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The Liapunov Method for Determining
Stability (DRAFT)

44.1 The Liapunov Method, Naively Developed

In the last chapter, we discussed describing trajectories of a 2×2 autonomous system x′ = F(x)

as level curves for some function φ(x, y) over some open region R of the XY –plane. This was

especially useful when those level curves where clearly closed loops about a critical point in R for

our system of differential equations.

That approach can be expanded to a more general method — the “Liapunov method” — for

determining the stability of critical points of systems of differential equations. In this section, we will

develop the basic ideas behind the method in a relatively naive manner using pictures and ignoring

some technical details in our definitions and results. Those details will be added in the next section.

Trajectories and Regions

We will be discussing whether given trajectories on the XY –plane “enter” or “leave” particular

regions of the plane.1 So we had better state, as precisely as practical, just what these terms mean.

Oddly enough, we’ll base our definitions on what is usually meant by these terms in everyday

language.

A region R is simply a set of points in the plane bounded by some curve or collection of curves

C (the boundary of R ). The bounding curve(s) will be assumed to be “reasonably smooth”, and

the region R will usually be assumed to be “open”, that is, no point in the boundary C will be

considered a point in R . Note that C divides the XY –plane into three disjoint sets of points: the

curve or set of curves C itself, the open region R , and the open region of all points in neither C

nor R . We will, unimaginatively, call this last region the (open) region outside of R .

Now suppose we have some open region R with boundary C , along with a trajectory given by

(x(t), y(t)) where x(t) and y(t) are smooth functions of t , and assume this trajectory intersects

C at some point (x1, y1) . If we say that this trajectory enters R at (x1, y1) (or anything similar),

then we mean there are real numbers t0 , t1 and t2 with t0 < t1 < t2 such that

(x(t1), y(t1)) = (x1, y1) ,

(x(t), y(t)) is in the open region outside R when t0 < t < t1

and

(x(t), y(t)) is in R when t1 < t < t2 .

1 We are using the “ XY –plane” for convenience, but, of course, the symbols being used, “X” and “Y ”, are irrelevant and

can be replaced by any other reasonable pair of symbols.
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And if we say that this trajectory leaves R at (x1, y1) (or anything similar), then we mean

there there are real numbers t0 , t1 and t2 with t0 < t1 < t2 such that

(x(t1), y(t1)) = (x1, y1) ,

(x(t), y(t)) is in R when t0 < t < t1

and

(x(t), y(t)) is in the open region outside R when t1 < t < t2 .

And if we simply say that a given trajectory “enters” or “leaves” some open region, then we

mean that it enters or leaves at some point on the boundary of that region.

Thus, when we say that a trajectory “enters” or “leaves” an open region R bounded by C , then

the trajectory actually crosses the boundary and goes from one region bounded by C to the other

region bounded by C . It does not ‘linger’ on the boundary, nor does it bend so that it touches the

boundary tangentially, without actually going from one region bounded by C into a different region

bounded by C .

By the way, it is possible to define a trajectory so that it retraces part of its path and both enters

and leaves a given region at the same point. However, since we are only interested in the trajectories

of regular autonomous systems of differential equations (which follow well-defined direction fields),

this will not be an issue for us.

“Potential Liapunov Functions”, Trajectories and Autonomous
Systems

“Potential Liapunov Functions”

For the rest of this section (x0, y0) will be some point of interest in the XY –plane, and Ψ (x, y)

will be a reasonably smooth function of two variables with the following two properties:

1. The minimum value z0 of Ψ (x, y) occurs at (x0, y0) and only at (x0, y0) . (Hence z0 =

Ψ (x0, y0) < Ψ (x, y) whenever (x, y) 6= (x0, y0) .)

2. The surface S given by z = Ψ (x, y) is roughly “bowl shaped” with (x0, y0, z0) being the

bottom , and with the level curves of Ψ being closed loops about (x0, y0) , as indicated in

figure 44.1a.

