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Boundary-Value Problems

We are now switching back to problems involving solitary differential equations. For the most

part, these differential equations will be linear and second order. And, for various reasons, we

will switch back to using x instead of t as the variable. One thing that will distinguish these

problems from others we’ve explored is that, instead of having “initial conditions” placed on

the solution and some of its derivatives at a single point, we will have constraints placed on

the solution and/or some of its derivatives at two distinct points. These constraints are called

“boundary values” because, typically, the two points make up the boundary of the interval of

interest.

Truth is, we will be able to say just about all there is to say about mere boundary-value

problems in a rather short space. And we won’t do much to motivate our study of boundary-

value problems. They do arise in applications, but these applications are not quickly developed.

In fact, the main applications are boundary-value problems that arise in the study of partial

differential equations, and those boundary-value problems also involve “eigenvalues”. We will

start studying this rather important class of boundary-value problems in the next chapter using

material developed in this chapter.

46.1 Basic Second-Order Boundary-Value Problems

A second-order boundary-value problem consists of a second-order differential equation along

with constraints on the solution y = y(x) at two values of x . For example,

y′′ + y = 0 with y(0) = 0 and y (π/6) = 4

is a fairly simple boundary value problem. So is

y′′ + y = 0 with y′(0) = 0 and y′ (π/6) = 4 .

Alternatively, we might not actually require particular values at the two points, just that they are

related in some way. For example:

y′′ + y = 0 with y(0) = y (π/6) and y′(0) = y′ (π/6) .

The constraints given at the two points are called either boundary values or boundary con-

ditions. Typically, the interval of interest for the differential equation is the interval between the
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two points at which boundary conditions are specified. Hence, these two points are often referred

to as boundary points.

None-too-surprisingly, a solution to a given boundary-value problem is a function that satis-

fies the given differential equation over the interval of interest, along with as the given boundary

conditions. We will discuss just what are “appropriate” boundary conditions in the next section.

For now, let us solve a few boundary-value problems involving the differential equation

y′′ + y = 0 .

Recall that the general solution to this equation is

y(x) = c1 cos(x) + c2 sin(x) .

So the only work in solving these boundary-value problems is in determining the values of c1 and

c2 so that the above formula (with the determined values of c1 and c2 ) satisfies the boundary

conditions.

!◮Example 46.1: We start with

y′′ + y = 0 with y(0) = 0 and y (π/6) = 4 .

Combining the general solution of the differential equation with the boundary conditions yields

the system

0 = y(0) = c1 cos(0) + c2 sin(0) = c1 · 1 + c2 · 0

4 = y(1) = c1 cos
(

π

6

)

+ c2 sin
(

π

6

)

= c1 ·
√

3

2
+ c2 · 1

2

.

From the first equation we get

c1 = 0 .

Thus, the second equation reduces to

4 = 0 ·
√

3

2
+ c2 · 1

2
= 1

2
c2 .

Hence,

c1 = 0 and c2 = 8 ,

and the one and only solution to our boundary-value problem is

y(x) = 8 sin(x) .

!◮Example 46.2: Now consider

y′′ + y = 0 with y(0) = 0 and y(π) = 4 .

Again, we combine the general solution of the differential equation with the boundary condi-

tions, this time obtaining the system

0 = y(0) = c1 cos(0) + c2 sin(0) = c1 · 1 + c2 · 0 = c1

4 = y(π) = c1 cos(π) + c2 sin(π) = c1 · (−1) + c2 · 0 = −c1

.
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So, the single constant c1 must satisfy both

c1 = 0 and c1 = −4 .

But this is impossible. Hence, a solution to the given boundary-value problem is not possible.

There is no solution.

!◮Example 46.3: Finally, for now, consider

y′′ + y = 0 with y(0) = 0 and y(π) = 0 .

Once again, we combine the general solution of the differential equation with the boundary

conditions, this time obtaining

0 = y(0) = c1 cos(0) + c2 sin(0) = c1 · 1 + c2 · 0 = c1

0 = y(π) = c1 cos(π) + c2 sin(π) = c1 · (−1) + c2 · 0 = −c1

.

Both of these equations reduce to

c1 = 0 ,

which specifies c1 , but says nothing about c2 , leaving us with

y(x) = c2 sin(x)

where c2 can be any constant. And, indeed, you can easily verify that this satisfies the

differential equation and the given boundary conditions for our problem.

Consequently, this boundary-value problem does not merely have a solution — it has

infinitely many solutions, one for each different value of c2 .

Glance back over the three examples above. The given boundary-value problems differed

only in relatively small details, and yet we ended up with three radically different results: a single

solution in the first example, no solution in the second, and infinitely many solutions in the last.

