β = σ = τ 6= 0 . In particular,

taking σ = 1 and α = γ = 0 gives us

w2,1 =





σ

0

τ



 =





1

0

1



 = u1 + u2 and w2,2 =





α

β

γ



 =





0

1

0



 .

For w1,1 we can take any linear combination of u1 and u2 such that {w1,1, w2,1, w2,2} is

linearly independent. An obvious choice is

w1,1 = u1 − u2 =





1

0

−1



 .

Finally, then, we can write out the general solution to x′ = Ax as

x(t) = c1x1,1(t) + c2x2,1(t) + c2x2,2(t)

where

x1,1(t) = w1,1e4t =





1

0

−1



 e4t , x2,1(t) = w2,1e4t =





1

0

1



 e4t

and

x2,2(t) =
[

tw2,1 + w2,2
]

e4t =



t





1

0

1



 +





0

1

0







 e4t =





t

1

t



 e4t .

That is,

x(t) =



c1





1

0

−1



 + c2





1

0

1



 + c3





t

1

t







 e4t .

Finally, we should note that the eigenvalue in question may be complex, r = λ + iω . If A is

real (as we’ve been assuming), then all of the above still holds, and, following the discussion at the

start of this chapter, we can find a ‘complete’ set of real-valued solutions to x′ = Ax corresponding

to r and r∗ by taking the real and imaginary parts of the complex-valued solutions generated by

the procedures just discussed.
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43.6 Appendix for Sections 43.1 and 43.2

In this section, we will verify two claims made in sections 43.1 and 43.2; namely,

1. The claim of the linear independence of of the real and imaginary parts of a complex eigen-

vector made in lemma 43.1 on page 43–2.

2. The claim made on page 43–7 that the trajectory of xR is an ellipse about the origin.

Linear Independence of Two Vectors

Here is the claim and the proof:

Lemma 43.10

Let (r, u) be an eigenpair for a real N ×N matrix A , and assume r is not real. Then the real and

imaginary parts of u form a linearly independent set.

PROOF: Let λ and ω be, respectively, the real and imaginary parts of r , and let a and b be the

real and imaginary parts of u , so that,

u = a + ib and u∗ = a − ib ,

and

r − r∗ = (λ + iω) − (λ − iω) = 2iω .

Since we are assuming r is not real, we must have

r − r∗ 6= 0 . (43.5)

For the moment, suppose {a, b} is not linearly independent. This would mean that either b = 0

or that a is a constant multiple of b , a = γ b . If b = 0 , then

u = a = u∗

On the other hand, if a = γ b , then

u = a + ib = (γ + i)b and u∗ = a − ib = (γ − i)b

Since eigenvectors are automatically nonzero, we know that u , u∗ and γ ± i are nonzero. Hence,

we would have

u = γ + i

γ − i
u∗ .

Either way, if {a, b} is not linearly independent, then u must be a constant nonzero multiple of u∗ ,

and, thus, must be an eigenvector corresponding to r∗ as well as r . But then,

(r − r∗)u = ru − r∗u = Au − Au = 0 ,

which, since u 6= 0 , tells us that

r − r∗ = 0 ,

contrary to inequality (43.5), which followed immediately from the basic assumption that r is not

real. So it is not possible to have both that

“ r is not real.” and “ {a, b} is not linearly independent.” .

If r is not real, then it cannot be true that {a, b} is not linearly independent; that is, if r is not real,

{a, b} must be linearly independent .
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Ellipticity of Trajectories

On page 43–7, it was claimed that the trajectory of

xR(t) = a cos(ωt) − b sin(ωt)

is an ellipse when (iω, u) is an eigenpair and a and b are the real and imaginary parts of u . Since,

as we just saw, {a, b} is linearly independent (and, hence, so is {a, −b} ), this claim will follow

immediately from the following lemma.

Lemma 43.11

Let x(t) = [x(t), y(t)]T be given by

x(t) = v cos(ωt) + w sin(ωt)

where ω is a nonzero real number and {v, w} is a linearly independent pair of vectors whose

components are real numbers. Then the path traced out by (x(t), y(t)) on the Cartesian plane as t

varies is an ellipse centered at the origin.