This function, Ψ , is a “potential Liapunov function” (a more complete definition will be given in

the next section). Observe that an immediate consequence of the minimum value z0 of Ψ (x, y)

occuring only at (x0, y0) is that

Ψ (x, y) = z0 ⇐⇒ (x, y) = (x0, y0) . (44.1)

“Potential Liapunov Functions” and Trajectories

Now suppose we have a reasonably smooth trajectory in the XY –plane given by (x(t), y(t)) as

t varies. Corresponding to this is the trajectory on the surface S traced out by (x(t), y(t), z(t))

where

z(t) = Ψ (x(t), y(t)) ,

as illustrated in figure 44.1b. Let t1 be some value for t , and set

(x1, y1, z1) = (x(t1), y(t1), z(t1)) .
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Figure 44.1: (a) A portion of the surface S given by z = Ψ (x, y) where Ψ is a “potential

Liapuov function” about (x0, y0) (with z0 = 0 ), and (b) a portion of a trajectory

(in the XY –plane) and the corresponding trajectory on S .

Note that, since z0 is the minimum value of Ψ , we must have z1 ≥ z0 . For now, let’s assume that,

in fact, z1 > z0 .

To continue setting things up: Let C1 be the level curve (in the XY –plane) given by

Ψ (x, y) = z1 ,

and let R1 be the open region in the XY –plane enclosed by C1 . Observe (see figure 44.1b) that

we’ve set things up so that C1 is a simple loop containing (x1, y1) about the point (x0, y0) , and

that R1 is an open region with nonzero area containing (x0, y0) .

Now look at what z′(t) , the derivative of z(t) , tells us when t = t1 :

1. If z′(t1) < 0 , then z(t) is a decreasing function at t = t1 . Thus, as t is increasing past

t1 , the point (x(t), y(t), z(t)) is moving downwards on S to the part of S below z = z1 .

This, in turn, means that, as t increases past t1 , the point (x(t), y(t)) on the XY –plane is

crossing the level curve C1 and entering R1 .

2. If z′(t1) > 0 , then z(t) is an increasing function at t = t1 . Consequently, as t is increasing

past t1 , the point (x(t), y(t), z(t)) is moving upwards on S to the part of S above z = z1 .

Thus, in turn, as t increases past t1 , the point (x(t), y(t)) on the XY –plane is crossing the

level curve C1 and leaving R1 .

Very little can be said if all we know about z′ is that z′(t1) = 0 . The point (x(t), y(t)) may

then remain on C1 , move into R1 or move to the region outside of R1 depending on whether z′(t)

is zero, negative or positive for t > t1 .

But, of course, if we happen to know that the values of z′(t) are consistently zero, negative or

positive for all t ≥ t1 , then we can say much more:

3. If z′(t) = 0 for t ≥ t1 , then z(t) is constant on [t1, ∞) . Hence

Ψ (x(t), y(t)) = z(t) = z(t1) = z1 whenever t ≥ t1 ,

telling us that (x(t), y(t)) remains on the level curve C1 as t continues to increase.

4. If z′(t) < 0 whenever t ≥ t1 , then z(t) = (x(t), y(t)) is a decreasing function of t on

(t1, ∞) . So, as t increases, the point (x(t), y(t), z(t)) moves down the surface S towards
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the bottom where (x, y) = (x0, y0) . Consequently, on the XY –plane, the point (x(t), y(t))

is continually crossing level curves bounding smaller and smaller regions about (x0, y0) as

t increases (see figure 44.1b).

In fact, it should be clear that,

if lim
t→∞

z(t) = z0 then lim
t→∞

(x(t), y(t)) = (x0, y0) .

5. If z′(t) > 0 for t ≥ t1 , then z(t) is an increasing function of t on (t1, ∞) , and, as

t → ∞ , the point (x(t), y(t), z(t)) moves up the surface S . Consequently, (x(t), y(t)) is

continually moving outside of larger and larger regions about (x0, y0) .

Now consider the special case where z1 is z0 , the minimum possible value of z = Ψ (x, y) .

Since this minimum only occurs at (x0, y0) , this is equivalent to having

(x(t1), y(t1)) = (x0, y0) .

If we also know that, for some positive value ǫ ,

z′(t) ≤ 0 whenever t1 ≤ t < t1 + ǫ ,

then we know z(t) either decreases or remains the same as t increases from t1 to t1 + ǫ . But since

z(t) is already at its possible minimum value when t = t1 , it cannot further decrease, and, so, we

must have

Ψ (x(t), y(t)) = z(t) = z0 whenever t1 ≤ t < t1 + ǫ ,

which, as noted in implication (44.1), means that

(x(t), y(t)) = (x0, y0) whenever t1 ≤ t < t1 + ǫ .

