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Modified Power Series Solutions and the
Basic Method of Frobenius

The partial sums of a power series solution about an ordinary point x0 of a differential equation

provide fairly accurate approximations to the equation’s solutions at any point x near x0 . This

is true even if relatively low-order partial sums are used (provided you are just interested in the

solutions at points very near x0 ). However, these power series typically converge slower and

slower as x moves away from x0 towards a singular point, with more and more terms then being

needed to obtain reasonably accurate partial sum approximations. As a result, the power series

solutions derived in the previous two chapters usually tell us very little about the solutions near

singular points. This is unfortunate because, in some applications, the behavior of the solutions

near certain singular points can be a rather important issue.

Fortunately, in many of those applications, the singular point in question is not that “bad”

a singular point, and a modification of the algebraic method discussed in the previous chapters

can be used to obtain “modified” power series solutions about these points. That is what we will

develop in this and the next two chapters.

By the way, we will only consider second-order homogeneous linear differential equations.

One can extend the discussion here to first- and higher-order equations, but the important examples

are all second-order.

33.1 Euler Equations and Their Solutions

The simplest examples of the sort of equations of interest in this chapter are those discussed back

in chapter 19, the Euler equations. Let us quickly review them and take a look at what happens

to their solutions about their singular points.

Recall that a standard second-order Euler equation is a differential equation that can be

written as

α0x2 y′′ + β0xy′ + γ0 y = 0

where α0 , β0 and γ0 are real constants with α0 6= 0 . Recall, also, that the basic method for

solving such an equation begins with attempting a solution of the form y = xr where r is a
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constant to be determined. Plugging y = xr into the differential equation, we get

α0x2
[

xr
]′′ + β0x

[

xr
]′ + γ0

[

xr
]

= 0

→֒ α0x2
[

r(r − 1)xr−2
]

+ β0x
[

r xr−1
]

+ γ0

[

xr
]

= 0

→֒ xr
[

α0r(r − 1) + β0r + γ0

]

= 0

→֒ α0r(r − 1) + β0r + γ0 = 0 .

The last equation above is the indicial equation, which we typically rewrite as

α0r 2 + (β0 − α0)r + γ0 = 0 ,

and, from which, we can easily determine the possible values of r using basic algebra.

Generalizing slightly, we have the shifted Euler equation

α0(x − x0)
2 y′′ + β0(x − x0)y′ + γ0 y = 0

where x0 , α0 , β0 and γ0 are real constants with α0 6= 0 . Notice that x0 is the one and only

singular point of this equation. (Notice, also, that a standard Euler equation is a shifted Euler

equation with x0 = 0 .)

To solve this slight generalization of a standard Euler equation, use the obvious slight

generalization of the basic method for solving a standard Euler equation: First set

y = (x − x0)
r ,

where r is a yet unknown constant. Then plug this into the differential equation, compute, and

simplify. Unsurprisingly, you end up with the corresponding indicial equation

α0r(r − 1) + β0r + γ0 = 0 ,

which you can rewrite as

α0r 2 + (β0 − α0)r + γ0 = 0 ,

and then solve for r , just as with the standard Euler equation. And, as with a standard Euler

equation, there are then only three basic possibilities regarding the roots r1 and r2 to the indicial

equation and the corresponding solutions to the Euler equations:

1. The two roots can be two different real numbers, r1 6= r2 .

In this case, the general solution to the differential equation is

y(x) = c1 y1(x) + c2 y2(x)

with, at least when x > x0 ,1

y1(x) = (x − x0)
r1 and y2(x) = (x − x0)

r2 .

1 In all of these cases, the formulas and observations also hold when x < x0 , though we may wish to replace x − x0

with |x − x0| to avoid minor issues with (x − x0)r for certain values of r (such as r = 1/2 ).
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Observe that, for j = 1 or j = 2 ,

lim
x→x+

0

∣
∣y j(x)

∣
∣ = lim

x→x0

|x − x0|r j =











0 if r j > 0

1 if r j = 0

+∞ if r j < 0

.

2. The two roots can be the same real number, r2 = r1 .

In this case, we can use reduction of order and find that the general solution to the

differential equation is (when x > x0 )

y(x) = c1 y1(x) + c2 y2(x)

with

y1(x) = (x − x0)
r1 and y2(x) = (x − x0)

r1 ln |x − x0| .

After recalling how ln |X | behaves when X ≈ 0 (with X = x − x0 ), we see that

lim
x→x+

0

|y2(x)| = lim
x→x0

∣
∣(x − x0)

r1 ln |x − x0|
∣
∣ =

{

0 if ri > 0

+∞ if ri ≤ 0
.

3. Finally, the two roots can be complex conjugates of each other

r1 = λ + iω and r2 = λ − iω with ω > 0 .

After recalling that

Xλ±iω = Xλ [cos(ω ln |X |) ± i sin(ω ln |X |)] for X > 0

(see the discussion of complex exponents in section 19.2),we find that the general solution

to the differential equation for x > x0 can be given by

y(x) = c1 y1(x) + c2 y2(x)

where y1 and y2 are the real-valued functions

y1(x) = (x − x0)
λ cos(ω ln |x − x0|)

and

y2(x) = (x − x0)
λ sin(ω ln |x − x0|) .

The behavior of these solutions as x → x0 is a bit more complicated. First observe that,

as X goes from 1 to 0 , ln |X | goes from 0 to −∞ , which means that sin(ω ln |X |)
and cos(ω ln |X |) then must oscillate infinitely many times between their maximum and

minimum values of 1 and −1 , as illustrated in figure 33.1a. So sin(ω ln |X |) and

cos(ω ln |X |) are bounded, but do not approach any single value as X → 0 . Taking into

account how Xλ behaves (and replacing X with x − x0 ), we see that

lim
x→x+

0

|yi(x)| = 0 if λ > 0 ,

and

lim
x→x+

0

|yi (x)| does not exist if λ ≤ 0 .
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(a) (b)
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Figure 33.1: Graphs of (a) sin(ω ln |X |) , and (b) Xλ sin(ω ln |X |) (with ω = 10 and

λ = 11/10 ).

Notice that the behavior of these solutions as x → x0 depends strongly on the values of r1

and r2 . Notice, also, that you can rarely arbitrarily assign the initial values y(x0) and y′(x0)

for these solutions.

!◮Example 33.1: Consider the shifted Euler equation

(x − 3)2 y′′ − 2y = 0 .

If y = (x − 3)r for any constant r , then

(x − 3)2 y′′ − 2y = 0

→֒ (x − 3)2
[

(x − 3)r
]′′ − 2

[

(x − 3)r
]

= 0

→֒ (x − 3)2r(r − 1)(x − 3)r−2 − 2(x − 3)r = 0

→֒ (x − 3)r [r(r − 1) − 2] = 0 .

Thus, for y = (x −3)r to be a solution to our differential equation, r must satisfy the indicial

equation

r(r − 1) − 2 = 0 .

After rewriting this as

r 2 − r − 2 = 0 ,

and factoring,

(r − 2)(r + 1) = 0 ,

we see that the two solutions to the indicial equation are r = 2 and r = −1 . Thus, the

general solution to our differential equation is

y = c1(x − 3)2 + c2(x − 3)−1 .

This has one term that vanishes as x → 3 and another that blows up as x → 3 . In particular,

we cannot insist that y(3) be any particular nonzero number, say, “ y(3) = 2 ”.
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!◮Example 33.2: Now consider

x2 y′′ + xy′ + y = 0 ,

which is a shifted Euler equation, but with “shift” x0 = 0 .

The indicial equation for this is

r(r − 1) + r + 1 = 0 ,

which simplifies to

r 2 + 1 = 0 .

So,

r = ±
√

−1 = ±i .

In other words, r = λ ± iω with λ = 0 and ω = 1 . Consequently, the general solution to

the differential equation in this example is given by

y = c1x0 cos(1 ln |x |) + c2x0 sin(1 ln |x |) .

which we naturally would prefer to write more simply as

y = c1 cos(ln |x |) + c2 sin(ln |x |) .

Here, neither term vanishes or blows up. Instead, as x goes from 1 to 0 , we have ln |x |
going from 0 to −∞ . This means that the sine and cosine terms here oscillate infinitely

many times as x goes from 1 to 0 , similar to the function illustrated in figure 33.1a. Again,

there is no way we can require that “ y(0) = 2 ”.

The “blowing up” or “vanishing” of solutions illustrated above is typical behavior of solutions

about the singular points of their differential equations. Sometimes it is important to know just

how the solutions to a differential equation behave near a singular point x0 . For example, if you

know a solution describes some process that does not blow up as x → x0 , then you know that

those solutions that do blow up are irrelevant to your problem (this will become very important

when we study boundary-value problems).

The tools we will develop in this chapter will yield “modified power series solutions” around

singular points for at least some differential equations. The behavior of the solutions near these

singular points can then be deduced from these modified power series. For which equations will

this analysis be appropriate? Before answering that, I must first tell you the difference between

a “regular” and an “irregular” singular point.
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33.2 Regular and Irregular Singular Points (and the
Frobenius Radius of Convergence)

Basic Terminology

Assume x0 is singular point on the real line for some given homogeneous linear second-order

differential equation

ay′′ + by′ + cy = 0 . (33.1)

We will say that x0 is a regular singular point for this differential equation if and only if that

differential equation can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0 (33.2)

where α , β and γ are ‘suitable, well-behaved’ functions about x0 with α(x0) 6= 0 . The

above form will be called a quasi-Euler form about x0 for the given differential equation, and

the shifted Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0 (33.3a)

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) . (33.3b)

will be called the associated (shifted) Euler equation (about x0 ).

Precisely what we mean above by “ ‘suitable, well-behaved’ functions about x0 ” depends,

in practice, on the coefficients of the original differential equation. In general, it means that the

functions α , β and γ in equation (33.2) are all analytic at x0 . However, if the coefficients of

the original equation (the a , b and c in equation (33.1)) are rational functions, then we will be

able to further insist that the α , β and γ in the quasi-Euler form be polynomials.

It is quite possible that our differential equation cannot be written in quasi-Euler form about

x0 . Then we will say x0 is an irregular singular point for our differential equation. Thus,

every singular point on the real line for our differential equation is classified as being regular

or irregular depending on whether the differential equation can be rewritten in quasi-Euler form

about that singular point.

While we are at it, let’s also define the Frobenious radius of analyticity about any point z0

for our differential equation: It is simply the distance between z0 and the closest singular point

zs other than z0 , provided such a point exists. If no such zs exists, then the Frobenius radius of

analyticity is ∞ . The Frobenius radius of analyticity will play almost the same role as played

by the radius of analyticity in the previous two chapters. In fact, it is the radius of analyticity if

z0 happens to be an ordinary point.