Our approach to verifying this lemma will be to verify that the x and y components of x(t)

satisfy an equation for such an ellipse. So let us start with little review (and possibly an extension)

of what you know about equations for ellipses.

Coordinate Equations for Ellipses

Recall the canonical equation for an ellipse centered at the origin and with its axes parallel to the

coordinate axes is
x2

α2
+ y2

β2
= 1

where α and β are nonzero real numbers. With the same assumptions on α and β ,

x2

α2
− y2

β2
= 1 and − x2

α2
+ y2

β2
= 1

are equations for symmetric pairs of hyperbolas about the origin, and the graph of

− x2

α2
− y2

β2
= 1

is empty (i.e., contains no points) since no (x, y) can satisfy this equation. Since these are the only

possibilities, we have

Lemma 43.12

Let a and c be real numbers, and assume the polynomial equation

ax2 + cy2 = 1

has a nonempty graph. Then:

1. If ac > 0 , the graph is an ellipse centered at the origin.

2. If ac < 0 , the graph is a pair of hyperbolas.
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X
Y

x

y
X-axis

Y -axis

x-axis

y-axis

θ

Figure 43.5: An XY -coordinate system obtained by rotating the xy-coordinate system by an

angle θ .

Now assume we have a nonempty graph of a polynomial equation of the form

Ax2 + Bxy + Cy2 = 1 (43.6)

where A , B and C are real numbers. To deal with this, we invoke a new XY -coordinate system

obtained by rotating the original xy-coordinate system by an angle θ as indicated in figure 43.5. If

you check, you will find that the (x, y) and (X, Y ) coordinates of any single point are related by

[

x

y

]

=
[

cos(θ) − sin(θ)

sin(θ) cos(θ)

] [

X

Y

]

. (43.7)

Using this, we can rewrite our polynomial equation (equation (43.6)) in terms of X and Y , obtaining

aX2 + bXY + cY 2 = 1 (43.8)

where a , b and c are formulas involving cos(θ) and sin(θ) . Now, the clever choice for θ is the

one that makes b = 0 , thus giving

aX2 + cY 2 = 1 (43.9)

as the polynomial equation of our graph in terms of the XY -coordinate system. As an exercise

(exercise 43.1, following the next theorem), you can show that this choice is possible, and that by

this choice

ac = AC − 1

4
B2

This and lemma 43.12 then yields:

Lemma 43.13

Let A , B and C be real numbers, and assume the polynomial equation

Ax2 + Bxy + Cy2 = 1

has a nonempty graph. Then:

1. If AC − 1

4
B2 > 0 , the graph is an ellipse centered at the origin.

2. If AC − 1

4
B2 < 0 , the graph is a pair of hyperbolas.
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?◮Exercise 43.1 a: Find the formulas for A , B and C when using the change of variables given

by equation (43.7) to convert equation (43.6) to equation (43.8).

b: Show that equation (43.6) reduces to equation (43.9) under the change of variables given by

equation (43.7) if

θ =







1

2
Arctan

(

B

A − C

)

if A 6= C
π

4
if A = C

.

c: Assume that θ is as above, and verify that AC − 1

4
B2 = ac .

Verifying Lemma 43.11

Now consider

x(t) = v cos(ωt) + w sin(ωt)

assuming ω is some nonzero real number, and

v =
[

v1

v2

]

and w =
[

w1

w2

]

.

is a linearly independent pair of vectors whose components are real numbers. Rewriting the above

formula for x in component form, we see that

[

x(t)

y(t)

]

=
[

v1

v2

]

cos(ωt) +
[

w1

w2

]

sin(ωt) =
[

v1 cos(ωt) + w1 sin(ωt)

v2 cos(ωt) + w2 sin(ωt)

]

.

