ERRATA
in
Ordinary Differential Equations:
An Introduction to the Fundamentals
2016 Edition
(July 27, 2016)

Notes:
Text from the book is printed using this font (Times Roman)
Comments are printed using this font (Univers Condensed)
Text to be added is underlined and in italics like this
Text to be deleted has been “struck out” like this
(And, of course, beware of possible typos in this list of typos.)

Chapter 2 (Integration, ...), page 30, 12th line from the bottom: Now, recall what is \(t \) means ...

Chapter 20 (Method of Undetermined Coefficients), page 389, third displayed equation from the bottom: Replace
\[
y_p^{\prime\prime} = 3Ae^{3x} + 3Axe^{3x} + \cdots \quad \text{with} \quad y_p^{\prime\prime} = 3Ae^{3x} + 3Ae^{3x} + \cdots .
\]

Chapter 23 (The Laplace Transform), page 447, right side of the last displayed equation: Replace
\[
\cdots = 0 + \frac{1}{s}e^{ax} \quad \text{with} \quad \cdots = 0 + \frac{1}{s}e^{-ax} .
\]

Chapter 25 (The Inverse Laplace Transform), page 486, right side of the displayed equation in Theorem 25.2: Replace
\[
= c_1 \mathcal{L}^{-1}[F_1(s)] + c_1 \mathcal{L}[F_2(s)] + \cdots + c_1 \mathcal{L}[F_n(s)]
\]
with
\[
= c_1 \mathcal{L}^{-1}[F_1(s)] + c_1 \mathcal{L}^{-1}[F_2(s)] + \cdots + c_1 \mathcal{L}^{-1}[F_n(s)] .
\]
Chapter 27 (Piecewise-Defined Functions ...), page 515, line 7: (This is the function sketched in figure 27.1b on page 509–510.)

Chapter 36 (Critical Points, Direction Fields, ...), page 775, system (36.1), second displayed equation: Replace
\[y' = f(t, x, y) \quad \text{with} \quad y' = g(t, x, y) \]

Chapter 36 (Critical Points, Direction Fields, ...), page 775, system (36.2), second displayed equation: Replace
\[y' = f(x, y) \quad \text{with} \quad y' = g(x, y) \]

Chapter 36 (Critical Points, Direction Fields, ...), page 776, system (36.3), second displayed equation: Replace
\[y' = f(t, x, y) \quad \text{with} \quad y' = g(t, x, y) \]

Answers to Selected Exercises, page 818, Chapter 2, exercise 7d. Replace \(\pi \) with \(\sqrt{\pi} \).
Answers to Selected Exercises, page 818, Chapter 5, exercise 2j. The answer should be
\[y(x) = \left[\frac{2}{3} x^{3/2} + c \right] e^{-\sqrt{x}} \]