!◮Example 33.3 (Bessel Equations): Let ν be any positive real constant. Bessel’s equation

of order ν is the differential equation 2

y′′ + 1

x
y′ +

[

1 −
(

ν

x

)2
]

y = 0 .

The coefficients of this,

a(x) = 1 , b(x) = 1

x
and c(x) = 1 −

(
ν

x

)2

= x2 − ν2

x2
,

2 Bessel’s equations and their solutions often arise in two-dimensional problems involving circular objects.
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are rational functions. Multiplying through by x2 then gives us

x2 y′′ + xy′ +
[

x2 − ν2
]

y = 0 . (33.4)

Clearly, x0 = 0 is the one and only singular point for this differential equation. This, in

turn, means that the Frobenius radius of analyticity about x0 = 0 is ∞ (though the radius of

analyticity, as defined in chapter 31, is 0 since x0 = 0 is a singular point.)

Now observe that the last differential equation is

(x − 0)2α(x)y′′ + (x − 0)β(x)y′ + γ (x)y = 0 . (33.5a)

where α , β and γ are the simple polynomials

α(x) = 1 , β(x) = 1 and γ (x) = x2 − ν2 , (33.5b)

which are certainly analytic about x0 = 0 (and every other point on the complex plane).

Moreover, since

α(0) = 1 6= 0 , β(0) = 1 and γ (0) = −ν2 ,

we now have that:

1. The Bessel equation of order ν can be written in quasi-Euler form about x0 = 0 .

2. The singular point x0 = 0 is a regular singular point.

and

3. The associated Euler equation about x0 = 0 is

(x − 0)2 · 1y′′ + (x − 0) · 1y′ − ν2 y = 0 ,

which, of course, is normally written

x2 y′′ + xy′ − ν2 y = 0 .

Two quick notes before going on:

1. Often, the point of interest is x0 = 0 , in which case we will write equation (33.2) more

simply as

x2α(x)y′′ + xβ(x)y′ + γ (x)y = 0 (33.6)

with the associated Euler equation being

x2α0 y′′ + xβ0 y′ + γ0 y = 0 (33.7a)

where

α0 = α(0) , β0 = β(0) and γ0 = γ (0) . (33.7b)

2. In fact, any singular point on the complex plane can be classified as regular or irregular.

However, this won’t be particularly relevant to us. Our interest will only be in whether

given singular points on the real line are regular or not.
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Testing for Regularity

As illustrated in our last example, if the coefficients in our original differential equation are

relatively simple rational functions, then it can be relatively straightforward to show that a given

singular point x0 is or is not regular by seeing if we can or cannot rewrite the equation in quasi-

Euler form about x0 . An advantage of deriving this quasi-Euler form (if possible) is that we

will want this quasi-Euler form in solving our differential equation. However, there are possible

difficulties. If we cannot rewrite our equation in quasi-Euler form, then we may be left with the

question of whether x0 truly is an irregular singular point, or whether we just weren’t clever

enough to get the equation into quasi-Euler form. Also, if the coefficients in our original equation

are not so simple, then the process of attempting to convert it to quasi-Euler form may be quite

challenging.

A useful test for regularity is easily derived by first assuming that x0 is a regular singular

point for

a(x)y′′ + b(x)y′ + c(x)y = 0 . (33.8)

By definition, this means that this differential equation can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0 (33.9)

where α , β and γ are functions analytic at x0 with α(x0) 6= 0 . Dividing each of these two

equations by its first coefficient converts our differential equation, respectively, to the two forms

y′′ + b(x)

a(x)
y′ + c(x)

a(x)
y = 0

and

y′′ + β(x)

(x − x0)α(x)
y′ + γ (x)

(x − x0)2α(x)
y = 0 .

But these last two equations describe the same differential equation, and have the same first

coefficients. Clearly, the other coefficients must also be the same, giving us

b(x)

a(x)
= β(x)

(x − x0)α(x)
and

c(x)

a(x)
= γ (x)

(x − x0)2α(x)
.

Equivalently,

(x − x0)
b(x)

a(x)
= β(x)

α(x)
and (x − x0)

2 c(x)

a(x)
= γ (x)

α(x)
.

From this and the fact that α , β and γ are analytic at x0 with α(x0) 6= 0 we get that the two

limits

lim
x→x0

(x − x0)
b(x)

a(x)
= lim

x→x0

β(x)

α(x)
= β(x0)

α(x0)

and

lim
x→x0

(x − x0)
2 c(x)

a(x)
= lim

x→x0

γ (x)

α(x)
= γ (x0)

α(x0)

are finite.

So, x0 being a regular singular point assures us that the above limits are finite. Consequently,

if those limits are not finite, then x0 cannot be a regular singular point for our differential equation.

That gives us
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Lemma 33.1 (test for irregularity)

Assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0 .

If either of the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

is not finite, then x0 is an irregular singular point for the differential equation.

This lemma is just a test for irregularity. It can be expanded to a more complete test if we

make mild restrictions on the coefficients of the original differential equation. In particular, using

properties of polynomials and rational functions, we can verify the following:

Theorem 33.2 (testing for regular singular points (ver.1))

Assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are rational functions. Then x0 is a regular singular point for this differential

equation if and only if the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

are both finite values. Moreover, if x0 is a regular singular point for the differential equation,

then this differential equation can be written in quasi-Euler form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are polynomials with α(x0) 6= 0 .

The full proof of this (along with a similar theorem applicable when the coefficients are

merely quotients of analytic functions) is discussed in an appendix, section 33.7.

!◮Example 33.4: Consider the differential equation

y′′ + 1

x2
y′ +

[

1 − 1

x2

]

y = 0 .

Clearly, x0 = 0 is a singular point for this equation. Writing out the limits given in the above

theorem (with x0 = 0 ) yields

lim
x→0

(x − 0)
b(x)

a(x)
= lim

x→
x · x−2

1
= lim

x→0

1

x

and

lim
x→0

(x − 0)2 c(x)

a(x)
= lim

x→
x2 · 1 − x−2

1
= lim

x→0

[

x2 − 1
]

,

The first limit is certainly not finite. So our test for regularity tells us that x0 = 0 is an

irregular singular point for this differential equation.



Chapter & Page: 33–10 Modified Power Series Solutions and the Basic Method of Frobenius

!◮Example 33.5: Consider

2xy′′ − 4y′ − y = 0 .

Again, x0 = 0 is clearly the only singular point. Now,

lim
x→0

(x − 0)
b(x)

a(x)
= lim

x→0
x · −4

2x
= −2

and

lim
x→0

(x − 0)2 c(x)

a(x)
= lim

x→0
x2 · −1

2x
= 0 ,

both of which are finite. So x0 = 0 is a regular singular point for our equation, and it can be

written in quasi-Euler form about 0 . In fact, that form is obtained by simply multiplying the

original differential equation by x ,

2x2 y′′ − 4xy′ − xy = 0 .

33.3 The (Basic) Method of Frobenius
Motivation and Preliminary Notes

Let’s suppose we have a second-order differential equation with x0 as a regular singular point.

Then, as we just discussed, this differential equation can be written as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are analytic at x0 with α(x0) 6= 0 . By continuity, when x ≈ x0 , we have

α(x) ≈ α0 , β(x) ≈ β0 and γ (x) ≈ γ0

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

It should then seem reasonable that any solution y = y(x) to

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

can be approximated, at least when x ≈ x0 , by a corresponding solution to the associated shifted

Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0 .

And since some solutions to this shifted Euler equation are of the form a0(x − x0)
r where a0

is an arbitrary constant and r is a solution to the corresponding indicial equation,

α0r(r − 1) + β0r + γ0 = 0 ,

it seems reasonable to expect at least some solutions to our original differential equation to be

approximated by this a0(x − x0)
r ,

y(x) ≈ a0(x − x0)
r at least when x ≈ x0 .
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Now, this is equivalent to saying

y(x)

(x − x0)r
≈ a0 when x ≈ x0 ,

which is more precisely stated as

lim
x→x0

y(x)

(x − x0)r
= a0 . (33.10)

At this point, there are a number of ways we might ‘guess’ at solutions satisfying the last

approximation. Let us try a trick similar to one we’ve used before: Let us assume y is the known

approximate solution (x − x0)
r multiplied by some yet unknown function a(x) ,

y(x) = (x − x0)
r a(x) .

To satisfy equation (33.10), we must have

a(x0) = lim
x→x0

a(x) = lim
x→x0

y(x)

(x − x0)r
= a0 ,

telling us that a(x) is reasonably well-behaved near x0 , perhaps even analytic. Well, let’s hope

it is analytic, because that means we can express a(x) as a power series about x0 with the

arbitrary constant a0 as the constant term,

a(x) =
∞

∑

k=0

ak(x − x0)
k .

Then, with luck and skill, we might be able to use the methods developed in the previous chapters

to find the ak’s in terms of a0 .

That is the starting point for what follows: We will assume a solution of the form

y(x) = (x − x0)
r

∞
∑

k=0

ak(x − x0)
k

where r and the ak’s are constants to be determined, with a0 being arbitrary. This will yield

the “modified power series” solutions alluded to in the title of this chapter.

In the next subsection, we will describe a series of steps, generally called the (basic) method

of Frobenius, for finding such solutions. You will discover that much of it is very similar to the

algebraic method for finding power series solutions in chapter 31.

But before we start that, let me mention a few things about this method:

1. We will see that the method of Frobenius always yields at least one solution of the form

y(x) = (x − x0)
r

∞
∑

k=0

ak(x − x0)
k

where r is a solution to the appropriate indicial equation. If the indicial equation for the

corresponding Euler equation

(x − x0)
2α0 y′′ + (x − x0)β0 y′ + γ0 y = 0

has two distinct solutions, then we will see that the method often, but not always, leads

to an independent pair of such solutions.
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2. If, however, that indicial equation has only one solution r , then the fact that the corre-

sponding shifted Euler equation has a ‘second solution’ in the form

(x − x0)
r ln |x − x0|

may lead you to suspect that a ‘second solution’ to our original equation is of the form

(x − x0)
r ln |x − x0|

∞
∑

k=0

ak(x − x0)
k .

That turns out to be almost, but not quite, the case.

Just what can be done when the basic Frobenius method does not yield an independent pair of

solutions will be discussed in the next chapter.

The (Basic) Method of Frobenius

Suppose we wish to find the solutions about some regular singular point x0 to some second-order

homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

with a(x) , b(x) , and c(x) being rational functions.3 In particular, let us seek solutions to

Bessel’s equation of order 1/2 ,

y′′ + 1

x
y′ +

[

1 − 1

4x2

]

y = 0 (33.11)

near the regular singular point x0 = 0 .