That is, (x, y) is the point on the trajectory given by x(t) if and only if

[

x

y

]

= M

[

cos(ωt)

sin(ωt)

]

where M =
[

v1 w1

v2 w2

]

. (43.10)

Since the two columns of M are the column vectors v and w , and {v, w} is linearly independent,

we know (from linear algebra) that

δ = det(M) = v1w2 − w1v2 6= 0 .

This tells us M is invertible. The inverse of M is easily found, and using it, we can then invert

relation (43.10), obtaining

[

cos(ωt)

sin(ωt)

]

= 1

δ

[

w2 −w1

−v2 v1

] [

x

y

]

= 1

δ

[

w2x − w1 y

−v2x + v1 y

]

.

From this and our favorite trigonometric identity, we have

1 = cos2(ωt) + sin2(ωt) = 1

δ2
(w2x − w1 y)2 + 1

δ2
(−v2x + v1 y)2 ,

which, after a little algebra, simplifies to

Ax2 + Bxy + Cy2 = 1
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with

A = (w2)2 + (v2)2

δ2
, B = −2

w1w2 + v1v2

δ2
and C = (w1)2 + (v1)2

δ2
.

From theorem 43.13 we know this trajectory is an ellipse centered at the origin if AC − B2
/4 > 0 .

Remarkably, when you carry out the details of computation, you get

AC − 1

4
B2 = 1

δ4

[(

w2
2 + v2

2

) (

w2
1 + v2

1

)

− (w1w2 + v1v2)
2
]

= · · · = 1 > 0 .

So, yes, the trajectory is an ellipse centered at the origin, and lemma 43.11 is confirmed.

?◮Exercise 43.2: Fill in the details of the computations in the above proof.

Additional Exercises

43.3. Find a general solution, in terms of real-valued functions only, for each of the following

systems:

a.

[

x ′

y′

]

=
[

0 4

−4 0

] [

x

y

]

b.

[

x ′

y′

]

=
[

0 −2

8 0

] [

x

y

]

c.

[

x ′

y′

]

=
[

2 −4

5 −2

] [

x

y

]

d.

[

x ′

y′

]

=
[

3 2

−2 3

] [

x

y

]

e.

[

x ′

y′

]

=
[

1 −2

5 3

] [

x

y

]

f.







x ′

y′

z′






=







−2 3 0

−3 −2 0

0 0 −1













x

y

z







g.







x ′

y′

z′






=







4 0 1

0 0 −2

0 8 0













x

y

z






h.







x ′

y′

z′






=







3 2 0

2 3 2

0 −4 3













x

y

z







i.











x1
′

x2
′

x3
′

x4
′











=











0 2 0 0

−2 0 15 0

0 −8 0 16

0 0 4 0





















x1

x2

x3

x4











j.







x ′

y′

z′






=







0 1 0

0 0 1

1 0 0













x

y

z







43.4. For each of the following systems:

i Determine whether the critical point is a center or a spiral point, and describe its

stability.

ii Sketch (by hand) a phase portrait.

a.

[

x ′

y′

]

=
[

0 2

−2 0

] [

x

y

]

b.

[

x ′

y′

]

=
[

0 −2

2 0

] [

x

y

]
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X

Y

x x

x
xx′

x′
x′

x′

Figure 43.6: The x and x′ vectors for various points on an elliptic trajectory.

c.

[

x ′

y′

]

=
[

0 4

−1 0

] [

x

y

]

d.

[

x ′

y′

]

=
[

3 5

−5 −3

] [

x

y

]

e.

[

x ′

y′

]

=
[

3 −6

6 3

] [

x

y

]

f.

[

x ′

y′

]

=
[

−3 −2

5 −1

] [

x

y

]

g.

[

x ′

y′

]

=
[

−1 −10

8 −1

] [

x

y

]

h.

[

x ′

y′

]

=
[

5 −6

3 −2

] [

x

y

]

43.5. Let

A =
[

a b

c d

]

where a , b , c and d are fixed real numbers. Show that the eigenvalues of A are purely

imaginary (and, hence, the system x′ = Ax has elliptic trajectories) if and only if

d = −a and a2 + bc < 0 .

Further show that, if the above holds, then the eigenvalues of A are ±i
√

bc + a2 .