This is a feature of boundary-value problems — any given boundary-value problem may have

either one solution, no solutions or many solutions.

46.2 Classes of Boundary Conditions

While many different types of “boundary conditions” can be invented, there are only three that

arise in practice often enough to be of interest to us. They are the “regular”, “boundedness” and

“periodic” boundary conditions:

Regular boundary conditions: A boundary condition at x = x0 is said to be regular if and

only if it can be described by

αy(x0) + βy′(x0) = γ

where α , β and γ are constants, with α or β (or both) being nonzero.

In practice, either β or α is often zero, in which case the above reduces to

y(x0) = γ or y′(x0) = γ .

And in many cases, γ = 0 .
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Boundedness boundary conditions: This is where we simply say that a solution does not

“blow up” at a point x = x0 . To be precise,

lim
x→x0

|y(x)| < ∞ .

In practice, we usually write this as

|y(x0)| < ∞ .

Such conditions are typically the appropriate conditions when x0 is a singular point for

the differential equation. (Forgot what a singular point is? Glance back at page 31–28.)

Periodic boundary conditions: A periodic boundary condition states that the solution or its

derivatives at two distinct points x = x0 and x = x1 are equal; that is,

y(x0) = y(x1) or y′(x0) = y′(x1) .

In practice, these two periodic boundary conditions often occur together.

These conditions naturally occur when the variable x is actually the angular component

θ in a polar coordinate system.

The first two types of boundary condtions, regular and boundedness, are often said to be

separated boundary conditions, since they can be imposed separately at each boundary point.

!◮Example 46.4: Here is a boundary-value problem with one boundedness condition (at

x = 0 and one regular boundary condition:

x2 y′′ + xy′ − 4y = 0 with |y(0)| < ∞ and y′(1) = 6 .

The differential equation is an Euler equation. Plugging y = xr , we get

x2
[

r(r − 1)xr−2
]

+ x
[

r xr−1
]

− 4xr = 0

→֒ r 2 − 4 = 0

→֒ r = ±2 .

So the general solution to the differential equation is

y(x) = c1x2 + c2x−2 .

Using this with the boundedness condition at x = 0 , we get

∞ > lim
x→0

|y(x)|

= lim
x→0

∣

∣c1x2 + c2x−2
∣

∣

= lim
x→0

∣

∣0 + c2x−2
∣

∣ =

{

+∞ if c2 6= 0

0 if c2 = 0
.
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Hence, the boundedness condition forces c2 to be zero. That leaves us with

y(x) = c1x2 .

which then means that y′(x) = c12x . So, to satisfy the boundary condition at x = 1 , we

must have

6 = y′(1) = c12 · 1 = 2c1 .

Thus, c1 = 3 , and the single solution to our boundary-value problem is

y(x) = 3x2 .

46.3 Homogeneous and Nonhomogeneous
Boundary-Value Problems

Recall that a linear, second-order differential equation

ay′′ + by′ + cy = g

is said to be homogeneous if and only if g = 0 . Way back when we first studied them, we saw

that the solutions to these equations satisfied the “principle of superposition”. That is, if

y1(x) and y2(x)

are both solutions to the same homogeneous differential equation, then so is any linear combi-

nation

y(x) = c1 y1(x) + c2 y2(x) .

In much of our future work, it will be important that a similar “principle of superposition”

holds for solutions to our boundary-value problems. For convenience, let us refer to a given

boundary condition as being homogeneous if and only if the following condition holds:

Whenever y1(x) and y2(x) satisfies that boundary condition, so does any linear

combination

y(x) = c1 y1(x) + c2 y2(x) .

Let us go back through our types of boundary conditions, and see which are homogeneous:

Regular boundary conditions: Suppose both y1(x) and y2(x) satisfy

αyk(x0) + β yk
′(x0) = γ

for some constants α , β and γ , with α or β (or both) being nonzero. Does

y(x) = c1 y1(x) + c2 y2(x)

also satisfy

αy(x0) + βy′(x0) = γ (46.1)



Chapter & Page: 46–6 Boundary-Value Problems

for every choice of constants c1 and c2 ? Well,

αy(x0) + βy′(x0) = α [c1 y1(x0) + c2 y2(x0)] + β
[

c1 y1
′(x0) + c2 y2

′(x0)
]

= c1

[

αy1(x0) + β y1
′(x0)

]

+ c2

[

αy2(x0) + β y2
′(x0)

]

= c1γ + c2γ

= (c1 + c2)γ .

Hence, we have equation (46.1) holding if and only if

(c1 + c2)γ = γ

for every pair of constants c1 and c2 , which is possible only if γ = 0 .