As with the algebraic method for finding power series solutions, there are two preliminary

steps:

Pre-Step 1. If not already specified, choose the regular singular point x0 .

For our example, we choose x0 = 0 , which we know is the only regular

singular point from the discussion in the previous section.

Pre-Step 2. Get the differential equation into the form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0 (33.12)

where α , β and γ are polynomials, with α(x0) 6= 0 , and with no factors shared by all

three.4

3 The “Frobenius method” for the more general equations is developed in chapter 35.
4 It will actually suffice to get the differential equation into the form

Ay′′ + By′ + Cy = 0

where A , B and C are polynomials, preferably with no factors shared by all three. Using form (33.12) will

slightly simplify bookkeeping at one point, and will be convenient for discussions later.
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To get the given differential equation into the form desired, we multiply equa-

tion (33.11) by 4x2 . That gives us the differential equation

4x2 y′′ + 4xy′ + [4x2 − 1]y = 0 . (33.13)

(Yes, we could have just multiplied by x2 , but getting rid of any fractions will

simplify computation.)

Now for the basic method of Frobenius:

Step 1. (a) Assume a solution of the form

y = y(x) = (x − x0)
r

∞
∑

k=0

ak(x − x0)
k (33.14a)

with a0 being an arbitrary nonzero constant.5,6

(b) Simplify this formula for the following computations by bringing the (x − x0)
r

factor into the summation,

y = y(x) =
∞

∑

k=0

ak(x − x0)
k+r . (33.14b)

Step 2. Compute the corresponding modified power series for y′ and y′′ from the assumed

series for y by differentiating “term-by-term”.7 This time, you cannot drop the “k = 0”

term in the summations because this term is not necessarily a constant.

Since we’ve already decided x0 = 0 , we assume

y = y(x) = xr

∞
∑

k=0

ak xk =
∞

∑

k=0

ak xk+r (33.15)

with a0 6= 0 . Differentiating this term-by-term, we see that

y′ = d

dx

∞
∑

k=0

ak xk+r

=
∞

∑

k=0

d

dx

[

ak xk+r
]

=
∞

∑

k=0

ak(k + r)xk+r−1

and

y′′ = d

dx

∞
∑

k=0

ak(k + r)xk+r−1

=
∞

∑

k=0

d

dx

[

ak(k + r)xk+r−1
]

=
∞

∑

k=0

ak(k + r)(k + r − 1)xk+r−2 .

5 Insisting that a0 6= 0 will be important in determining the possible values of r .
6 This procedure is valid whether or not x − x0 is positive or negative. However, a few readers may have concerns

about (x − x0)r being imaginary if x < x0 and r is, say, 1/2 . If you are one of those readers, go ahead and

assume x > x0 for now, and later read the short discussion of solutions on intervals with x < x0 on page 33–23.
7 If you have any qualms about “term-by-term” differentiation here, see exercise 33.6 at the end of the chapter.
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Step 3. Plug these series for y , y′ , and y′′ back into the differential equation, “multiply things

out”, and divide out the (x − x0)
r to get the left side of your equation in the form of the

sum of a few power series about x0 .8,9

Combining the above series formulas for y , y′ and y′′ with our differential

equation (equation (33.13)), we get

0 = 4x2 y′′ + 4xy′ + [4x2 − 1]y

= 4x2

∞
∑

k=0

ak(k + r)(k + r − 1)xk+r−2 + 4x

∞
∑

k=0

ak(k + r)xk+r−1

+ [4x2 − 1]
∞

∑

k=0

ak xk+r

= 4x2

∞
∑

k=0

ak(k + r)(k + r − 1)xk+r−2 + 4x

∞
∑

k=0

ak(k + r)xk+r−1

+ 4x2

∞
∑

k=0

ak xk+r − 1

∞
∑

k=0

ak xk+r

=
∞

∑

k=0

ak4(k + r)(k + r − 1)xk+r +
∞

∑

k=0

ak4(k + r)xk+r

+
∞

∑

k=0

ak4xk+2+r +
∞

∑

k=0

ak(−1)xk+r .

Dividing out the xr from each term then yields

0 =
∞

∑

k=0

ak4(k + r)(k + r − 1)xk +
∞

∑

k=0

ak4(k + r)xk

+
∞

∑

k=0

ak4xk+2 +
∞

∑

k=0

ak(−1)xk .

Step 4. For each series in your last equation, do a change of index so that each series looks like

∞
∑

n=something

[

something not involving x
]

(x − x0)
n .

Be sure to appropriately adjust the lower limit in each series.

In all but the third series in the example, the change of index is trivial, n = k .

In the third series, we will set n = k + 2 (equivalently, n − 2 = k ). This

8 Dividing out the (x − x0)r isn’t necessary, but it simplifies the expressions slightly and reduces the chances of

silly errors later.
9 You may want to turn your paper sideways for more room!
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means, in the third series, replacing k with n − 2 , and replacing k = 0 with

n = 0 + 2 = 2 :

0 =
∞

∑

k=0

ak4(k + r)(k + r − 1)xk

︸ ︷︷ ︸

n = k

+
∞

∑

k=0

ak4(k + r)xk

︸ ︷︷ ︸

n = k

+
∞

∑

k=0

ak4xk+2

︸ ︷︷ ︸

n = k+2

+
∞

∑

k=0

ak(−1)xk

︸ ︷︷ ︸

n = k

=
∞

∑

n=0

an4(n + r)(n + r − 1)xn +
∞

∑

n=0

an4(n + r)xn

+
∞

∑

n=2

an−24xn +
∞

∑

n=0

an(−1)xn .

Step 5. Convert the sum of series in your last equation into one big series. The first few terms

will probably have to be written separately. Simplify what can be simplified.

Since one of the series in the last equation begins with n = 2 , we need to

separate out the terms corresponding to n = 0 and n = 1 in the other series

before combining the series:

0 =
∞

∑

n=0

an4(n + r)(n + r − 1)xn +
∞

∑

n=0

an4(n + r)xn

+
∞

∑

n=2

an−24xn +
∞

∑

n=0

an(−1)xn

=
[

a0 4(0 + r)(0 + r − 1)
︸ ︷︷ ︸

4r(r−1)

x0 + a1 4(1 + r)(1 + r − 1)
︸ ︷︷ ︸

4(1+r)r

x1

+
∞

∑

n=2

an4(n + r)(n + r − 1)xn

]

+
[

a0 4(0 + r)
︸ ︷︷ ︸

4r

x0 + a1 4(1 + r)
︸ ︷︷ ︸

4(1+r)

x1 +
∞

∑

n=2

an4(n + r)xn

]

+
∞

∑

n=2

an−24xn +
[

− a0x0 − a1x1 +
∞

∑

n=2

an(−1)xn

]

= a0

[

4r(r − 1) + 4r − 1
︸ ︷︷ ︸

4r2 − 4r + 4r−1

]

x0 + a1

[

4(1 + r)r + 4(1 + r) − 1
︸ ︷︷ ︸

4r + 4r2 + 4 + 4r − 1

]

x1

+
∞

∑

n=2

[

an4(n + r)(n + r − 1) + an4(n + r) + an−24 + an(−1)
︸ ︷︷ ︸

an [4(n+r)(n+r−1) + 4(n+r) − 1] + 4an−2

]

xn
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= a0

[

4r 2 − 1
]

x0 + a1

[

4r 2 + 8r + 3
]

x1

+
∞

∑

n=2

[

an

[

4(n + r)(n + r) − 1
]

+ 4an−2

]

xn .

So our differential equation reduces to

a0

[

4r 2 − 1
]

x0 + a1

[

4r 2 + 8r + 3
]

x1

+
∞

∑

n=2

[

an

[

4(n + r)2 − 1
]

+ 4an−2

]

xn = 0 . (33.16)

Step 6. The first term in the last equation just derived will be of the form

a0

[

formula of r
]

(x − x0)
0 .

Since each term in the series must vanish, we must have

a0

[

formula of r
]

= 0 .

Moreover, since a0 6= 0 (by assumption), the above must reduce to

formula of r = 0 .

This is the indicial equation for the differential equation. It will be a quadratic equation

(we’ll see why later). Solve this equation for r . You will get two solutions (sometimes

called either the exponents of the solution or the exponents of the singularity). Denote

them by r1 and r2 . If the exponents are real (which is common in applications), label

the exponents so that r1 ≥ r2 . If the exponents are not real, then it does not matter which

is labeled as r1 .10

In our example, the first term in the “big series” is the first term in equation

(33.16),

a0

[

4r 2 − 1
]

x0 .

Since this must be zero (and a0 6= 0 by assumption) the indicial equation is

4r 2 − 1 = 0 . (33.17)

Thus,

r = ±
√

1

4
= ±1

2
.

Following the convention given above (that r1 ≥ r2 ),

r1 = 1

2
and r2 = −1

2
.

10 We are assuming the coefficients of our differential equation— α , β and γ — are real-valued functions on the

real line. In the very unlikely case they are not, then a more general convention should be used: If the solutions to

the indicial equation differ by an integer, then label them so that r1 − r2 ≥ 0 . Otherwise, it does not matter which

you call r1 and which you call r2 . The reason for this convention will become apparent later (in section 33.5)

after we further discuss the formulas arising from the Frobenious method.
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Step 7. Using r1 (the largest r if the exponents are real):

(a) Plug r1 into the last series equation (and simplify, if possible). This will give you

an equation of the form

∞
∑

n=n0

[

nth formula of a j ’s
]

(x − x0)
n = 0 .

Since each term must vanish, we must have

nth formula of a j ’s = 0 for n0 ≤ n .

(b) Solve this last set of equations for

ahighest index = formula of n and lower indexed a j ’s .

A few of these equations may need to be treated separately, but you will also

obtain a relatively simple formula that holds for all indices above some fixed value.

This formula is the recursion formula for computing each coefficient an from the

previously computed coefficients.

(c) (Optional) To simplify things just a little, do another change of indices so that the

recursion formula just derived is rewritten as

ak = formula of k and lower-indexed coefficients .

Letting r = r1 = 1/2 in equation (33.16) yields

0 = a0

[

4r 2 − 1
]

x0 + a1

[

4r 2 + 8r + 3
]

x1

+
∞

∑

n=2

[

an

[

4(n + r)2 − 1
]

+ 4an−2

]

xn

= a0

[

4
(

1

2

)2

− 1

]

x0 + a1

[

4
(

1

2

)2

+ 8
(

1

2

)

+ 3

]

x1

+
∞

∑

n=2

[

an

[

4
(

n + 1

2

)2

− 1

]

+ 4an−2

]

xn

= a00x0 + a18x1 +
∞

∑

n=2

[

an

[

4n2 + 4n
]

+ 4an−2

]

xn .