43.6. Let x = x(t) be a nonequilibrium solution to a 2×2 constant matrix system x′ = Ax

having elliptic trajectories, and consider the dot product x′ · x . Observe that the vectors x

and x′ are perpendicular (and, hence, x′ · x = 0 ) if and only if x is pointing along one

the axes of the elliptic trajectory of x(t) (see figure 43.6). Using this observation with the

fact that x′ = Ax :

a. Show that the two axes for the system’s elliptic trajectories are the coordinate axes if the

diagonal elements of A are zero.

b. Find the slopes of the straight lines y = mx containing the axes of the elliptic trajectories

for each of the following systems:

i.

[

x ′

y′

]

=
[

3 5

−5 −3

] [

x

y

]

ii.

[

x ′

y′

]

=
[

−3 2

−10 3

] [

x

y

]

iii.

[

x ′

y′

]

=
[

2 −5

2 −2

] [

x

y

]

iv.

[

x ′

y′

]

=
[

1 1

−2 −1

] [

x

y

]

43.7. Find a general solution for each of the following systems:

a.

[

x ′

y′

]

=
[

1 1

0 1

] [

x

y

]

b.

[

x ′

y′

]

=
[

−12 4

−1 −8

] [

x

y

]

c.

[

x ′

y′

]

=
[

−10 1

−1 −8

] [

x

y

]

d.

[

x ′

y′

]

=
[

6 −4

9 −6

] [

x

y

]
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e.

[

x ′

y′

]

=
[

2 −6

6 −10

] [

x

y

]

f.

[

x ′

y′

]

=
[

4 3

−3 −2

] [

x

y

]

g.

[

x ′

y′

]

= 1

4

[

12 −5

20 −8

] [

x

y

]

h.

[

x ′

y′

]

=
[

4 −4

1 0

] [

x

y

]

43.8. For each of the following systems:

i Describe the stability of the equilibrium solution.

ii Sketch (by hand) a phase portrait.

a.

[

x ′

y′

]

=
[

−2 −10

0 −2

] [

x

y

]

b.

[

x ′

y′

]

=
[

2 10

0 2

] [

x

y

]

c.

[

x ′

y′

]

=
[

2 −10

0 2

] [

x

y

]

d.

[

x ′

y′

]

=
[

2 −4

0 2

] [

x

y

]

e.

[

x ′

y′

]

=

[

1 − 3
2

3
2

−2

]

[

x

y

]

f.

[

x ′

y′

]

=
[

1 −8

2 9

] [

x

y

]

g.

[

x ′

y′

]

=
[

−5 9

−1 1

] [

x

y

]

h.

[

x ′

y′

]

=
[

2 −1

1 0

] [

x

y

]

43.9. Find a general solution for each of the following systems:

a.







x ′

y′

z′






=







4 0 1

0 0 2

0 8 0













x

y

z






b.







x ′

y′

z′






=







−3 1 −1

0 −3 3

0 0 −3













x

y

z







c.







x ′

y′

z′






=







1 0 −1

3 2 −3

1 0 3













x

y

z






d.







x ′

y′

z′






=







5 0 −5

0 0 −3

5 0 −5













x

y

z







e.







x ′

y′

z′






=







1 −1 0

4 5 0

0 1 3













x

y

z






f.







x ′

y′

z′






=







−1 0 2

0 −1 3

0 0 −1













x

y

z







g.







x ′

y′

z′






=







1 0 −1

3 2 3

1 0 3













x

y

z






h.







x ′

y′

z′






=







1 1 0

−4 5 0

2 −1 3













x

y

z







43.10. The main goal of this exercise is to verify lemma 43.4 on page 43–14.

a. Assume A is any N × N matrix, and let B = A − γ I for some scalar γ . Show that

(r, u) is an eigenpair for A if and only if (ρ, u) is an eigenpair for B with r = ρ + γ .

b. For the rest of this exercise, assume A is a 2×2 constant matrix, and set

B = A − rI

where r is an eigenvalue for A with corresponding eigenvector u = [u1, u2]T .