Differentiating then gives us

(x ′(t), y′(t)) = (0, 0) whenever t1 ≤ t < t1 + ǫ ,

a fact that will lead to a significant result in the next section.

By very similar arguments, we can also show that, if z(t1) = z0 and, for some ǫ > 0 ,

z′(t) ≥ 0 whenever t1 − ǫ < t ≤ t1 ,

then

(x(t), y(t)) = (x0, y0) and (x ′(t), y′(t)) = (0, 0) whenever t1 − ǫ < t ≤ t1 .

In fact, our interest in the next section will only be in the derivatives of x(t) and y(t) at t = t1 .

So let us summarize what we’ve just derived as:

6. Suppose (x(t1), y(t2)) = (x0, y0) , and that there is an ǫ > 0 such that either

z′(t) ≤ 0 whenever t1 ≤ t < t1 + ǫ

or

z′(t) ≥ 0 whenever t1 − ǫ < t ≤ t1 .

Then (x ′(t1), y′(t1)) = (0, 0) .
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“Potential Liapunov Functions” and Autonomous Systems

Our interest is in the case where the components of (x(t), y(t)) are the components of a solution to

a 2×2 regular autonomous system of differential equations

dx

dt
= f (x, y)

dy

dt
= g(x, y)

. (44.2)

In practice, we rarely have explicit solutions to our system, and cannot actually find a formula in

terms of t for the above z(t) = Ψ (x(t), y(t)) . But look at what we can compute using the chain

rule for multi-variable functions along with the fact that x(t) and y(t) satisfy the above system:

z′(t) =
d

dt
[Ψ (x(t), y(t))]

=
∂Ψ

∂x

dx

dt
+

∂Ψ

∂y

dy

dt

= Ψx (x, y) f (x, y) + Ψy(x, y)g(x, y)

(44.3)

where, in the last line,

x = x(t) and y = y(t) .

For brevity, let DΨ be the function on the XY –plane given by the above derivative,

DΨ (x, y) = Ψx (x, y) f (x, y) + Ψy(x, y)g(x, y) .

This allows us to rewrite equation (44.3) as

z′(t) =
d

dt
Ψ (x(t), y(t)) = DΨ (x, y) (44.4)

where

x = x(t) and y = y(t) .

In other words, DΨ (x, y) gives the “ z′(t) ” of any trajectory of our system passing through a given

point (x, y) at the time t it passes through that point. The important thing is that we only need to

know the position, not the time t nor the functions x(t) and y(t) .

The relation between DΨ (x, y) and z′ given in equation (44.4) allows us to expand the

observations regarding all trajectories with points on that level curve C1 of Ψ and the region R1

enclosed, as follows:

1. If DΨ (x, y) < 0 at every point (x, y) on C1 , then every trajectory for system (44.2) that

intersects C1 is entering the enclosed region R1 at that intersection point. From this, it

clearly follows that, if [x(t), y(t)]T is any solution to system (44.2), and

(x(t1), y(t1)) is in C1 for some t1 ,

then

(x(t), y(t)) is in R1 whenever t > t1 .

2. If DΨ (x, y) > 0 at every point (x, y) on C1 , then every trajectory for system (44.2) that

intersects with C1 is leaving the enclosed region R1 at that intersection point. Consequently,

it also follows that, if [x(t), y(t)]T is any solution to system (44.2), and

(x(t1), y(t2)) is in C1 for some t1 ,

then

(x(t), y(t)) is in the open region outside of R1 whenever t > t1 .
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The relation between DΨ (x, y) and z′ given in equation (44.4) also allows us to expand the

other observations made in the previous section regarding all trajectories through points in the region

R1 . Let us start by looking at the point (x0, y0) , assuming that either

DΨ (x, y) ≤ 0 for all (x, y) in R1

or

DΨ (x, y) ≥ 0 for all (x, y) in R1 .

More precisely, let’s assume either of the above inequalities, and let [x(t), y(t)]T be a solution to

system (44.2) satisfying

(x(t0), y(t0)) = (x0, y0) for some t0 .