The first term vanishes (as it should since r = 1/2 satisfies the indicial

equation, which came from making the first term vanish). Doing a little

more simple algebra, we see that, with r = 1/2 , equation (33.16) reduces

to

0a0x0 + 8a1x1 +
∞

∑

n=2

4
[

n(n + 1)an + an−2

]

xn = 0 . (33.18)
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Since the individual terms in this series must vanish, we have

0a0 = 0 , 8a1 = 0

and

n(n + 1)an + an−2 = 0 for n = 2, 3, 4 . . . .

Solving for an gives us the recursion formula

an = −1

n(n + 1)
an−2 for n = 2, 3, 4 . . . .

Using the trivial change of index, k = n , this is

ak = −1

k(k + 1)
ak−2 for k = 2, 3, 4 . . . . (33.19)

(d) Use the recursion formula (and any corresponding formulas for the lower-order

terms) to find all the ak’s in terms of a0 and, possibly, one other am . Look for

patterns!

From the first two terms in equation (33.18),

0a0 = 0 H⇒ a0 is arbitrary.

8a1 = 0 H⇒ a1 = 0 .

Using these values and recursion formula (33.19) with k = 2, 3, 4, . . .

(and looking for patterns):

a2 = −1

2(2 + 1)
a2−2 = −1

2 · 3
a0 ,

a3 = −1

3(3 + 1)
a3−2 = −1

3 · 4
a1 = −1

3 · 4
· 0 = 0 ,

a4 = −1

4(4 + 1)
a4−2 = −1

4 · 5
a2 = −1

4 · 5
· −1

2 · 3
a0 = (−1)2

5 · 4 · 3 · 2
a0 = (−1)2

5!
a0 ,

a5 = −1

5(5 + 1)
a5−2 = −1

5 · 6
· 0 = 0 ,

a6 = −1

6(6 + 1)
a6−2 = −1

6 · 7
a4 = −1

7 · 6
· (−1)2

5!
a0 = (−1)3

7!
a0 ,

...

The patterns should be obvious here:

ak = 0 for k = 1, 3, 5, 7, . . . ,

and

ak = (−1)k/2

(k + 1)!
a0 for k = 2, 4, 6, 8, . . . .

Using k = 2m , this can be written more conveniently as

a2m = (−1)m a0

(2m + 1)!
for m = 1, 2, 3, 4, . . . .
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Moreover, this last equation reduces to the trivially true statement “ a0 =
a0 ” if m = 0 . So, in fact, it gives all the even-indexed coefficients,

a2m = (−1)m a0

(2m + 1)!
for m = 0, 1, 2, 3, 4, . . . .

(e) Using r = r1 along with the formulas just derived for the coefficients, write out

the resulting series for y . Try to simplify it and factor out the arbitrary constant(s).

Plugging r = 1/2 and the formulas just derived for the ak’s into the

formula originally assumed for y (equation (33.15) on page 33–13), we

get

y = xr

∞
∑

k=0

ak xk

= xr

[ ∞
∑

k=0
k odd

ak xk +
∞

∑

k=0
k even

ak xk

]

= x
1/2

[ ∞
∑

k=0
k odd

0 · xk +
∞

∑

m=0

(−1)m a0

(2m + 1)!
x2m

]

= x
1/2

[

0 + a0

∞
∑

m=0

(−1)m 1

(2m + 1)!
x2m

]

.

So one set of solutions to Bessel’s equation of order 1/2 (equation (33.11)

on page 33–12) is given by

y = a0 x
1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m (33.20)

with a0 being an arbitrary constant.

Step 8. If the indical equation has two distinct solutions, now repeat step 7 with the other

exponent, r2 , replacing r1 .11 If r2 = r1 , just go to the next step.

Sometimes (but not always) this step will lead to a solution of the form

(x − x0)
r2

∞
∑

k=0

ak(x − x0)
k .

with a0 being the only arbitrary constant. But sometimes this step leads to a series having

two arbitrary constants, with one being multiplied by the series solution already found in

the previous steps (our example will illustrate this). And sometimes this step leads to a

contradiction, telling you that there is no solution of the form

(x − x0)
r2

∞
∑

k=0

ak(x − x0)
k with a0 6= 0 .

(We’ll discuss this further in Problems Possibly Arising in Step 8 starting on page 33–28.)

11 But first see Dealing with Complex Exponents starting on page 33–32 if the exponents are complex.
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Letting r = r2 = −1/2 in equation (33.16) yields

0 = a0

[

4r 2 − 1
]

x0 + a1

[

4r 2 + 8r + 3
]

x1

+
∞

∑

n=2

[

an

[

4(n + r)2 − 1
]

+ 4an−2

]

xn

= a0

[

4
(

−1

2

)2

− 1

]

x0 + a1

[

4
(

−1

2

)2

+ 8
(

−1

2

)

+ 3

]

x1

+
∞

∑

n=2

[

an

[

4
(

n − 1

2

)2

− 1

]

+ 4an−2

]

xn

= a00x0 + a10x1 +
∞

∑

n=2

[

an

[

4n2 − 4n
]

+ 4an−2

]

xn

That is,

0a0x0 + 0a1x1 +
∞

∑

n=2

4
[

ann(n − 1) + an−2

]

xn = 0 ,

which means that

0a0 = 0 , 0a1 = 0

and

ann(n − 1) + an−2 = 0 for n = 2, 3, 4, . . . .

This tells us that a0 and a1 can be any values (i.e., are arbitrary constants) and

that the remaining an’s can be computed from these two arbitrary constants

via the recursion formula

an = −1

n(n − 1)
an−2 for n = 2, 3, 4, . . . .

That is,

ak = −1

k(k − 1)
ak−2 for k = 2, 3, 4, . . . . (33.21)

Why don’t you finish these computations as an exercise? You should have no

trouble in obtaining

y = a0x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m + a1x−1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m+1 . (33.22)

Note that the second series term is the same series (slightly rewritten) as in

equation (33.20) (since x−1/2x2m+1 = x
1/2x2m ).

?◮Exercise 33.1: Do the computations left “as an exercise” in the last statement.
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Step 9. If the last step yielded y as an arbitrary linear combination of two different series, then

that is the general solution to the original differential equation. If the last step yielded

y as just one arbitrary constant times a series, then the general solution to the original

differential equation is the linear combination of the two series obtained at the end of

steps 7 and 8. Either way, write down the general solution (using different symbols for

the two different arbitrary constants!). If step 8 did not yield a new series solution, then

at least write down the one solution previously derived, noting that a second solution is

still needed for the general solution to the differential equation.

We are in luck. In the last step we obtained y as the linear combination of

two different series (equation (33.22)). So

y = a0x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m + a1x−1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m+1 ,

is the general solution to our original differential equation (equation (33.11)

— Bessel’s equation of order 1/2 ).

Last Step. See if you recognize the series as the series for some well-known function (you

probably won’t!).

Our luck continues! The two power series in our last formula for y are easily

recognized as the Taylor series for the cosine and sine functions,

y = a0x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m + a1x−1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m+1

= a0x−1/2 cos(x) + a1x−1/2 sin(x) .

So we can also write the general solution to Bessel’s equation of order 1/2 as

y = a0

cos(x)
√

x
+ a1

sin(x)
√

x
. (33.23)

“First” and “Second” Solutions

For purposes of discussion, it is convenient to refer to the first solution found in the basic method

of Frobenius,

y(x) = (x − x0)
r1

∞
∑

k=0

ak(x − x0)
k ,

as the first solution. If we then pick a particular nonzero value for a0 , then we have a first

particular solution. In the above, our first solution was

y(x) = a0 x
1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m ,
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Taking a0 = 1 , we then have a first particular solution

y1(x) = x
1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m .

Naturally, if we also obtain a solution corresponding to r2 in step 8,

y(x) = (x − x0)
r2

∞
∑

k=0

ak(x − x0)
k ,

then we will refer to that as our second solution, with a second particular solution being this

with a specific nonzero value chosen for a0 and any specific value chosen for any other arbitrary

constant. For example, in illustrating the basic method of Frobenious, we obtained

y(x) = a0x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m + a1x−1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m+1

as our second solution. Choosing a0 = 1 and a1 = 0 , we get the second particular solution

y2(x) = x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m .

While we are at it, let us agree that, for the rest of this chapter, x0 always denotes a regular

singular point for some differential equation of interest, and that r1 and r2 always denote the

corresponding exponents; that is, the solutions to the corresponding indicial equation. Let us

further agree that these exponents are indexed according to the convention given in the basic

Frobenious, with r1 ≥ r2 if they are real.

33.4 Basic Notes on Using the Frobenius Method
The Obvious

One thing should be obvious: The method we’ve just outlined is even longer and more tedious

than the algebraic method used in chapter 31 to find power series solutions to similar equations

about ordinary points. On the other hand, much of this method is based on that algebraic method,

which, by now, you have surely mastered.

Naturally, all the ‘practical advice’ given regarding the algebraic method in chapter 31 still

holds, including the recommendation that you use

Y (X) = y(x) with X = x − x0

to simplify your calculations when x0 6= 0 .

But there are a number of other things you should be aware of:
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Solutions on Intervals with x < x0

On an interval with x < x0 , (x − x0)
r might be complex-valued (or even ambiguous) if r is

not an integer. For example,

(x − x0)
1/2 = (− |x − x0|)

1/2 = (−1)
1/2 |x − x0|

1/2 = ±i |x − x0|
1/2 .

More generally, we will have

(x − x0)
r = (− |x − x0|)r = (−1)r |x − x0|r when x < x0 .

But this is not a significant issue because (−1)r can be viewed as a constant (possibly complex)

and can be divided out of the final formula (or incorporated in the arbitrary constants). Thus, in

our final formulas for y(x) , we can replace

(x − x0)
r with |x − x0|r .

to avoid having any explicitly complex-valued expressions (at least when r is not complex).

Let’s keep in mind that this is only needed if r is not an integer.

Convergence of the Series

It probably won’t surprise you to learn that the Frobenius radius of analyticity serves as a lower

bound on the radius of convergence for the power series found in the Frobenius method. To be

precise, we have the following theorem:

Theorem 33.3

Let x0 be a regular singular point for some second-order homogeneous linear differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

and let

y(x) = |x − x0|r
∞

∑

k=0

ak(x − x0)
k

be a modified power series solution to the differential equation found by the basic method of

Frobenius. Then the radius of convergence for
∑∞

k=0 ak(x −x0)
k is at least equal to the Frobenius

radius of convergence about x0 for this differential equation.