i. Using the first part of this exercise set, verify that Bu = 0 .
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ii. Then, using the fact that Bu = 0 , find formulas for the components of B .

iii. Using the formulas just found for the components of B , show that there is a vector

a = [a1, a2]T such that

Bv = (u1v2 − u2v1)a for each v = [v1, v2]T .

iv. Assume that the a just found is nonzero, and, using the above, verify that it is an

eigenvector for both B and A , and determine the eigenvalue r2 for A corresponding

to eigenvector a .

v. Let (r2, a) be as just found, and suppose {u, a} is linearly independent. Show that

r2 6= r .

vi. Let (r2, a) be as just found, and suppose a = 0 . Show that there is a linearly indepen-

dent pair {u, v} where (r, v) is an eigenpair for A .

c. Let A , (r, u) and a be as above, and assume, in addition, that eigenvalue r has algebraic

multiplicity two but geometric multiplicity one. Using the above:

i. Show that a must be a nonzero constant multiple of u .

ii. Verify that there is a nonzero w satisfying

(A − rI)w = u

with w not being a constant multiple of u .

43.11. Assume r = 0 is the only eigenvalue for some 2×2 real constant matrix A . Further

assume that every eigenvector for A is a multiple of u , and recall from exercise 42.13 on

page 42–28 that every point on the straight line parallel to u through the origin is a critical

point for x′ = Ax .

a. Describe the general solution to x′ = Ax .

b. Describe the trajectories of the nonequilibrium solutions.

c. Sketch a phase portrait for each of the following systems.

i.

[

x ′

y′

]

=
[

1 −1

1 −1

] [

x

y

]

ii.

[

x ′

y′

]

=
[

2 −1

4 −2

] [

x

y

]

iii.

[

x ′

y′

]

=
[

0 0

−2 0

] [

x

y

]

iv.

[

x ′

y′

]

=
[

3 9

−1 −3

] [

x

y

]

43.12. Let (r, u) be an eigenpair for an N ×N matrix A . Assume r has geometric multiplicity

one but algebraic multiplicity three or greater. We know that two solutions to x′ = Ax are

given by

x1(t) = uer t and x2(t) =
[

tu + w1
]

er t

where w1 is any vector satisfying

[A − rI]w1 = u .
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a. Set

x3(t) =
[

t2u + αtw1 + w2
]

er t

and derive the fact that x3 is a solution to x′ = Ax if

α = 2 and [A − rI] w2 = w1 .

b. Assume the algebraic multiplicity of r is at least four, and derive the conditions for α ,

β and w3 so that

x4(t) =
[

t3u + αt2w1 + βtw2 + w3
]

er t

is a solution to x′ = Ax .
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They have

not been properly proofread! Errors are likely!

3a. c1

[

− sin(4t)
cos(4t)

]

+ c2

[

cos(4t)
sin(4t)

]

3b. c1

[

cos(4t)
2 sin(4t)

]

+ c2

[

sin(4t)
−2 cos(4t)

]

3c. c1

[

2 cos(4t)
cos(4t)+2 sin(4t)

]

+ c2

[

2 sin(4t)
−2cos(4t)+sin(4t)

]

3d. c1

[

sin(2t)
cos(2t)

]

e3t + c2

[

− cos(2t)
sin(2t)

]

e3t

3e. c1

[

2 cos(3t)
3 sin(3t)−cos(3t)

]

e2t + c2

[

2 sin(3t)
−3 cos(3t)−sin(3t)

]

e2t

3f. c1

[

cos(3t)
− sin(3t)

0

]

e−2t + c2

[

sin(3t)
cos(3t)

0

]

e−2t + c3

[

0
0
1

]

e−t

3g. c1

[

1
0
0

]

e4t + c2

[

− cos(4t)
2 cos(4t)−2 sin(4t)
4 cos(4t)+4 sin(4t)

]

+ c3

[

− sin(4t)
2 cos(4t)+2 sin(4t)

−4 cos(4t)+4 sin(4t)

]