Then, depending on which of the two inequalities hold, there clearly must be an ǫ > 0 such that

either

z′(t) = DΨ (x(t), y(t)) ≤ 0 whenever t0 ≤ t < t0 + ǫ

or

z′(t) = DΨ (x(t), y(t)) ≥ 0 whenever t0 − ǫ ≤ t < t0 .

Either way, the last observation made in the previous section, immediately tells us that

(x ′(t), y′(t)) = (0, 0) for t = t0 .

And since [x(t), y(t)]T is a solution to system (44.2), we then must then have

f (x0, y0) = 0

g(x0, y0) = 0
. (44.5)

In other words, (x0, y0) must be a critical point for system (44.2).

Could there be other critical points in R1 ? Well, if (x̂, ŷ) is any critical point for our system,

then
f (x̂, ŷ) = 0

g(x̂, ŷ) = 0
, (44.6)

and, thus,

DΨ (x̂, ŷ) = Ψx (x̂, ŷ) f (x̂, ŷ) + Ψy(x̂, ŷ)g(x̂, ŷ) = 0 .

So there might be other critical points, but only if there are other points at which DΨ is zero

(however, the vanishing of DΨ does not guarantee a point being critical).

Keeping in mind the above observations regarding critical points, and how we expanded the

observations regarding trajectories through the level curve C1 , let’s finish expanding on the obser-

vations made in the previous section:

3. If DΨ (x, y) = 0 at every point (x, y) in R1 , then (x0, y0) is a critical point for system

(44.2), and every trajectory for the system through any point in R1 must lie on the level

curve of Ψ about (x0, y0) through that point.

Moreover, if (x0, y0) is the only critical point in R1 , then no trajectory through any

other point in R1 can consist of a single point. With a little thought, this should lead you

to strongly suspect that all the other trajectories trace out complete level curves enclosing

(x0, y0) , which would mean that (x0, y0) is, in fact, a center for system (44.2).
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4. If DΨ (x, y) < 0 at every point (x, y) in R1 other than (x0, y0) , then, once a trajectory

enters R1 it continues moving “deeper into” R1 . More precisely, if [x(t), y(t)]T is a

solution to system (44.2), and (x(τ ), y(τ )) is in R1 for some τ , then (x(t), y(t)) is

continually crossing level curves bounding smaller and smaller regions about (x0, y0) as t

increases beyond τ .

This, then, rather strongly suggests that critical point (x0, y0) is at least a stable critical

point. It may even be suspected that it must be an asymptotically stable critical point.

5. On the other hand, if DΨ (x, y) > 0 at every point (x, y) in R1 other than (x0, y0) , then

each trajectory through any point in R1 (other than (x0, y0) is continually crossing level

curves bounding larger and larger regions about (x0, y0) as t increases τ .

And this strongly suggests that critical point (x0, y0) is an unstable critical point.

44.2 The Liapunov Theory: Rigorous Definitions and
Results

Basic Definitions and Results

We will say that Ψ is a potential Liapunov function on a region R about a point (x0, y0) if and

only if the following all hold:

1. R is an open region of the XY –plane containing the point (x0, y0) .

2. Ψ is a continuous function of two variables on R whose first partial derivatives exist and

are continuous on R .

3. The minimum value of Ψ on R occurs at (x0, y0) and only at (x0, y0) . That is, if (x, y)

is any point in R other than (x0, y0) , then

Ψ (x0, y0) < Ψ (x, y) .

On occasion, we may not need to specify the region R and may say something like

Ψ is a potential Liapunov function about (x0, y0)

when we mean Ψ is a potential Liapunov function on R about (x0, y0) for some region R .

Likewise,

Ψ is a potential Liapunov function on R

will mean Ψ is a potential Liapunov function on R about (x0, y0) for some point (x0, y0) .

The region R need not be the entire domain of Ψ . In fact, we will often want to restrict the

choice of R so that all the following additional conditions hold:

1. The boundary of R

(a) consists of a single simple closed loop, and

(b) is a level curve for Ψ .

2. At no point in R other than (x0, y0) do we have both ∂Ψ/∂x and ∂Ψ/∂y being zero.
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The first condition simply means that we have no “holes” in our region of interest, while the last

ensures that no plane tangent to the surface S given by

z = Ψ (x, y) for (x, y) ∈ R

is horizontal except for the tangent plane at the lowest point of the surface, where (x, y) = (x0, y0) .