We will verify this claim in chapter 35. For now, let us simply note that this theorem assures

us that the given solution y is valid at least on the intervals

(x0 − R, x0) and (x0, x0 + R)

where R is that Frobenious radius of convergence. Whether or not we can include the point x0

depends on the value of the exponent r .

!◮Example 33.6: To illustrate the Frobenius method, we found modified power series solutions

about x0 = 0

y1(x) = x
1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m and y2(x) = x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m
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for Bessel’s equation of order 1/2 ,

y′′ + 1

x
y′ +

[

1 − 1

4x2

]

y = 0 .

Since there are no singular points for this differential equation other than x0 = 0 , the Frobenius

radius of convergence for this differential equation about x0 = 0 is R = ∞ . That means the

power series in the above formulas for y1 and y2 converge everywhere.

However, the x1/2 and x−1/2 factors multiplying these power series are not “well be-

haved” at x0 = 0 — neither is differentiable there, and one becomes infinite as x → 0 . So,

the above formulas for y1 and y2 are valid only on intervals not containing x = 0 , the largest

of which are (0,∞) and (−∞, 0) . Of course, on (−∞, 0) the square roots yield imaginary

values, and we would prefer using the solutions

y1(x) = |x |1/2
∞

∑

m=0

(−1)m

(2m + 1)!
x2m and y2(x) = |x |−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m .

Variations of the Method

Naturally, there are several variations of “the basic method of Frobenius”. The one just given is

merely one the author finds convenient for initial discussion.

One variation you may want to consider is to find particular solutions without arbitrary

constants by setting “ a0 = 1 ”. That is, in step 1, assume

y(x) = (x − x0)
r

∞
∑

k=0

ak(x − x0)
k with a0 = 1 .

Assuming a0 is 1 , instead of an arbitrary nonzero constant, leads to a first particular solution

y1(x) = (x − x0)
r1

∞
∑

k=0

ak(x − x0)
k with a0 = 1 .

With a little thought, you will realize that this is exactly the same as you would have obtained at

the end of step 7, only not multiplied by an arbitrary constant. In particular, had we done this

with the Bessel’s equation used to illustrate the method, we would have obtained

y1(x) = x
1/2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m

instead of formula (33.20) on page 33–19.

If r2 6= r1 , then, with luck, doing step 8 will yield a second particular solution

y2(x) = (x − x0)
r2

∞
∑

k=0

ak(x − x0)
k with a0 = 1 .

As mentioned, one of the ak’s other than a0 may also be arbitrary. Set that equal to your favorite

number for computation, 0 . In particular, doing this with the illustrating example would have

yielded

y2(x) = x−1/2

∞
∑

m=0

(−1)m

(2m)!
x2m ,
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instead of formula (33.22) on page 33–20.

Assuming the second particular solution can be found, this variant of the method yields a pair

of particular solutions {y1, y2} that, because r1 6= r1 , is easily seen to be linearly independent

over any interval on which the formulas are valid. Thus,

y(x) = c1 y1(x) + c2 y2(x)

is the general solution to the differential equation over this interval.

Using the Method When x0 is an Ordinary Point

It should be noted that we can also find the power series solutions of a differential equation about

an ordinary point x0 using the basic Frobenius method (ignoring, of course, the first preliminary

step). In practice, though, it would be silly to go through the extra work in the Frobenius method

when you can use the shorter algebraic method from chapter 31. After all, if x0 is an ordinary

point for our differential equation, then we already know the solution y can be written as

y(x) = a0 y1(x) + a1 y2(x)

where y1(x) and y2(x) are power series about x0 with

y1(x) = 1 + a summation of terms of order 2 or more

= (x − x0)
0

∞
∑

k=0

bk(x − x0)
k with bk = 1

and

y2(x) = 1 · (x − x0) + a summation of terms of order 2 or more

= (x − x0)
1

∞
∑

k=0

ck(x − x0)
k with ck = 1

(see Initial-Value Problems on page 31–24). Clearly then, r2 = 0 and r1 = 1 , and the indicial

equation that would arise in using the Frobenius method would just be r(r − 1) = 0 .

So why bother solving for the exponents r1 and r2 of a differential equation at a point x0

when you don’t need to? It’s easy enough to determine whether a point x0 is an ordinary point

or a regular singular point for your differential equation. Do so, and don’t waste your time using

the Frobenius method unless the point in question is a regular singular point.

33.5 About the Indicial and Recursion Formulas

In chapter 35, we will closely examine the formulas involved in the basic Frobenius method.

Here are a few things regarding the indicial equation and the recursion formulas that we will

verify then (and which you should observe in your own computations now).
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The Indicial Equation and the Exponents

Remember that one of the preliminary steps has us rewriting the differential equation as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are polynomials, with α(x0) 6= 0 , and with no factors shared by all three.

In practice, these polynomials are almost always real (i.e., their coefficients are real numbers).

Let us assume this.

If you carefully follow the subsequent computations in the basic Frobenius method, you will

discover that the indicial equation is just as we suspected at the start of section 33.3; namely,

α0r(r − 1) + β0r + γ0 = 0 ,

where

α0 = α(x0) , β0 = β(x0) and γ0 = γ (x0) .

The exponents for our differential equation (i.e., the solutions to the indicial equation) can then

be found by rewriting the indicial equation as

α0r 2 + (β0 − α0)r + γ0 = 0

and using basic algebra.

!◮Example 33.7: In describing the Frobenius method, we used Bessel’s equation of order 1/2

with x0 = 0 . That equation was (on page 33–13) rewritten as

4x2 y′′ + 4xy′ + [4x2 − 1]y = 0 ,

which is

(x − 0)2α(x)y′′ + (x − 0)β(x)y′ + γ (x)y = 0

with

α(x) = 4 , β(x) = 4 and γ (x) = 4x2 − 1 .

So

α0 = α(0) = 4 , β0 = β(0) = 4 and γ0 = γ (0) = −1 .

According to the above, the corresponding indicial equation should be

4r(r − 1) + 4r − 1 = 0 ,

which simplifies to

4r 2 − 1 = 0 ,

and which, indeed, is what we obtained (equation (33.17) on page 33–16) as the indicial

equation for Bessel’s equation of order 1/2 .

From basic algebra, we know that, if the coefficients of the indicial equation

α0r 2 + (β0 − α0)r + γ0 = 0

are all real numbers, then the two solutions to the indicial equation are either both real numbers

(possibly the same real numbers) or are complex conjugates of each other. This is usually the

case in practice (it is always the case in the examples and exercises of this chapter).
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The Recursion Formulas

After finding the solutions r1 and r2 to the indicial equation, the basic method of Frobenius

has us deriving the recursion formula corresponding to each of these r ’s . In chapter 35, we’ll

discover that each of these recursion formulas can always be written as

ak = F(k, r, a0, a1, . . . , ak−1)

(k + r − r1) (k + r − r2)
for k ≥ κ (33.24a)

where κ is some positive integer, and r is either r1 or r2 , depending on whether this is the

recursion formula corresponding to r1 or r2 , respectively. It also turns out that this formula is

derived from the seemingly equivalent relation

(k + r − r1) (k + r − r2) ak = F(k, r, a0, a1, . . . , ak−1) , (33.24b)

which holds for every integer k greater than or equal to κ . (This later equation will be useful

when we discuss possible “degeneracies” in the recursion formula).

At this point, all you need to know about F(k, r, a0, a1, . . . , ak−1) is that it is a formula that

yields a finite value for every possible choice of its variables. Unfortunately, it is not that easily

described, nor would knowing it be all that useful at this point.

Of greater interest is the fact that the denominator in the recursion formula factors so simply

and predicably. The recursion formula obtained using r = r1 will be

ak = F(k, r1, a0, a1, . . . , ak−1)

(k + r1 − r1)(k + r1 − r2)
= F(k, r1, a0, a1, . . . , ak−1)

k(k + r1 − r2)
,

while the recursion formula obtained using r = r2 will be

ak = F(k, r2, a0, a1, . . . , ak−1)

(k + r2 − r1)(k + r2 − r2)
= F(k, r2, a0, a1, . . . , ak−1)

(k − [r1 − r2])k
.

!◮Example 33.8: In solving Bessel’s equation of order 1/2 we obtained

r1 = 1

2
and r2 = −1

2
.

The recursion formulas corresponding to each of these were found to be

ak = −1

k(k + 1)
ak−2 and ak = −1

k(k − 1)
ak−2 for k = 2, 3, 4, . . . ,

respectively (see formulas (33.19) and (33.21)). Looking at the recursion formula correspond-

ing to r = 1/2 we see that, indeed,

ak = −1

k(k + 1)
ak−2 = −1

k
(

k + 1

2
−

[

−1

2

])ak−2 = −1

k (k + r1 − r2)
ak−2 .

Likewise, looking at the recursion formula corresponding to r = 1/2 we see that

ak = −1

(k − 1)k
ak−2 = −1

(

k +
[

−1

2

]

− 1

2

)

k

ak−2 = −1

(k + r2 − r1)k
ak−2 .

Knowing that the denominator in your recursion formulas should factor into either

k(k + r1 − r2) or (k + r2 − r1)k

should certainly simplify your factoring of that denominator! And if your denominator does not

so factor, then you know you made an error in your computations. So it provides a partial error

check.

It also leads us to our next topic.
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Problems Possibly Arising in Step 8

In discussing step 8 of the basic Frobenius method, we indicated that there may be “problems” in

finding a modified series solution corresponding to r2 . Well, take a careful look at the recursion

formula obtained using r2 :

ak = F(k, r2, a0, a1, . . . , ak−1)

(k − [r1 − r2])k
for k ≥ κ

(remember, κ is some positive integer). See the problem? That’s correct, the denominator may

be zero for one of the k’s . And it occurs if (and only if) r1 and r2 differ by some integer K

greater than or equal to κ ,

r1 − r2 = K .

Then, when we attempt to compute aK , we get

aK = F(K , r2, a0, a1, . . . , ak−1)

(K − [r1 − r2])K

= F(K , r2, a0, a1, . . . , ak−1)

(K − K )K
= F(K , r2, a0, a1, . . . , ak−1)

0
!