3h. c1

[

1
0

−1

]

e3t + c2

[

− cos(2t)
sin(2t)

2 cos(2t)

]

e3t + c3

[

sin(2t)
cos(2t)

−2 sin(2t)

]

e3t

3i. c1

[

−15
15
−4
8

]

e−2t + c2

[

15
15
4
8

]

e2t + c3

[

sin(8t)
4 cos(8t)
−2 sin(8t)

cos(8t)

]

+ c4

[− cos(8t)
4 sin(8t)
2 cos(8t)
sin(8t)

]

3j. c1

[

1
1
1

]

et + c2

[

2 cos(
√

3t/2)

− cos(
√

3t/2)−
√

3 sin(
√

3t/2)

− cos(
√

3t/2)+
√

3 sin(
√

3t/2)

]

e−t/2 + c3

[

2 sin(
√

3t/2)

− sin(
√

3t/2)+
√

3 cos(
√

3t/2)

− sin(
√

3t/2)−
√

3 cos(
√

3t/2)

]

e−t/2

4a. A stable center.
X

Y

4b. A stable center. X

Y
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4c. A stable center. X

Y

4d. A stable center. X

Y

4e. An unstable spiral point. X

Y

4f. An asymptotically stable spiral point. X

Y

4g. An asymptotically stable spiral point. X

Y
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4h. An unstable spiral point. X

Y

6b i. m = ±1

6b ii. m = 3, − 1

3

6b iii. m = −2,
1

2

6b iv. m = (−1 ±
√

5)/2

7a.
(

c1

[

1
0

]

+ c2

[

t
1

])

et

7b.
(

c1

[

2
1

]

+ c2

[

2t−1
t

])

e−10t

7c.
(

c1

[

1
1

]

+ c2

[

t
t+1

])

e−9t

7d. c1

[

2
3

]

+ c2

[

2t+1
3t+1

]

7e.
(

c1

[

1
1

]

+ c2

[

6t+1
6t

])

e−4t

7f.
(

c1

[

1
−1

]

+ c2

[

3t+1
−3t

])

et

7g.
(

c1

[

1
2

]

+ c2

[

5t+2
10t

])

et/2

7h.
(

c1

[

2
1

]

+ c2

[

2t+1
t

])

e2t

8a. Asymtotically stable. X

Y

8b. Unstable. X

Y

8c. Unstable. X

Y
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8d. Unstable. X

Y

8e. Asymptotically stable. X

Y

8f. Unstable. X

Y

8g. Asymptotically stable.
X

Y

8h. Unstable. X

Y

9a. c1

[

1
4

−8

]

e−4t +
(

c2

[

1
0
0

]

+ c3

[

t
1
2

])

e4t

9b.

(

c1

[

1
0
0

]

+ c2

[

t
1
0

]

+ c3

[

3t2

6t+1
1

])

e−3t
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9c.

(

c1

[

0
1
0

]

+ c2

[

1
6t
−1

]

+ c3

[

4t−1

12t2

−4t−1

])

e2t

9d. c1

[

0
1
0

]

+ c2

[

1
−3t

1

]

+ c3

[

10t+1

−15t2

10t

]

9e.

(

c1

[

0
0
1

]

+ c2

[−1
2
2t

]

+ c3

[

1−4t
8t

4t2

])

e3t

9f.
(

c1

[

1
0
0

]

+ c2

[

2t
0
1

]

+ c3

[

0
1
0

])

e−t

9g.
(

c1

[−1
3
1

]

+ c2

[

1−t
3t
t

]

+ c3

[−1
0
1

])

e2t

9h.
(

c1

[

1
2

−1

]

+ c2

[

t
2t+1
−t

]

+ c3

[

0
0
1

])

e3t

10b iv. r2 = r + u1a2 − u2a1

11a. x(t) = c1u + c2[tu + w] where w is any solution to Aw = u .

11b. They are the straight lines parallel to u that do not pass through the origin.

11c i. c1

[

1
1

]

+ c2

[

t+1
t

]

X

Y

11c ii. X

Y

11c iii. X

Y
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11c iv. X

Y
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