In summary, a boundary condition at x0 is a homogeneous regular boundary condition if

and only if it can be described by

αy(x0) + βy′(x0) = 0

where α and β are constants, with at least one being nonzero.

Boundedness boundary conditions: Suppose both y1(x) and y2(x) satisfy

|yk(x0)| < ∞ .

That is

lim
x→x0

|y1(x)| < ∞ and lim
x→x0

|y2(x)| < ∞ .

Letting

y(x) = c1 y1(x) + c2 y2(x)

we see that

lim
x→x0

|y(x)| = lim
x→x0

|c1 y1(x) + c2 y2(x)|

≤ |c1| lim
x→x0

|y1(x)| + |c2| lim
x→x0

|y2(x)| < ∞ .

So any boundedness boundary condition is automatically homogeneous.

Periodic boundary conditions: Periodic boundary conditions are also automatically homo-

geneous. You can verify it yourself (see exercise 46.2).

Let us now define a homogeneous boundary-value problem to be a boundary-value problem

consisting of a homogeneous linear differential equation along with only homogeneous boundary

conditions. Combining the superposition principle for homogeneous linear differential equations

and our definition of homogeneous boundary conditions gives us the superposition principle for

homogeneous boundary-value problems.

Theorem 46.1 (principle of superposition for homogeneous boundary-value problems)

Any linear combination of solutions to a homogeneous boundary-value problem is, itself, a

solution to that homogeneous boundary-value problem.
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Let us suppose that we have a homogeneous boundary-value problem, and that y(x) is a

nontrivial solution (i.e., y(x) is not the constant function 0 on the interval of interest). The

principle of superposition tells us that cy(x) is also a solution, no matter what value we use for

the constant c . Since we have an infinite number of possible values for this c , we have the

following corollary of the principle of superposition.

Corollary 46.2

Any homogeneous boundary-value problem has either no solutions, just the constant solution

y = 0 , or an infinite number of solutions.

Additional Exercises

46.1. Several boundary-value problems are given below. Attempt to find all solutions to

each, and state whether the problem has no solutions, one solution or infinitely many

solutions.

a. y′′ + 9y = 0 with y(0) = 0 and y
(

π

2

)

= 6

b. y′′ + 9y = 0 with y′(0) = 0 and y′
(

π

2

)

= 6

c. y′′ + 9y = 0 with y′(0) = 0 and y′
(

π

2

)

= 0

d. y′′ + 9y = 0 with y(0) = 0 and y(π) = 6

e. y′′ + 9y = 0 with y(0) = 0 and y′
(

π

2

)

= 0

f. y′′ + y = 0 with y(0) = y(π)

g. y′′ + y = 0 with y(0) = y(π) and y′(0) = y′(π)

h. y′′ + y = 0 with y(0) = y(2π) and y′(0) = y′(2π)

i. y′′ − 9y = 0 with y(0) = 0 and y(1) = 6

j. y′′ − 9y = 0 with y(0) = 0 and y(1) = 0

k. x2 y′′ − 5xy′ + 8y = 0 with y(1) = 0 and y(2) = 24

l. x2 y′′ − 2y = 0 with |y(0)| < ∞ and y′(1) = 2

m. x2 y′′ + 3xy′ = 0 with |y(0)| < ∞ and y(1) = 2

n. x2 y′′ + 3xy′ = 0 with |y(0)| < ∞ and y′(1) = 0

46.2. In these two problems, you show that the periodic boundary conditions are homogenous

boundary conditions. In each, x0 and x1 are two different points on the X–axis.

a. Assume y1(x) and y2(x) both satisfy

yk(x0) = yk(x1) .
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Show that,

y(x) = c1 y1(x) + c2 y2(x)

also satisfies

y(x0) = y(x1)

no matter what values c1 and c2 are.

b. Assume y1(x) and y2(x) both satisfy

yk
′(x0) = yk

′(x1) .

Show that,

y(x) = c1 y1(x) + c2 y2(x)

also satisfies

y′(x0) = y′(x1)

no matter what values c1 and c2 are.
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They

have not been properly proofread! Errors are likely!

1a. one solution: y(x) = −6 sin(3x)

1b. one solution: y(x) = 2 cos(3x)

1c. one solution: y(x) = 0

1d. no solution

1e. infinitely many solutions: y(x) = c sin(3x)

1f. infinitely many solutions: y(x) = c sin(x)

1g. no solution

1h. infinitely many solutions: y(x) = c1 cos(x) + c2 sin(x)

1i. one solution: y(x) = 6
[

e3x − e−3x
] [

e3x − e−3x
]−1

1j. one solution: y(x) = 0

1k. one solution: y = 2[x4 − x2]
1l. one solution: y = x2

1m. one solution: y = 2

1n. infinitely many solutions: y = c1