Together, these conditions ensure that the surface S is “bowl shaped” as in the earlier discussions,

with the the upper edge of that “bowl-shaped” surface being parallel to the XY –plane.

For want of better terminology, let us say that if these additional conditions are satisfied, then

R is a basin region for our potential Liapunov function (about (x0, y0) ). An important point is that

eachpotential Liapunov function must have a corresponding basin region.

Lemma 44.1

Let Ψ be a potential Liapunov function about a point (x0, y0) . Then there is a basin region R for

Ψ about (x0, y0) . Moreover, each point in R other than (x0, y0) is on the boundary of smaller

basin region for Ψ about (x0, y0) .

The proof of this lemma will be discussed later.

Now given both a potential Liapunov function Ψ over a region R , and a 2×2 regular au-

tonomous system x′ = F(x) , we will define the corresponding differential function DΨ by

DΨ (x, y) = Ψx (x, y) f (x, y) + Ψy(x, y)g(x, y) for each (x, y) in R

where
dx

dt
= f (x, y)

dy

dt
= g(x, y)

is the system x′ = F(x) .

Do remember that, in the previous section, we saw that if z(t) = Ψ (x(t), y(t)) for any particular

solution [x(t), y(t)]T to our system, then

z′(t) = DΨ (x(t), y(t)) ,

and from the sign of this we could gain insight on the behavior of the trajectory passing through

any point in R . In particular, from our discussion there, it should be clear that we now have the

following lemma:

Lemma 44.2

Assume Ψ is a potential Liapunov function on an open region R , and x′ = F(x) is a 2×2 regular

autonomous system. Let C1 be any level curve for Ψ in R bounding a basin region for Ψ , and let

[x(t), y(t)]T be any solution to x′ = F(x) such that (x(t1), y(t1)) is on C1 for some t1 . Then:

1. If

DΨ (x, y) < 0 for every (x, y) in C1 ,

then (x(t), y(t)) is in the open region enclosed by C1 whenever t > t1 .

2. If

DΨ (x, y) > 0 for every (x, y) in C1 ,

then (x(t), y(t)) is in the open region outside of C1 whenever t > t1 .
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Liapunov Functions and Stability

Traditionally, a Liapunov function about a point (x0, y0) for a 2×2 regular autonomous system

x′ = F(x) is any potential Liapunov function on some open region R about (x0, y0) such that

DΨ (x, y) ≤ 0 for each (x, y) in R .

We will follow tradition.

Given the observations made near the end of section 44.1, the next theorem should seem almost

obvious:

Theorem 44.3 (Liapunov’s basic test for stability)

Let x′ = F(x) be a 2×2 regular autonomous system of differential equations, and let (x0, y0) be

some point in the plane. If there is a Liapunov function about this point for this system, then (x0, y0)

is a stable critical point for x′ = F(x) .

Our observations also strongly suggested that the following refinements can be made to this

basic test.

Theorem 44.4 (Liapunov’s test for asymptotic stability)

Let x′ = F(x) be a 2×2 regular autonomous system of differential equations, and let (x0, y0) be

some point in the plane. Suppose, further, that there is a Liapunov function Ψ for this system about

(x0, y0) , and that, for every (x, y) in some open region R containing (x0, y0) ,

DΨ (x, y) < 0 whenever (x, y) 6= (x0, y0) .

Then (x0, y0) is an asymptotically stable critical point for x′ = F(x) . Moreover, if R is a basin

region for Ψ , then R is contained in the basin of attraction for (x0, y0) .

Theorem 44.5 (Liapunov’s test for centers)

Let x′ = F(x) be a 2×2 regular autonomous system of differential equations, and assume there is

a Liapunov function Ψ for this system about some point (x0, y0) . Suppose further that, for some

open region R containing (x0, y0) and no other critical points for x′ = F(x) ,

DΨ (x, y) = 0 for each (x, y) in R .

Then (x0, y0) is a center for x′ = F(x) . Moreover, if R is a basin region for Ψ , then the trajectories

through the points in R all form closed loops about (x0, y0) .