Precisely what we can say about aK when this happens depends on whether the numerator in

this expression is zero or not. To clarify matters slightly, let’s rewrite the above using recursion

relation (33.24b) which, in this case, reduces to

0 · aK = F(K , r2, a0, a1, . . . , ak−1) (33.25)

Now:

1. If F(K , r2, a0, a1, . . . , ak−1) 6= 0 , then the recursion formula “blows up” at k = K ,

aK = F(K , r2, a0, a1, . . . , ak−1)

0
,

More precisely, aK must satisfy

0 · aK = F(K , r2, a0, a1, . . . , ak−1) 6= 0 ,

which is impossible. Hence, it is impossible for our differential equation to have a solution

of the form (x − x0)
r2

∑∞
k=0 ak(x − x0)

k with a0 6= 0 .

2. If F(K , r2, a0, a1, . . . , ak−1) = 0 , then the recursion equation for aK reduces to

aK = 0

0
,

an indeterminant expression telling us nothing about aK . More precisely, (33.25) reduces

to

0 · aK = 0 ,

which is valid for any value of aK ; that is, aK is another arbitrary constant (in addition

to a0 ). Moreover, a careful analysis will confirm that, in this case, we will re-derive the

modified power series solution corresponding to r1 with aK being the arbitrary constant

in that series solution.
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But why don’t we worry about the denominator in the recursion formula obtained using r1 ,

ak = F(k, r1, a0, a1, . . . , ak−1)

k(k + r1 − r2)
for k ≥ κ ?

Because this denominator is zero only if r1 −r2 is some negative integer, contrary to our labeling

convention of r1 ≥ r2 .

!◮Example 33.9: Consider

2xy′′ − 4y′ − y = 0 .

Multiplying this out by x we get it into the form

2x2 y′′ − 4xy′ − xy = 0 .

As noted in example 33.5 on page 33–10, this equation has one regular singular point,

x0 = 0 . Setting

y = y(x) = xr

∞
∑

k=0

ak xk =
∞

∑

k=0

ak xk+r

and differentiating, we get (as before)

y′ = d

dx

∞
∑

k=0

ak xk+r =
∞

∑

k=0

ak(k + r)xk+r−1

and

y′′ = d2

dx2

∞
∑

k=0

ak xk+r =
∞

∑

k=0

ak(k + r)(k + r − 1)xk+r−2 .

Plugging these into our differential equation:

0 = 2x2 y′′ − 4xy′ − xy

= 2x2

∞
∑

k=0

ak(k + r)(k + r − 1)xk+r−2 − 4

∞
∑

k=0

ak(k + r)xk+r−1 − x

∞
∑

k=0

ak xk+r

=
∞

∑

k=0

2ak(k + r)(k + r − 1)xk+r −
∞

∑

k=0

4ak(k + r)xk+r −
∞

∑

k=0

ak xk+r+1 .

Dividing out the xr , reindexing, and grouping like terms:

0 =
∞

∑

k=0

2ak(k + r)(k + r − 1)xk

︸ ︷︷ ︸

n = k

−
∞

∑

k=0

4ak(k + r)xk

︸ ︷︷ ︸

n = k

−
∞

∑

k=0

ak xk+1

︸ ︷︷ ︸

n = k+1

=
∞

∑

n=0

2an(n + r)(n + r − 1)xn −
∞

∑

n=0

4an(n + r)xn −
∞

∑

n=1

an xn
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= 2a0(0 + r)(0 + r − 1)x0 +
∞

∑

n=1

2an(n + r)(n + r − 1)xn

− 4a0(0 + r)x0 −
∞

∑

n=1

4an−1(n + r)xn −
∞

∑

n=1

an−1xn

= a0[2r(r − 1) − 4r
︸ ︷︷ ︸

2r2−2r−4r

]x0 +
∞

∑

n=1

{an[2(n + r)(n + r − 1) − 4(n + r)
︸ ︷︷ ︸

2(n+r)(n+r−1−2)

] − an−1}xn .

Thus, our differential equation reduces to

a0

[

2
(

r 2 − 3r
)]

x0 +
∞

∑

n=1

{an [2(n + r)(n + r − 3)] − an−1} xn = 0 . (33.26)

From the first term, we get the indicial equation:

2
(

r 2 − 3r
)

︸ ︷︷ ︸

2r(r−3)

= 0

So r can equal 0 or 3 . Since 3 > 0 , our convention has us identifying these solutions to

the indicial equation as

r1 = 3 and r2 = 0 .

Letting r = r1 = 3 in equation (33.26), we see that

0 = a0

[

2
(

32 − 3 · 3
)]

x0 +
∞

∑

n=1

{an [2(n + 3)(n + 3 − 3)] − an−1} xn

= a0 [0] x0 +
∞

∑

n=1

{an [2(n + 3)n] − an−1} xn

So, for n ≥ 1 ,

an [2(n + 3)n] − an−1 = 0 .

Solving for an , we obtain the recursion formula

an = 1

2n(n + 3)
an−1 for n = 1, 2, 3, . . . .

Equivalently12,

ak = 1

2k(k + 3)
ak−1 for k = 1, 2, 3, . . . .

Applying this recursion formula:

a1 = 1

2 · 1(1 + 3)
a0 = 1

2 · 1(4)
a0 ,

a2 = 1

2 · 2(2 + 3)
a1 = 1

2 · 2(5)
· 1

2 · 1(4)
a0 = 1

22(2 · 1)(5 · 4)
a0

= 3 · 2 · 1

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0 = 6

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0 ,

12 Observe that this is formula (33.24a) with κ = 1 and F(k, r1, a0, a1, . . . , ak−1) = 1
2

ak−1 .
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a3 = 1

2 · 3(3 + 3)
a2 = 1

2 · 3(6)
· 6

22(2 · 1)(5 · 4 · 3 · 2 · 1)
a0

= 6

23(3 · 2 · 1)(6 · 5 · 4 · 3 · 2 · 1)
a0 ,

...

ak = 6

2k k!(k + 3)!
a0 .

Notice that this last formula even holds for k = 0 and k = 1 . So

ak = 6

2k k!(k + 3)!
a0 for k = 0, 1, 2, 3, . . . ,

and the corresponding modified power series solution is

y(x) = xr1

∞
∑

k=0

ak xk = a0x3

∞
∑

k=0

6

2k k!(k + 3)!
xk .

Now let’s try to find a similar solution corresponding to r2 = 0 . Letting r = r2 = 0 in

equation (33.26) yields

0 = a0

[

2
(

02 − 3 · 0
)]

x0 +
∞

∑

n=1

{an [2(n + 0)(n + 0 − 3)] − an−1} xn

= a0 [0] x0 +
∞

∑

n=1

{an [2n(n − 3)] − an−1} xn .

So, for n ≥ 1 ,

an [2n(n − 3)] − an−1 = 0 .

Solving for an , we obtain the recursion formula

an = 1

2n(n − 3)
an−1 for n = 1, 2, 3, . . . .

Applying this, we get

a1 = 1

2 · 1(1 − 3)
a0 = 1

2 · 1(−2)
a0 ,

a2 = 1

2 · 2(2 − 3)
a1 = 1

2 · 2(−1)
· 1

2 · 1(−2)
a0 = 1

222 · 1(−1)(−2)
a0 ,

a3 = 1

2 · 3(3 − 3)
a1 = 1

2 · 2(0)
· 1

222 · 1(−1)(−2)
a0 = 1

0
a0 !

In this case, the a3 “blows up” if a0 6= 0 . In other words, for this last equation to be true, we

must have

0 · a3 = a0 ,

contrary to our requirement that a0 6= 0 . So, for this differential equation, our search for a

solution of the form

xr

∞
∑

k=0

ak xk with a0 6= 0
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is doomed to failure when r = r2 . There is no such solution.

This leaves us with just the solutions found corresponding to r = r1 ,

y(x) = a0x3

∞
∑

k=0

6

2k k!(k + 3)!
xk .

In the next chapter, we will discuss how to find the complete general solution when, as in the

last example, the basic method of Frobenius does not yield a second solution. We’ll also finish

solving the differential equation in the last example.

33.6 Dealing with Complex Exponents

In practice, the exponents r1 and r2 are usually real numbers. Still, complex exponents are

possible. Fortunately, the differential equations arising from “real-world” problems usually have

real-valued coefficients, which means that, if r1 and r2 are not real valued, they will probably

be a conjugate pair

r1 = r+ = λ + iω and r2 = r− = λ − iω

with ω 6= 0 . In this case, step 7 of the Frobenius method (with r1 = r+ , and renaming a0 as

c+ ) leads to a solution of the form

y(x) = c+y+(x)

where

y+(x) = (x − x0)
λ+iω

∞
∑

k=0

αk(x − x0)
k

with α0 = 1 . The other αk’s will be determined from the recursion formula and will simply be

the ak’s described in the method with a0 factored out. And they will probably be complex-valued

since the recursion formula probably involves r+ = λ + iω .

We could then continue with step 8 and compute the general series solution corresponding

to r2 = r− . Fortunately, this lengthy set of computations is completely unnecessary because you

can easily confirm that the complex conjugate y∗ of any solution y to our differential equation

is another solution to our differential equation (see exercise 33.7 on page 33–38). Thus, as a

“second solution”, we can just use

y−(x) =
[

y+(x)
]∗ =

[

(x − x0)
λ+iω

∞
∑

k=0

αk(x − x0)
k

]∗

= (x − x0)
λ−iω

∞
∑

k=0

αk
∗(x − x0)

k .

It is also easy to verify that {y+(x), y−(x)} is linearly independent. Hence,

y(x) = c+y+(x) + c−y−(x)
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is a general solution to our differential equation.

However, the two solutions, y+ and y− will be complex valued. To avoid complex-valued

solutions, let’s employ the trick used before to derive a corresponding linearly independent pair

{y1, y2} of real-valued solutions to our differential equation by setting

y1(x) = 1

2

[

y+(x) + y−(x)
]

and y2(x) = 1

2i

[

y+(x) − y−(x)
]

.

Using the fact that

Xλ±iω = Xλ X iω = Xλ
[

cos(ω ln |X |) ± i sin(ω ln |X |)
]

,

it is a simple exercise to verify that

y1(x) = (x − x0)
λ cos(ω ln |x − x0|)

∞
∑

k=0

bk(x − x0)
k

and

y2(x) = (x − x0)
λ sin(ω ln |x − x0|)

∞
∑

k=0

ck(x − x0)
k

where the bk’s and ck’s are real-valued constants related to the above αk’s by

bk = αk + αk
∗

2
and ck = αk − αk

∗

2i
.

33.7 Appendix: On Tests for Regular Singular Points
Proof of Theorem 33.2

The validity of theorem 33.2 follows immediately from lemma 33.1 (which we’ve already proven)

and the next lemma.

Lemma 33.4

Let a , b and c be rational functions, and assume x0 is a singular point on the real line for

a(x)y′′ + b(x)y′ + c(x)y = 0 . (33.27)

If the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

are both finite values, then the differential equation can be written in quasi-Euler form

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are polynomials with α(x0) 6= 0 .