You probably also expect a test for instability, say:

Theorem 44.6 (Liapunov’s test for instability)

Let x′ = F(x) be a 2×2 regular autonomous system of differential equations, and let (x0, y0) be

some point in the plane. Suppose, further, that there is a potential Liapunov function Ψ for this

system about (x0, y0) , and that, for every (x, y) in some open region R containing (x0, y0) ,

DΨ (x, y) > 0 whenever (x, y) 6= (x0, y0) .

Then (x0, y0) is an unstable critical point for x′ = F(x) .

The above theorems are all true, and the validity of each pretty well follows from our previous

discussions. There are a few issues that should concern the more thoughtful reader. We’ll address

those issues in an appendix.
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The Liapunov (direct) method for identifying whether a given critical point is stable or asymp-

totically stable consists of first finding a suitable Liapunov function and applying the suitable theorem

above. In theory, it can be applied when the methods discussed in previous chapters are difficult or

impossible to apply, and it is easily extended to deal with critical points of more general N × N

nonlinear systems. That’s what makes the method so useful. Moreover, it can help identify the basin

of attraction for an asymptotically stable critical point.

By the way, you might have observed that it was not necessary to know that (x0, y0) was a

critical point of the system to apply the Liapunov method. In theory, the fact that (x0, y0) is a critical

point of the system follows from the fact that you can find a Liapunov function about this point for

the system. In practice, it is silly to try to construct such a function about an arbitrary point, hoping

that the resulting function is also a potential Liapunov function for the system. So, in practice, we

normally first find the critical points of the system (which, you should recall, is a relatively easy

task), and then see if we can construct a (potential) Liapunov function for the system about each

critical point — provided, of course, we’ve at least verified that the point is not a saddle point for

the system.

44.3 Finding Liapunov Functions

The biggest difficulty in using the Liapunov method is finding a Liapunov function for a given system

and critical point. Unfortunately, there is no single approach to finding these functions.

In this section, we will discuss one fairly general approach to finding Liapunov functions that

is often worth trying, at least when the system of differential equations is relatively simple. We will

then describe three types of systems of differential equations for which Liapunov functions can be

found by relatively straightforward means.

The General Approach

One basic approach to finding a Liapunov function Ψ for a given system x′ = F(x) and critical

point (x0, y0) is to write out a general possible formula for Ψ (x, y) and then ‘tweek it’ until the

formula yields a valid Liapunov function for the system. One possible choice for Ψ (x, y) is

Ψ (x, y) = A(x − x0)
2 + B(y − y0)

2

where A and B are positive values ‘to be determined’. You can easily verify that this function is at

least a potential Liapunov function about (x0, y0) on the entire XY –plane. If we can then determine

specific positive values for A and B so that

DΨ (x, y) ≤ 0

for every (x, y) in some open region containing (x0, y0) , then this Ψ on R is a Liapunov function

for our system and critical point, and we can apply our stability theorems.

!◮Example 44.1: Consider the regular autonomous system

dx

dt
= 2y − x3

dy

dt
= −3x − 2y3 − x2 y

. (44.7)
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Clearly, (0, 0) is a critical point for this system, and you can easily verify that this point is a

center for the corresponding linearized system. Whether (0, 0) is also a center for our nonlinear

system remains to be determined. To do so, let’s see if a function of the form

Ψ (x, y) = A(x − 0)2 + B(x − 0)2 = Ax2 + By2

can be a corresponding Liapunov function. As noted above, this will be a Liapunov function if

A and B are positive, and DΨ (x, y) ≤ 0 in some region R about (0, 0) . Now,

DΨ (x, y) = Ψx (x, y) f (x, y) + Ψy(x, y)g(x, y)

= 2Ax
(

2y − x3
)

+ 2By
(

−3x − 2y3 − x2 y
)

= (4A − 6B)xy −
(

2Ax4 + 4By4 + 2Bx2y2
)

.

Clearly, the last expression would be “ ≤ 0 ” if A and B are chosen to be any positive values

such that the above xy term vanishes. So let us choose A and B accordingly, say,

A = 3 and B = 2 .

Then

Ψ (x, y) = 3x2 + 2y2

and

DΨ (x, y) = (4 · 3 − 6 · 2)xy −
(

2 · 3x4 + 4 · 2y4 + 2 · 2x2 y2
)

= −
(

6x4 + 8y4 + 4x2 y2
)

.