PROOF: Because a , b and c are rational functions (i.e., quotients of polynomials), we

can multiply equation (33.27) through by the common denominators, obtaining a differential
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equation in which all the coefficients are polynomials. Then factoring out the (x − x0)-factors,

and dividing out the factors common to all terms, we obtain

(x − x0)
k A(x)y′′ + (x − x0)

m B(x)y′ + (x − x0)
nC(x)y = 0 (33.28)

where A , B an C are polynomials with

A(x0) 6= 0 , B(x0) 6= 0 and C(x0) 6= 0 ,

and k , m and n are nonnegative integers, one of which must be zero. Moreover, since this is

just a rewrite of equation (33.27), and x0 is, by assumption, a singular point for this differential

equation, we must have that k ≥ 1 . Hence m = 0 or n = 0 .

Dividing equations (33.27) and (33.28) by their leading terms then yields, respectively,

y′′ + b(x)

a(x)
y′ + c(x)

a(x)
y = 0

and

y′′ + (x − x0)
m−k B(x)

A(x)
y′ + (x − x0)

n−k C(x)

A(x)
y = 0 .

But these last two equations describe the same differential equation, and have the same first

coefficients. Consequently, the other coefficients must be the same, giving us

b(x)

a(x)
= (x − x0)

m−k B(x)

A(x)
and

c(x)

a(x)
= (x − x0)

n−k C(x)

A(x)
.

Thus,

lim
x→x0

(x − x0)
b(x)

a(x)
= lim

x→x0

(x − x0)
m+1−k B(x)

A(x)
= lim

x→x0

(x − x0)
m+1−k B(x0)

A(x0)

and

lim
x→x0

(x − x0)
2 c(x)

a(x)
= lim

x→x0

(x − x0)
n+2−k C(x)

A(x)
= lim

x→x0

(x − x0)
n+2−k C(x0)

A(x0)
.

By assumption, though, these limits are finite, and for the limits on the right to be finite, the

exponents must be zero or larger. This, combined with the fact that k ≥ 1 means that k , m and

l must satisfy

m + 1 ≥ k ≥ 1 and n + 2 ≥ k ≥ 1 . (33.29)

But remember, m , n and k are nonnegative integers with m = 0 or n = 0 . That leaves us

with only three possibilities:

1. If m = 0 , then the first inequality in set (33.29) reduces to

1 ≥ k ≥ 1

telling us that k = 1 . Equation (33.28) then becomes

(x − x0)
1 A(x)y′′ + B(x)y′ + (x − x0)

nC(x)y = 0 .

Muliplying through by x − x0 this becomes

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = B(x) and γ (x) = (x − x0)
n+1C(x) .
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2. If n = 0 , then the second inequality in set (33.29) reduces to

2 ≥ k ≥ 1 .

So k = 1 or k = 2 , giving us two options:

(a) If k = 1 , then equation (33.28) becomes

(x − x0)
1 A(x)y′′ + (x − x0)

m B(x)y′ + C(x)y = 0 ,

which can be rewritten as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = (x−x0)
m B(x) and γ (x) = (x−x0)C(x) .

(b) If k = 2 , then the other inequality inequality in set (33.29) becomes

m + 1 ≥ 2

Hence m ≥ 1 . In this case, equation (33.28) becomes

(x − x0)
2 A(x)y′′ + (x − x0)

m B(x)y′ + C(x)y = 0

which is the same as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are the polynomials

α(x) = A(x) , β(x) = (x−x0)
m−1 B(x) and γ (x) = C(x) .

Note that, in each case, we can rewrite our differential equation as

(x − x0)
2α(x)y′′ + (x − x0)β(x)y′ + γ (x)y = 0

where α , β and γ are polynomials with

α(x0) = α0(x0) 6= 0 .

So, in each case, we have rewritten our differential equation in quasi-Euler form, as claimed in

the lemma.

Testing for Regularity When the Coefficients Are Not
Rational

By using lemma 30.13 on page 30–21 on factoring analytic functions, or lemma 30.14 on page

30–22 on factoring quotients of analytic functions, you can easily modify the arguments in the
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last proof to obtain an analog of the above lemma appropriate to differential equations whose

coefficients are not rational. Basically, just replace

“rational functions” with “quotients of functions analytic at x0 ” ,

and replace

“polynomials” with “functions analytic at x0 ” .

The resulting lemma, along with lemma 33.1, then yields the following analog to theorem 33.2.

Theorem 33.5 (testing for regular singular points (ver.2))

Assume x0 is a singular point on the real line for the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0

where a , b and c are quotients of functions analytic at x0 . Then x0 is a regular singular point

for this differential equation if and only if the two limits

lim
x→x0

(x − x0)
b(x)

a(x)
and lim

x→x0

(x − x0)
2 c(x)

a(x)

are both finite values.

Additional Exercises

33.2. Find a fundamental set of solutions {y1, y2} for each of the following shifted Euler

equations, and sketch the graphs of y1 and y2 near the singular point.

a. (x − 3)2 y′′ − 2(x − 3)y′ + 2y = 0

b. (x − 1)2 y′′ − 5(x − 1)y′ + 9y = 0

c. 2x2 y′′ + 5xy′ + 1y = 0

d. (x + 2)2 y′′ + (x + 2)y′ = 0

e. 3(x − 5)2 y′′ − 4(x − 5)y′ + 2y = 0

f. (x − 5)2 y′′ + (x − 5)y′ + 4y = 0

33.3. Identify all of the singular points for each of the following differential equations, and

determine which of those on the real line are regular singular points, and which are

irregular singular points. Also, find the Frobenius radius of convergence R for the

given differential equation about the given x0 .

a. x2 y′′ + x

x − 2
y′ + 2

x + 2
y = 0 , x0 = 0

b. x3 y′′ + x2 y′ + y = 0 , x0 = 2

c.
(

x3 − x4
)

y′′ + (3x − 1)y′ + 827y = 0 , x0 = 1
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d. y′′ + 1

x − 3
y′ + 1

x − 4
y = 0 , x0 = 3

e. y′′ + 1

(x − 3)2
y′ + 1

(x − 4)2
y = 0 , x0 = 4

f. y′′ +
(

1

x
− 1

3

)

y′ +
(

1

x
− 1

4

)

y = 0 , x0 = 0

g.
(

4x2 − 1
)

y′′ +
(

4 − 2

x

)

y′ + 1 − x2

1 + x2
y = 0 , x0 = 0

h.
(

4 + x2
)2

y′′ + y = 0 , x0 = 0

33.4. For each of the following differential equations, verify that x0 = 0 is a regular singular

point, and then use the basic method of Frobenius to find modified power series solutions.

In particular:

i Find and solve the corresponding indicial equation for the equation’s exponents

r1 and r2 .

ii Find the recursion formula corresponding to each exponent.

iii Find and explicitly write out at least the first four nonzero terms of all series

solutions about x0 = 0 that can be found by the basic Frobenius method (if a

series terminates, find all the nonzero terms).

iv Try to find a general formula for all the coefficients in each series.

v When a second particular solution cannot be found by the basic method, give a

reason that second solution cannot be found.

a. x2 y′′ − 2xy′ +
(

x2 + 2
)

y = 0

b. 4x2 y′′ + (1 − 4x)y = 0

c. x2 y′′ + xy′ + (4x − 4)y = 0

d.
(

x2 − 9x4
)

y′′ − 6xy′ + 10y = 0

e. x2 y′′ − xy′ + 1

1 − x
y = 0

f. y′′ + 1

x
y′ + y = 0 (Bessel’s equation of order 0 )

g. y′′ + 1

x
y′ +

[

1 − 1

x2

]

y = 0 (Bessel’s equation of order 1 )

h. 2x2 y′′ +
(

5x − 2x3
)

y′ + (1 − x2)y = 0

i. x2 y′′ −
(

5x + 2x2
)

y′ + (9 + 4x) y = 0

j.
(

3x2 − 3x3
)

y′′ −
(

4x + 5x2
)

y′ + 2y = 0

k. x2 y′′ −
(

x + x2
)

y′ + 4xy = 0

l. 4x2 y′′ + 8x2 y′ + y = 0
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m. x2 y′′ +
(

x − x4
)

y′ + 3x3 y = 0

n.
(

9x2 + 9x3
)

y′′ +
(

9x + 27x2
)

y′ + (8x − 1)y = 0

33.5. For each of the following, verify that the given x0 is a regular singular point for the

given differential equation, and then use the basic method of Frobenius to find modified

power series solutions to that differential equation. In particular:

i Find and solve the corresponding indicial equation for the equation’s exponents

r1 and r2 .

ii Find the recursion formula corresponding to each exponent.

iii Find and explicitly write out at least the first four nonzero terms of all series

solutions about x0 = 0 that can be found by the basic Frobenius method (if a

series terminates, find all the nonzero terms).

iv Try to find a general formula for all the coefficients in each series.

v When a second particular solution cannot be found by the basic method, give a

reason that second solution cannot be found.

a. (x − 3)y′′ + (x − 3)y′ + y = 0 , x0 = 3

b. y′′ + 2

x + 2
y′ + y = 0 , x0 = −2

c. 4y′′ + 4x − 3

(x − 1)2
y = 0 , x0 = 1

d. (x − 3)2 y′′ +
(

x2 − 3x
)

y′ − 3y = 0 , x0 = 3

33.6. Let
∑∞

k=0 ak xk be a power series convergent on (−R, R) for some R > 0 . We already

know that, on (−R, R) ,

d

dx

∞
∑

k=0

ak xk =
∞

∑

k=0

d

dx

[

ak xk
]

.

a. Using the above and the product rule confirm that, on (−R, R) ,

d

dx

[

xr

∞
∑

k=0

ak xk

]

=
∞

∑

k=0

ak(k + r)xk+r−1 .

for any real value r .

b. How does this justify the term-by-term differentiation used in step 2 of the basic

Frobenius method?

33.7. For the following, assume u and v are real-valued functions on some interval I , and

let y = u + iv .
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a. Verify that

dy∗

dx
=

(

dy

dx

)∗

and
d2 y∗

dx2
=

(

d2 y

dx2

)∗

where y∗ is the complex conjugate of y .

b. Further assume that, on some interval I , y satisfies

a(x)
d2 y

dx2
+ b(x)

dy

dx
+ c(x)y = 0

where a , b and c are all real-valued functions. Using the results from the previous

part of this exercise, show that

a(x)
d2 y∗

dx2
+ b(x)

dy∗

dx
+ c(x)y∗ = 0 .
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Some Answers to Some of the Exercises

WARNING! Most of the following answers were prepared hastily and late at night. They

have not been properly proofread! Errors are likely!

2a. y1(x) = (x − 3)2 , y2(x) = x − 3

2b. y1(x) = (x − 1)3 , y2(x) = (x − 1)3 ln |x − 1|
2c. y1(x) = x−1/2 , y2(x) = x−1

2d. y1(x) = 1 , y2(x) = ln |x + 2|
2e. y1(x) = (x − 5)2 , y1(x) = 3

√
x − 5

2f. y1(x) = cos(2 ln |x − 5|) , y1(x) = sin(2 ln |x − 5|)
3a. Reg. sing. pts.: 0, 2, −2 ; No irreg. sing. pt. ; R = 2

3b. No Reg. sing. pt. ; Irreg. sing. pt.: 0 ; R = 2

3c. Reg. sing. pt.: 1 ; Irreg. sing. pt.: 0 ; R = 1

3d. Reg. sing. pt.: 3, 4 ; No irreg. sing. pt. ; R = 1

3e. Reg. sing. pt.: 4 ; Irreg. sing. pt.: 3 ; R = 1

3f. Reg. sing. pt.: 0 ; No irreg. sing. pt. ; R = ∞
3g. Reg. sing. pts.: 0,

1

2
, −1

2
, i, −i ; No irreg. sing. pts. ; R = 1

2
3h. Reg. sing. pts.: 2i, −2i ; No irreg. sing. pt. ; R = 2

4a. r 2 − 3r + 2 = 0 ; r1 = 2 , r2 = 1 ;

For r = r1 , a1 = 0 , ak = −1

(k + 1)k
ak−2 ; y(x) = ay1(x) with

y1(x) = x2
[

1 − 1

3!
x2 + 1

5!
x4 − 1

7!
x6 − · · ·

]

= x2

∞
∑

m=0

(−1)m

(2m + 1)!
x2m = x sin(x)

For r = r2 , a1 = 0; ak = −1

k(k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = x
[

1 − 1

2!
x2 + 1

4!
x4 − 1

6!
x6 + · · ·

]

= x

∞
∑

m=0

(−1)m

(2m)!
x2m = x cos(x)

4b. 4r 2 − 4r + 1 = 0 ; r1 = r2 = 1

2
;

For r = r1 : ak = 1

k2
ak−1 ; y(x) = ay1(x) with

y1(x) =
√

x

∞
∑

k=0

1

(k!)2
xk

No “second” value of r

4c. r 2 − 4 = 0 ; r1 = 2 , r2 = −2 ;

For r = r1 : ak = −4

k(k + 4)
ak−1 ; y(x) = ay1(x) with

y1(x) = x2

[

1 − 4

5
x + 42

(2)(6 · 5)
x2 − 43

(3 · 2)(7 · 6 · 5)
x3 + · · ·

]

= x2

∞
∑

k=0

(−4)k4!
k!(k + 4)!

xk

For r = r2 , the recursion formula blows up

4d. r 2 − 7r + 10 = 0 ; r1 = 5 , r2 = 2 ;

For r = r1 , a1 = 0 , ak = 9(k + 2)

k
ak−2 ; y(x) = ay1(x) with

y1(x) = x2

[

1 + 9 · 4

2
x2 + 92 · 6

2
x4 + 93 · 8

2
x6 − · · ·

]

= x5

∞
∑

m=0

9m(m + 1)x2m

For r = r2 , a1 = 0; ak = 9(k − 1)

k − 3
ak−2 ; y(x) = ay2(x) with
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y2(x) = x2
[

1 − 9x2 − 3 · 92x4 − 5 · 93x6 + · · ·
]

= x2

∞
∑

m=0

9m(1 − 2m)x2m

4e. r 2 − 2r + 1 = 0 ; r1 = r2 = 1 ;

For r = r1 : ak = k − 2

k
ak−1 ; y(x) = ay1(x) with

y1(x) = x − x2

No “second” value of r

4f. r 2 = 0 ; r1 = r2 = 0 ;

For r = r1 : a1 = 0 , ak = −1

k2
ak−2 ; y(x) = ay1(x) with

y1(x) = 1 − 1

22
x2 + 1

(2 · 4)2
x4 − 1

(6 · 4 · 2)2
x6 + · · · =

∞
∑

m=0

(−1)m

(2mm!)2
x2m

No “second value” for r

4g. r 2 − 1 = 0 ; r1 = 1 , r2 = −1 ;

For r = r1 : a1 = 0 , ak = −1

k(k + 2)
ak−2 ; y(x) = ay1(x) with

y1(x) = x
[

1 − 1

2 · 4
x2 + 1

(4 · 2)(6 · 4)
x4 − 1

(6 · 4 · 2)(8 · 6 · 4)
x6 + · · ·

]

= x

∞
∑

m=0

(−1)m

22mm!(m + 1)!
x2m

For r = r2 , the recursion formula blows up

4h. 2r 2 + 3r + 1 = 0 ; r1 = −1/2 , r2 = −1 ;

For r = r1 : a1 = 0 , ak = 2(k − 2)

k(2k + 1)
ak−2 ; y(x) = ay1(x) with

y1(x) = x−1/2

For r = r2 : a1 = 0 , ak = 2k − 5

k(2k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = x−1
[

1 − 1

2 · 3
x2 − 1

4 · 2 · 7
x4 − 1

6 · 4 · 2 · 11
x6 + · · ·

]

= x−1

∞
∑

m=0

−1

2mm!(4m − 1)
x2m

4i. r 2 − 6r + 9 = 0 ; r1 = r2 = 3 ;

For r = r1 : ak = 2

k
ak−1 ; y(x) = ay1(x) with

y1(x) = x3

[

1 + 2

1
x + 22

2
x2 + 23

3 · 2
x3 + · · ·

]

= x3

∞
∑

k=0

2k

k!
xk = x3e2x

No “second” value of r

4j. 3r 2 − 7r + 2 = 0 ; r1 = 2 , r2 = 1/3 ;

For r = r1 : ak = k + 1

k
ak−1 ; y(x) = ay1(x) with

y1(x) = x2
[

1 + 2x + 3x2 + 4x3 + · · ·
]

= x2

∞
∑

k=0

(k + 1)xk

For r = r2 : ak = 3k − 2

3k − 5
ak−1 ; y(x) = ay1(x) with

y1(x) = 3
√

x
[

1 − 1

2
x − 4

2
x2 − 7

2
x3 + · · ·

]

= 3
√

x

∞
∑

k=0

2 − 3k

2
xk

4k. r 2 − 2r = 0 ; r1 = 2 , r2 = 0 ;

For r = r1 : ak = k − 3

k(k + 2)
ak−1 ; y(x) = ay1(x) with

y1(x) = x2 − 2

3
x3 + 1

12
x4

For r = r2 , the recursion formula blows up

4l. 4r 2 − 4r + 1 = 0 ; r1 = r2 = 1/2 ;
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For r = r1 : ak = −2k − 1

k2
ak−1 ; y(x) = ay1(x) with

y1(x) =
√

x
[

1 − x + 3

4
x2 − 5 · 3

9 · 4
x3 + · · ·

]

=
√

x

[

1 +
∞

∑

k=1

(−1)k (2k − 1)(2k − 3) · · · 5 · 3 · 1

(k!)2
xk

]

No “second” value of r

4m. r 2 = 0 ; r1 = r2 = 0 ;

For r = r1 : a1 = 0 , a2 = 0 , ak = k − 6

k2
ak−3 ; y(x) = ay1(x) with

y1(x) = 1 − 1

3
x3

No “second” value of r

4n. 9r 2 − 1 = 0 ; r1 = 1/3 , r2 = −1/3 ;

For r = r1 : ak = −ak−1 ; y(x) = ay1(x) with

y1(x) = x
1/3

[

1 − x + x2 − x3 + · · ·
]

= x
1/3

∞
∑

k=0

(−1)k xk = x
1/3(1 + x)−1

For r = r2 : ak = −ak−1 ; y(x) = ay2(x) with

y2(x) = x−1/3
[

1 − x + x2 − x3 + · · ·
]

= x−1/3

∞
∑

k=0

(−1)k xk = x−1/3(1 + x)−1

5a. r 2 − r = 0 ; r1 = 1 , r2 = 0 ;

For r = r1 : ak = −1

k
ak−1 ; y(x) = ay1(x) with

y1(x) = (x − 3)

[

1 − 1

2
(x − 3) + 1

2 · 1
(x − 3)2 − 1

3 · 2 · 1
(x − 3)3 + · · ·

]

= (x − 3)

∞
∑

k=0

(−1)k 1

k!
(x − 3)k = (x − 3)e−(x−3)

For r = r2 , the recursion formula blows up

5b. r 2 + r = 0 ; r1 = 0 , r2 = −1 ;

For r = r1 : ak = − 1

(k + 1)k
ak−2 ; y(x) = ay1(x) with

y1(x) = 1 − 1

3!
(x + 2)2 + 1

5!
(x + 2)4 − 1

7!
(x + 2)6 + · · · = sin(x + 2)

x + 2

For r = r2 : ak = − 1

k(k − 1)
ak−2 ; y(x) = ay2(x) with

y2(x) = 1

x + 2

[

1 − 1

2!
(x + 2)2 + 1

4!
(x + 2)4 − 1

6!
(x + 2)6 + · · ·

]

= cos(x + 2)

x + 2

5c. 4r 2 − 4r + 1 = 0 ; r1 = r2 = 1

2
;

For r = r1 : ak = − 1

k2
ak−1 ; y(x) = ay1(x) with

y1(x) =
√

x − 1

∞
∑

k=0

(−1)k 1

(k!)2
(x − 1)k

No “second” value of r

5d. r 2 + 2r − 3 = 0 ; r1 = 1 , r2 = −3 ;
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For r = r1 : ak = −1

k + 4
ak−1 ; y(x) = ay1(x) with

y1(x) = (x − 3)
[

1 − 1

5
(x − 3) + 1

6 · 5
(x − 3)2 − 1

7 · 6 · 5
(x − 3)3 + · · ·

]

= (x − 3)

∞
∑

k=0

(−1)k4!
(k + 4)!

(x − 3)k

For r = r2 : ak = −1

k
ak−1 ; y(x) = ay2(x) with

y2(x) = (x − 3)−3
[

1 − (x − 3) + 1

2
(x − 3)2 − 1

3 · 2
(x − 3)3 + · · ·

]

= (x − 3)−3

∞
∑

k=0

(−1)k

k!
(x − 3)k = (x − 3)−3e−(x−3)