Clearly, for every (x, y) in the XY –plane,

DΨ (x, y) ≤ 0

with

DΨ (x, y) < 0 whenever (x, y) 6= (0, 0) .

Thus,

1. This Ψ is a Liapunov function (on R = the XY –plane ) for our system and critical point.

2. Liapunov’s test for asymptotic stability (Theorem 44.4) applies, telling us that (0, 0) is

an asymptotically stable critical point for our system (and not a center as we may have

suspected).

To help determine the basin of attraction, first observe that all the level curves of Ψ are

given by the ellipses

3x2 + 2y2 = C

with C being any positive value. And if RC (with C > 0 ) is the region enclosed by the ellipse

3x2 + 2y2 = C

then RC contains (0, 0) and is contained in R . Hence, theorem 44.4 also tells us that RC is

contained in the basin of attraction for the critical point (0, 0) . Now let (x1, y1) be any point in

the XY –plane. Given this point, we can certainly choose C large enough so that RC contains

the point, which means this arbitrarily chosen point is in the basin of attraction of the critical point

(0, 0) . This means that every point in the plane is in the basin of attraction. In other words, the

entire XY –plane is the basin of attraction for the critical point (0, 0) . That is, the trajectory of

our system through an given point on the plane will converge to (0, 0) .
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Total-Energy Liapunov Functions

In many applications arising from physics, there is a “total energy”, E , associated with the physical

process being modeled by some autonomous system of differential equations, x′ = F(x) . It often

turns out that the formula for the total energy of the system can be used as the formula for a Liapunov

function. Just what that “total energy function” is depends on the physics governing the application.

For example, when the application just concerns the motion through space of some object of mass

m , then physics tells us that

E = EP + EK

where EP and EK are, respectively, the kinetic energy of the object and the potential energy of the

object due to the forces causing the motion. The kinetic energy of an object of mass m moving with

a velocity of v is always

EK =
1

2
mv2 .

The potential energy depends on the forces involved. If the only force causing the motion is that of

Earth’s gravity near the surface of the Earth, then we can take the potential energy to be

EP = mgh ,

where g is the standard acceleration due to gravity (9.8 meters/second2) and h is the vertical position

of the object above some fixed height (say, the lowest point of the object path of motion). This gives

the kinetic energy of a object of mass m after falling a distance of h after having been dropped (if

there were no air resistance).

!◮Example 44.2: Let’s consider, for one last time, the undamped pendulum system illustrated in

figure 43.3 on page 43–10. The system of differential equations for this pendulum is still

dθ

dt
= ω

dω

dt
= −γ sin(θ)

where γ = g/L .

At any given time, the velocity of the mass is the angular velocity ω multiplied by the length

of the pendulum’s rod, L . So the kinetic energy of the moving pendulum is

EK =
1

2
mv2 =

1

2
m(ωL)2 .

By simple trigonometry, we can see that the height h of the pendulum above its lowest point is

given by

h = L − L cos(θ) = L[1 − sin(θ)]

Thus, the potential energy is given by

EP = mgh = mgL[1 − cos(θ)] .

This means that the total energy in the motion of the pendulum at any given time is given by

E = mgh = mgL[1 − cos(θ)] +
1

2
m(ωL)2 .

So let Ψ (θ, ω) be given by this formula for energy,

Ψ (θ, ω) = mgh = mgL[1 − cos(θ)] +
1

2
m(ωL)2 .
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It is easily verified that Ψ (θ, ω) has a minimum value at the critical point (θ, ω) = (0, 0) .

Computing DΨ we see that, for every θ and ω ,

DΨ (θ, ω) = Ψθ (θ, ω) f (θ, ω) + Ψω(θ, ω)g(θ, ω)

= (mgL[sin(θ)]) (ω) +
(

mL2ω
)

(−γ sin(θ))

= (mgL[sin(θ)]) (ω) +
(

mL2ω
) (

−
g

L
sin(θ)

)

= 0 .

Since DΨ = 0 everywhere, we can apply Liapunov’s test for centers (theorem 44.5 on page

44–9) and conclude that the critical point (0, 0) is a center for our system.

Gradient Systems

To Be Written

Hamiltonian Systems

To Be Written

44.4 Appendix – Technical Issues

To Be Written

Additional Exercises

To Be Written


